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Figure 1: Escher’s Knots, 1965
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1 Knot Theory

Knot theory is an appealing subject because the objects studied are familiar in
everyday physical space. Although the subject matter of knot theory is familiar
to everyone and its problems are easily stated, arising not only in many branches
of mathematics but also in such diverse fields as biology, chemistry, and physics,
it is often unclear how to apply mathematical techniques even to the most basic
problems. We proceed to present these mathematical techniques.

1.1 Knots

The intuitive notion of a knot is that of a knotted loop of rope. This notion leads
naturally to the definition of a knot as a continuous simple closed curve in R3.
Such a curve consists of a continuous function f : [0, 1] → R3 with f(0) = f(1)
and with f(x) = f(y) implying one of three possibilities:

1. x = y

2. x = 0 and y = 1

3. x = 1 and y = 0

Unfortunately this definition admits pathological or so called wild knots into
our studies. The remedies are either to introduce the concept of differentiability
or to use polygonal curves instead of differentiable ones in the definition. The
simplest definitions in knot theory are based on the latter approach.

Definition 1.1 (knot) A knot is a simple closed polygonal curve in R3.

The ordered set (p1, p2, . . . , pn) defines a knot; the knot being the union of the
line segments [p1, p2], [p2, p3], . . . , [pn−1, pn], and [pn, p1].

Definition 1.2 (vertices) If the ordered set (p1, p2, . . . , pn) defines a knot and
no proper ordered subset defines the same knot, the elements of the set, pi, are
called the vertices of the knot.

Projections of a knot to the plane allow the representation of a knot as a knot
diagram. Certain knot projections are better than others as in some projections
too much information is lost.

Definition 1.3 (regular projection) A knot projection is called a regular pro-
jection if no three points on the knot project to the same point, and no vertex
projects to the same point as any other point on the knot.

Theorem 1.1 If a knot does not have a regular projection then there is an
equivalent knot that does have a regular projection.
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Figure 2: Three knot diagrams for the figure - eight knot.

A knot diagram is the regular projection of a knot to the plane with broken
lines indicating where one part of the knot undercrosses the other part.

Informally, an orientation of a knot can be thought of as a direction of travel
around the knot.

Definition 1.4 (oriented knot) An oriented knot consists of a knot and an
ordering of its vertices. The ordering must be chosen so that it determines the
original knot. Two orderings are considered equivalent if they differ by a cyclic
permutation.

The orientation of a knot on a knot diagram is represented by placing coherently
directed arrows.

The connected sum of two knots, K1 and K2, is formed by removing a small
arc from each knot and then connecting the four endpoints by two new arcs in
such a way that no new crossings are introduced, the result being a single knot,
K = K1#K2.

Figure 3: Connected sum of the figure - eight knot and the trefoil knot.

The notion of equivalence of knots is based on their knot diagrams and the
following theorem.

Theorem 1.2 If knots K and J have identical diagrams, then they are equiva-
lent.
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1.2 Equivalence

The notion of equivalence satisfies the definition of an equivalence relation;
it is reflexive, symmetric, and transitive. Knot theory consists of the study of
equivalence classes of knots. In general it is a difficult problem to decide whether
or not two knots are equivalent or lie in the same equivalence class, and much of
knot theory is devoted to the development of techniques to aid in this decision.

A Reidemeister move is an operation that can be performed on the diagram
of a knot whithout altering the corresponding knot.

Figure 4: Type I, type II, and type III Reidemeister moves.

They correspond to the simplest changes in a diagram that occur when a knot
is deformed. Although each of these moves changes the diagram, they do not
change the knot represented by the diagram.

Theorem 1.3 If two knots are equivalent, their diagrams are related by a se-
quence of Reidemeister moves.
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Figure 5: The figure - eight knot is equivalent to its mirror image. A knot with
this property is called amphicheiral.
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Definition 1.5 (colorable) A knot diagram is called colorable if each arc can
be drawn using one of three colors in such a way that:

1. At least two of the colors are used.

2. At each crossing either three different colors come together or all the same
color comes together.

Figure 6: The trefoil knot is colorable.

Theorem 1.4 If a diagram of a knot K, is colorable, then every diagram of K
is colorable.

Definition 1.6 (colorable) A knot is called colorable if its diagrams are col-
orable.

Clearly the unknot is not colorable because its standard projection cannot be
colored. On the other hand, every projection of the trefoil knot is colorable.
These two observations in conjunction with the theorem above leads to the
most basic fact of knot theory – the existence of nontrivial knots, knots other
than the unknot. Furthermore any colorable knot is nontrivial.

The concept of colorability can be generalized by introducing the concept of
a modp labeling.

Definition 1.7 (modp labeling) A knot diagram can be labeled modp if each
edge can be labeled with an integer from 0 to p− 1 such that

1. At least two labels are distinct.

2. At each crossing the relation 2x− y− z = 0 (mod p) holds, where x is the
label on the overcrossing and y and z the other two labels.

Theorem 1.5 If some diagram for a knot can be labeled modp then every dia-
gram for that knot can be labeled modp.

The concept of modp labelings is an interesting generalization of colorability
since the question of whether a diagram can be labeled modp can be reduced
to a problem in linear algebra; whether there is a modp solution to a system of
algebraic equations.

The concept of modp labelings can be generalized by introducing the con-
cept of labeling knots with elements of a group.
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Definition 1.8 (group labeling) A labeling of an oriented knot diagram with
elements of a group consists of assigning an element of the group to each arc of
the diagram, subject to the following two conditions.

1. At each crossing of the diagram three arcs appear, each of which should be
labeled with an element from the group. The label of the arc that passes
under the crossing must be conjugate to the one that emerges from the
crossing via the label on the overcrossing.

2. The labels must generate the group.

Theorem 1.6 If a diagram for a knot can be labeled with elements from a group
G, then any diagram of the knot can be so labeled with elements from that group,
regardless of the choice of orientation.

Finding a labeling of a knot using elements of a group is quite difficult. For-
tunately we can proceed systematically by reducing the problem of finding a
labeling for the knot to that of solving equations in a group; once a few labels
are chosen the rest are determined. Furthermore the procedure above results
in a collection of variables and relations of the form ri = 1 from which we can
form a group presentation. The resulting group is called the group of the knot.
Although the group depends on the arbitrary choices made, it can be proved
that all groups that arise this way for a given knot are isomorphic. Another
significant result in the subject, Dehn’s Lemma, states that if a knot group is
isomorphic to Z, then the knot is trivial.

We shift the focus of our study of knot theory from the methods based on
knot diagrams to those based on surfaces. This shift allows for the use of geo-
metric and topological techniques. It is motivated by a theorem stating that for
any knot there is some surface having that knot as its boundary. Furthermore,
there is an algorithm for its explicit construction, and the resulting surface is
called a Seifert surface for the knot.

Theorem 1.7 Every knot is the boundary of an orientable surface.

The theorems below gives a homeomorphism classification for the surfaces.

Theorem 1.8 (Classification I) Every connected surface with boundary is
homeomorphic to a surface constructed by attaching bands to a disk.

Theorem 1.9 (Classification II) Two disks with bands attached are homeo-
morphic if and only if the following three conditions are met:

1. They have the same number of bands.

2. They have the same number of boundary components.

3. Both are orientable or both are nonorientable.
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In the same spirit as studying the surface of a knot, we may study the comple-
ment of the knot in three space, R3 −K, and form its fundamental group. The
use of the fundamental group allows the definition of algebraic quantities with-
out reference to diagrams for the knot. This framework also brings into play
the powerful techniques of algebraic topology, for instance, homology theory.

Below we define the classical and most natural invariants in the study of
knots. They are ways of associating integers to knots.

Definition 1.9 (crossing number) The crossing number of a knot K, de-
noted c(K), is the least number of crossings that occur, ranging over all possible
diagrams.

Definition 1.10 (unknotting number) The unknotting number of a knot K,
denoted u(K), is the least number of crossing changes that are required for the
knot to become unknotted, ranging over all possible diagrams.

Definition 1.11 (bridge number) The bridge number of a knot K, denoted
b(K), is the least number of bridges that occur, ranging over all possible dia-
grams. A bridge is considered to be an arc between two undercrossings with no
undercrossings inbetween and at least one overcrossing.

Although beyond the scope of this leisurely introduction to knot theory, one
of the most successfull and interesting ways to tell knots apart is through the
various knot polynomials, of which there is an incredible variety.

The definition of a prime knot and the prime decomposition theorem can
now be presented.

Definition 1.12 (prime knot) A knot is called prime if for any decomposi-
tion as a connected sum, one of the factors is unknotted.

Theorem 1.10 (Prime Decomposition Theorem) Every knot can be de-
composed as the connected sum of nontrivial prime knots. If K = K1#K2# · · ·#Kn,
and K = J1#J2# · · ·#Jm, with each Ki and Ji nontrivial prime knots, then m
= n, and, after reordering each Ki is equivalent to Ji
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A Appendix

Number of Crossings Number of Prime Knots
3 1
4 1
5 2
6 3
7 7
8 21
9 49
10 165
11 552
12 2,176
13 9,988
14 46,972
15 253,293
16 1,388,705

Table 1: Table of knots through sixteen crossings. Mirror images are excluded
from the count.
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Figure 7: Table of knots through eight crossings, and most nine crossing knots.
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