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Abstract

We advocate the use of point sets to represent shapes. We pro-
vide a definition of a smooth manifold surface from a set of points
close to the original surface. The definition is based on local maps
from differential geometry, which are approximated by the method
of moving least squares (MLS). We present tools to increase or de-
crease the density of the points, thus, allowing an adjustment of the
spacing among the points to control the fidelity of the representa-
tion.

To display the point set surface, we introduce a novel point ren-
dering technique. The idea is to evaluate the local maps according
to the image resolution. This results in high quality shading effects
and smooth silhouettes at interactive frame rates.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface,
solid, and object representations;

Keywords: surface representation and reconstruction, moving
least squares, point sample rendering, 3D acquisition

1 Introduction

Point sets are receiving a growing amount of attention as a repre-
sentation of models in computer graphics. One reason for this is the
emergence of affordable and accurate scanning devices generating
a dense point set, which is an initial representation of the physical
model [28]. Another reason is that highly detailed surfaces require
a large number of small primitives, which contribute to less than
a pixel when displayed, so that points become an effective display
primitive [33, 36].

A point-based representation should be as small as possible
while conveying the shape, in the sense that the point set is nei-
ther noisy nor redundant. It is important to have tools which ade-
quately adjust the density of points so that a smooth surface can be
well-reconstructed. Figure 1 shows a point set with varying density.
Amenta et al [1] have investigated the problem from a topological
point of view, that is, the number of points needed to guarantee a
topologically equivalent reconstruction of a smooth surface. Our
approach is motivated by differential geometry and aims at mini-
mizing the geometric error of the approximation. This is done by
locally approximating the surface with polynomials using moving
least squares (MLS).

Figure 1: A point set representing a statue of an angel. The density
of points and, thus, the accuracy of the shape representation are
changing (intentionally) along the vertical direction.

We understand the generation of points on the surface of a shape
as a sampling process. The number of points is adjusted by either
up-sampling or down-sampling the representation. Given a data
set of pointsP = {pi} (possibly acquired by a 3D scanning de-
vice), we define a smooth surfaceSP (MLS surface) based on the
input points (the definition of the surface is given in Section 3).
We suggest replacing the pointsP definingSP with a reduced set
R = {ri} defining an MLS surfaceSR which approximatesSP .
This general paradigm is illustrated in 2D in Figure 2: PointsP ,
depicted in purple, define a curveSP (also in purple).SP is resam-
pled with pointsri ∈ SP (red points). This typically lighter point
set called therepresentationpoints now defines the red curveSR
which approximatesSP .

The technique that defines and resamplesSP provides the fol-
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Figure 2: An illustration of the paradigm: The possibly noisy or re-
dundant point set (purple points) defines a manifold (purple curve).
This manifold is sampled with (red) representation points. The rep-
resentation points define a different manifold (red curve). The spac-
ing of representation points depends on the desired accuracy of the
approximation.

lowing important property:

Smooth manifold surface: The surface defined by the point set is
guaranteed to be a 2-manifold andC∞ smooth, given that the
points are sufficiently close to the surface being represented.

In the context of surface consolidation (see Section 2), our approach
has two important features:

Noise reduction: Filtering imperfect data and generating a thin
point set, in the sense that the points do not deviate from the
surface being represented.

Redundancy reduction: The point set is down-sampled by re-
moving redundant information introduced by oversampling
the surface.

Finally, we present a rendering method that approximatesSR from
the local polynomial approximations offering:

High quality: SinceSR is a smooth surface, proper resampling
leads to smooth silhouettes and normals resulting in superior
rendering quality at interactive frame rates.

Single step procedure: Resampling respects screen space resolu-
tion and guarantees sufficient sampling, i.e. no holes have to
be filled in a postprocessing step.

2 Related work

Consolidation

Recent technological and algorithmic advances have improved the
process of automatic acquisition of 3D models. Acquiring the ge-
ometry of an object starts with data acquisition, usually performed
with a range scanner. This raw data contains errors (e.g., line-of-
sight error [16, 37]) mainly due to noise intrinsic to the sensor used
and its interaction with the real-world object being acquired. For
a non-trivial object, it is necessary to perform multiple scans, each
in its own coordinate system, and to register the scans [5]. In gen-
eral, areas of the objects are likely to be covered by several samples

from scans performed from different positions. One can think of
the output of the registration as athickpoint set.

A common approach is to generate a triangulated surface model
over the thick point set. There are several efficient triangulation
techniques, such as [1, 2, 4, 6, 12]. One of the shortcomings of this
approach is that the triangulated model is likely to be rough, con-
taining bumps and other kinds of undesirable features, such as holes
and tunnels, and be non-manifold. Further processing of the trian-
gulated models, such as smoothing [41, 11] or manifold conver-
sion [15], becomes necessary. The prominent difficulty is that the
point set might not actually interpolate a smooth surface. We call
consolidationthe process of “massaging” the point set into a sur-
face. Some techniques, such as Hoppe et al [18], Curless and Levoy
[9], and Wheeler et al [45] consolidate their sampled data by using
an implicit representation based on a distance function defined on
a volumetric grid. In [18], the distances are taken as the signed
distance to a locally defined tangent plan. This technique needs
further processing [19, 17] to generate a smooth surface. Curless
and Levoy [9] use the structure of the range scans and essentially
scan convert each range surface into the volume, properly weight-
ing the multiply scanned areas. Their technique is robust to noise
and is able to take relative confidence of the samples into account.
The work of Wheeler et al [45] computes the signed distance to a
consensus surface defined by weighted averaging of the different
scans. One of the nice properties of the volumetric approach is that
it is possible to prove under certain conditions that the output is a
least-square fit of the input points (see [9]).

The volumetric sign-distance techniques described above are re-
lated to a new field in computer graphics calledVolume Graphics
pioneered by Kaufman and colleagues [20, 44, 40] which aims to
accurately define how to deal with volumetric data directly, and an-
swer questions related to the proper way to convert between surface
and volume representations.

It is also possible to consolidate the point set by performing
weighted averaging directly on the data points. In [43], model tri-
angulation is performed first, then averaging is performed in areas
which overlap. In [39], the data points are first averaged, weighted
by a confidence in each measurement, and then triangulated.

Another approach to define surfaces from the data points is to
perform some type of surface fitting [13], such as fitting a poly-
nomial [25] or an algebraic surface [34] to the data. In general, it
is necessary to know the intrinsic topology of the data and (some-
times) have a parametrization before surface fitting can be applied.
Since this is a non trivial task, Krishnamurthy and Levoy [22] have
proposed a semi-automatic technique for fitting smooth surfaces to
dense polygon meshes created by Curless and Levoy [9]. Another
form of surface fitting algorithms couples some form of high-level
model recognition with a fitting process [35].

The process of sampling (or resampling) surfaces has been stud-
ied in different settings. For instance, surface simplification algo-
rithms [7] sample surfaces in different ways to optimize rendering
performance. Related to our work are algorithms which use particle
systems for sampling surfaces. Turk [42] proposes a technique for
computing level of details of triangular surfaces by first randomly
spreading points on a triangular surface, then optimizing their po-
sitions by letting each point repel their neighbors. He uses an ap-
proximation of surface curvature to weight the number of points
which should be placed in a given area of the surface. A related
approach is to use physically-based particle systems to sample an
implicit surface [46, 10]. Crossno and Angel [8] describe a system
for sampling isosurfaces, where they use the curvature to automati-
cally modulate the repulsive forces.

Lee [24] uses a moving-least squares approach to the reconstruc-
tion of curves from unorganized and noisy points. He proposes
a solution for reconstructing two and three-dimensional curves by
thinning the point sets. Although his approach resembles the one



used here (and based on theory developed in [27]), hisprojection
procedure is different, and requires several iterations to converge to
a clean point set (i.e., it is not actually a projection, but more of a
converging smoothing step).

Point sample rendering

Following the pioneering work of Levoy and Whitted [29], several
researchers have recently proposed using “points” as the basic ren-
dering primitive, instead of traditional rendering primitives, such
as triangulated models. One of the main reasons for this trend is
that in complex models the triangle size is decreasing to pixel res-
olution. This is particularly true for real-world objects acquired as
“textured” point clouds [31].

Grossman and Dally [14] presented techniques for converting
geometric models into point-sampled data sets, and algorithms for
efficiently rendering the point sets. Their technique addresses sev-
eral fundamental issues, including the sampling rate of conversion
from triangles to points, and several rendering issues, including
handling “gaps” in the rendered images and efficient visibility data
structures. The Surfels technique of Pfister et al [33] builds and
improves on this earlier work. They present alternative techniques
for the sampling of the triangle mesh, including visibility testing,
texture filtering, and shading.

Rusinkiewicz and Levoy [36] introduce a technique which uses
a hierarchy of spheres of different radii to model a high-resolution
model. Their technique uses small spheres to model the vertices
at the highest resolution, and a set of bounding spheres to model
intermediate levels. Together with each spherical sample, they also
save other associated data, such as normals. Their system is capable
of time-critical rendering, as it adapts the depth of tree traversal to
the available time for rendering a given frame.

All the above techniques account for local illumination. Schau-
fler and Jensen [38] propose to compute global illumination effects
directly on point-sampled geometry by a ray tracing technique. The
actual intersection point is computed, based on a local approxima-
tion of the surface, assuming a uniform sampling of the surface.

Point-based rendering suffers from the limited resolution of the
fixed number of sample points representing the model. At some
distance, the screen space resolution is high relative to the point
samples, which causes undersampling. Tackling this problem by
interpolating the surface points in image space is limited. A bet-
ter approach is to resample the surface during rendering at the de-
sired resolution in object-space, guaranteeing that sampling density
is sufficient with respect to the image space resolution.

3 Defining the surface - projecting

Our approach relies on the idea that the given point set implicitly
defines a surface. We build upon recent work by Levin [27]. The
main idea is the definition of a projection procedure, which projects
any point near the point set onto the surface. Then, the MLS surface
is defined as the points projecting onto themselves. In the follow-
ing, we explain Levin’s projection procedure [27] and, then, how to
efficiently compute it.

3.1 The projection procedure

Let pointspi ∈ IR3, i ∈ {1, . . . , N}, be sampled from a surfaceS
(possibly with a measurement noise). The goal is to project a point
r ∈ IR3 nearS onto a two-dimensional surfaceSP that approxi-
mates thepi. The following procedure is motivated by differential
geometry, namely that the surface can be locally approximated by
a function.
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Figure 3: The MLS projection procedure: First, a local reference
domainH for the purple pointr is generated. The projection ofr
ontoH defines its originq (the red point). Then, a local polynomial
approximationg to the heightsfi of pointspi overH is computed.
In both cases, the weight for each of thepi is a function of the
distance toq (the red point). The projection ofr ontog (the blue
point) is the result of the MLS projection procedure.

1. Reference domain: Find a local reference domain (plane)
for r (see Figure 3). The local planeH = {x|〈n, x〉 −D =
0, x ∈ IR3}, n ∈ IR3, ‖n‖ = 1 is computed so as to minimize
a local weighted sum of square distances of the pointspi to the
plane. The weights attached topi are defined as the function
of the distance ofpi to the projection ofr on the planeH,
rather than the distance tor. Assumeq is the projection ofr
ontoH, thenH is found by minimizing

N∑
i=1

(〈n, pi〉 −D)2 θ (‖pi − q‖) (1)

whereθ is a smooth, radial, monotone decreasing function,
which is positive on the whole space. Sinceθ decreases as
the distance of the points increases, the plane approximates
the tangent plane toS near the pointr. The local reference
domain is then given by an orthonormal coordinate system on
H so thatq is the origin of this system.

2. Local map: The reference domain forr is used to compute
a local bivariate polynomial approximation to the surface in a
neighborhood ofr (see Figure 3). Letqi be the projection of
pi ontoH, andfi the height ofpi over H, i.efi = n·(pi−q).
Compute the coefficients of a polynomial approximationg so
that the weighted least squares error

N∑
i=1

(g(xi, yi)− fi)2 θ (‖pi − q‖) (2)

is minimized. Here(xi, yi) is the representation ofqi in a
local coordinate system inH. Note that, again, the distances
used for the weight function are from the projection ofr onto
H. The projection ofr ontoSP is defined by the polynomial
value at the origin, i.e.q + g(0, 0)n.

Levin proves that the surface defined as the points that project onto
themselves is a two-dimensional manifold [27]. Further, a general
analysis of moving least squares [26] leads to the conjecture that the
resulting surface is infinitely smooth as long asθ ∈ C∞ (provided
thatθ has the above-mentioned properties).

The approximation of single points is mainly dictated by the ra-
dial weight functionθ. The weight function suggested in [27] is a



Figure 4: The effect of different values for parameterh. A point set
representing an Aphrodite statue defines an MLS surface. The left
side shows an MLS surface resulting from a small value and reveals
a surface structure resulting from the wood carving. The right side
shows a larger value forh, smoothing out small features or noise.

Gaussian

θ(d) = e
− d

2

h2 (3)

whereh is a fixed parameter reflecting the anticipated spacing be-
tween neighboring points. By changingh the surface can be tuned
to smooth out features of size< h in S. More specifically, a small
value forh causes the Gaussian to decay faster and the approxima-
tion is more local. Conversely, large values forh result in a more
global approximation, smoothing out sharp or oscillatory features
of the surface. Figure 4 illustrates the effect of differenth values.

3.2 Computing the planes and polynomials

We explain how to efficiently compute the projection and what val-
ues should be chosen for the polynomial degree andh. Further-
more, we discuss trade-offs between accuracy and speed.

Step 1 of the projection procedure is a non-linear optimization
problem. By settingq = r + tn for somet ∈ IR, (1) can be
rewritten as:

N∑
i=1

〈n, pi − r − tn〉2 θ (‖pi − r − tn‖) (4)

Usually, the function will have more than one local minimum. In-
tuitively, the plane should be close tor, which meanst should be
small. Thus, we want to choose the local minimum with smallestt.
For minimizing (4), we have to use some iterative scheme, which
descends towards the next local minimum. Currently, a standard
iterative solver is employed, together with a good heuristic choice
of the initial values{n, t}, which ensure that the minimization con-
verges to a local minimum with smallt.

We find this initial value by settingt = 0 and solving (4):

N∑
i=1

〈n, pi − r〉2 θi, θi = θ (‖pi − r‖) (5)

This is a quadratic function inn and can be solved by setting its
gradient

N∑
i=1

2θi 〈n, pi − r〉 (pi − r) (6)

to zero.

The resulting initial value is refined using Powell iteration. Note
that the global minimum of (4) is approached fort =∞. To avoid
this solution, (4) is normalized with the sum of weightsθ.

The second step of the projection procedure is solved in the same
way as the initial value problem for the first step: Once the planeH
is computed, the weightsθ(‖pi−q‖) are known. The gradient of (2)
over the unknown coefficients of the polynomial leads to a system
of linear equations of size equal to the number of coefficients, e.g.
10 for a third degree polynomial.

Through experimentation, we found that high degree polynomi-
als are likely to oscillate. Polynomials of degree 3 to 4 have proven
to be very useful as they produce good fits of the neighborhood, do
not oscillate, and are quickly computed.

The most time-consuming step in computing the projection of
a point r is collecting the coefficients from each of thepi. Im-
plemented naively, this process takesO(N) time, whereN is the
number of points. We compute these terms using a hierarchical
method inspired by solutions to the N-body problem [3]. The basic
observation is, that a cluster of points far fromr can be combined
into one point. To exploit this idea, an Octree is filled with thepi.
Leaf nodes contain thepi; inner nodes contain information about
the number of points in the subtree and their centroid. Then, terms
are collected from the nodes of the Octree. If the node’s dimen-
sion is much smaller than its distance tor, the centroid is used for
computing the coefficients; otherwise the subtree is traversed. In
addition, we neglect nodes, for which the distance tor is larger
than a predefined constant.

A simple way to trade accuracy for speed is to assume that the
planeH passes through the point to be projected. This assumption
is reasonable for input points, which are expected to be close to
the surface they define (e.g. input that has been smoothed). This
simplification saves the cost of the iterative minimization scheme.

Actual timings for the projection procedure depend heavily on
the feature sizeh. On a standard Pentium PC the points of the bunny
were projected at a rate of 1500-3500 points per second. Smaller
values forh lead to faster projection since the neighborhoods and,
thus, the number of points taken into account are smaller. The code
has not been optimized to be memory efficient and no storage anal-
ysis had been performed as the available main memroy of 512MB
was sufficient in all tests.

4 Generating the representation point set

A given point set might have erroneous point locations (i.e. is
noisy), may contain too many points (i.e. is redundant) or not
enough points (i.e. is undersampled). The problem of noise is han-
dled by projecting the points onto the MLS surface they define. The
result of the projection procedure is a thin point set. Redundancy is
avoided by decimating the point set, taking care that it persists to be
a good approximation of the MLS surface defined by the original
point set. In the case of undersampling, the input point set needs
to be up-sampled. In the following sections, we show techniques to
remove and add points.

Down-sampling

Given a point set, the decimation process repeatedly removes the
point that contributes the smallest amount of information to the
shape. The contribution of a point to the shape or the error of the
sampling is dictated by the definition of the shape. If the point set is
reconstructed by means of a triangulation, criteria from the specific
triangulation algorithm should control the resampling. Criteria in-
clude the distance of points on the surface [18], curvature [12], or
distance from the medial axis of the shape [1]. For a direct display
of the point set on a screen homogeneous distribution of the points
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Figure 5: The point set representing an Aphrodite statue is projected onto a smooth MLS-surface. After removing redundant points, a set
of 37K points represents the statue (a). The corresponding rendering is shown in (b). The point set is decimated using point removal. An
intermediate stage of the reduction process is shown in (c). Note that the points are color-coded with respect to their importance. Blue points
do not contribute much to the shape and might be removed; red points are important for the definition of the shape. The final point set in (e)
contains 20K points. The corresponding rendering is depicted in (d) and is visually close to the one in (b).

a) b)

Figure 6: Noisy input points (green points) are projected onto their
smooth MLS curve (orange points). The figures in (a) show the
point sets and a close-up view. The decimation process is shown in
(b). Points are color-coded as in Figure 5.

over the surface is required [14, 33]. Here, we derive a criterion
motivated by our definition of the surface.

The contribution of a projected pointpi to the surfaceSP can be
estimated by comparingSP with SP−{pi}. Computing the Haus-
dorff distance between both surfaces is expensive and not suitable
for an iterative removal of points of a large point set. Instead, we
approximate the contribution ofpi by its distance from its projec-
tion onto the surfaceSP−{pi}. Thus, we estimate the difference
of SP andSP−{pi} by projectingpi ontoSP−{pi} (projectingpi
under the assumption it was not part ofP ).

The contribution values of all points are inserted into a priority
queue. At each step of the decimation process, the point with the
smallest error is removed from the point set and from the priority
queue. After the removal of a point, the error values of nearby
points have to be recalculated since they might have been affected
by the removal. This process is repeated until the desired number
of points is reached or the contributions of all points exceed some
prespecified bound.

Figure 6 illustrates our decimation process applied on the set of
red points depicted in (a). First, the red points are projected on the
MLS surface to yield the blue points. A close-up view over a part of
the points shows the relation between the input (red) points and the
projected points. In (b), we show three snapshots of the decimation
process, where points are colored according to their error value;
blue represents low error and red represents high error. Note that
in the sparsest set, all of the points have a high error, that is, their

Figure 7: The up-sampling process: Points are added at vertices
of the Voronoi diagram. In each step, the vertex with the largest
empty circle is chosen. The process is repeated until the radius
of the largest circle is smaller than a specified bound. The wavy
torus originally consisting of 800 points has been up-sampled to
20K points.

removal will cause a large error. As the decimation proceeds, fewer
points remain and their importance grows and the error associated
with them is larger. Figure 5 shows the decimation process in 3D
with corresponding renderings of the point sets.

Up-sampling

In some cases, the density of the point set might not be sufficient for
the intended usage (e.g. direct point rendering or piecewise recon-
structions). To alleviate this problem, we try to decrease the spac-
ing among points. Additional points should be placed (and then
projected to the MLS surface) where the spacing among points is
larger then a specified bound.

The basic idea of our approach is to compute Voronoi diagrams
on the MLS surface and add points at vertices of this diagram. Note
that the vertices of the Voronoi diagram are exactly those points on
the surface with maximum distance to several of the existing points.
This idea is related to Lloyd’s method [30], i.e techniques using



Voronoi diagrams to achieve a certain distribution of points [32].
However, computing the Voronoi diagram on the MLS surface is

excessive and local approximations are used instead. More specif-
ically, our technique works as follows: In each step, one of the ex-
isting points is selected randomly. A local linear approximation is
built and nearby points are projected onto this plane. The Voronoi
diagram of these points is computed. Each Voronoi vertex is the
center of a circle that touches three or more of the points without
including any point. The circle with largest radius is chosen and
its center is projected to the MLS surface. The process is repeated
iteratively until the radius of the largest circle is less than a user-
specified threshold. (see Figure 7). At the end of the process, the
density of points is locally near-uniform on the surface. Figure 7
shows the original sparse point set containing 800 points, and the
same object after adding 20K points over its MLS surface.

5 Rendering

The challenge of our interactive point rendering approach is to use
the representation points and (when necessary) create new points
by sampling the implicitly defined surface at a resolution sufficient
to conform to the screen space resolution.

Usually, the representation points are not sufficient to render the
object in screen space. In some regions, it is not necessary to render
all points as they are occluded, backfacing, or have higher density
than needed. However, typically, points are not dense enough to
be projected directly as a single pixel and more points need to be
generated by interpolation in object space.

Culling and view dependency

The structure of our rendering system is similar in spirit to QS-
plat [36]. The input points are arranged into a bounding sphere
hierarchy. For each node, we store a position, a radius, a normal
coverage, and optionally a color. The leaf nodes additionally store
the orientation of the support plane and the coefficients of the as-
sociated polynomial. The hierarchy is used to cull the nodes with
the view frustum and to apply a hierarchical backface culling [23].
Note that culling is important for our approach since the cost of ren-
dering the leaf nodes (evaluating the polynomials) is relatively high
compared to simpler primitives. Moreover, if the traversal reaches
a node with an extent that projects to a size of less than a pixel, this
node is simply projected to the frame-buffer without traversing its
subtree. When the traversal reaches a leaf node and the extent of
its bounding sphere projects to more than one pixel in screen space,
additional points have to be generated.

Sampling additional points

The basic idea is to generate a grid of points sufficient to cover the
extent of a leaf node. However, projecting the grid points using the
method described in Section 3 is not fast enough; thus, we sam-
ple the polynomials associated with the representation points. Note
that the gradient of the polynomials also yields pointwise normals.
Yet, this requires the point set and the associated polynomials to
be near-uniform on the surface and it might be necessary to first
process a given point set with the up-sampling methods presented
in Section 4. This way, we ensure that the local, non-conforming
(i.e. overlapping or intersecting) polynomials are a good approxi-
mation to the surface inside a patch[−h, h]2 around a point and,
thus, the resulting image shows a smooth surface. However, most
dense point sets can be readily displayed with the approach. pre-
sented here. For example, Figure 9 shows several renderings of the
original Stanford Bunny data.

It is critical to properly define the extent of a polynomial patch on
the supporting plane, such that neighboring patches are guaranteed

h

Figure 8: The patch size of a polynomial: Points inside a ball of
radiush around the red point are projected onto the support plane of
the red point. The patch size is defined as the bounding box (in local
coordinates) of the projections. Note that using a disk of radiush or
a square patch of[−h, h]2 would lead to unpleasant effects in some
cases, as the polynomial might leave the ball of radiush.

to overlap (to avoid holes) but do not overlap more than necessary.
Since no inter-point connectivity information is available, it is un-
clear which points are immediate neighbors of a given point on the
surface. To compute the extent of a polynomial patch on the sup-
port plane all points inside a ball of radiush are collected. These
points are projected to the support plane. The extent is defined as
the bounding rectangle of these projections aligned to the local co-
ordinate system of the support plane. Since the spacing of points is
expected to be less thanh, patches of neighboring points are guar-
anteed to overlap. Note that using a constant extent (e.g. a disk of
radiush on the support plane) can lead to errors, as the polynomial
might leave the ball of radiush, in which a good approximation of
the point set is expected. Figure 8 illustrates the computation of the
patch sizes.

The grid spacingd is computed so that a grid perpendicular to
the viewing direction is sufficiently sampled in image space. If the
grid is, indeed, perpendicular to the viewing direction, the sampling
is also correct on the polynomial. If the grid is not perpendicular
to the viewing direction, the projected area might be oversampled.
However, note that a polynomial over that grid might not be parallel
to the viewing direction. More precisely, if the derivative of the
polynomial is less than one, sufficient sampling is guaranteed for
all orientations of the support plane. If the derivative is higher, the
sampling density needs to be adjusted.

Upon the view-dependent grid spacingd, the polynomials are
evaluated by a forward difference approach, where the polynomial
is scanned across its extent in its localu, v parametric space. The
affine map transforming from support plane coordinates to world
coordinates is factored into polynomial evaluation, thus, generat-
ing points in world coordinates. These points are then fed into the
graphics pipeline to be projected to the screen.

Grid pyramids

The time-critical factor is the view-dependent evaluation of the
points on the polynomial. Optimally, these are recomputed when-
ever the projected screen space size changes. To accelerate the ren-
dering process, we store a grid pyramid with various resolutions
per point. Initially, the pyramid levels are created, but no grid
is actually evaluated. When a specific grid resolution is needed,
the system creates and stores the level that slightly oversamples the
polynomial for a specific resolution, such that small changes in the
viewing position do not result in new evaluations.

To enhance the interactivity of our approach, we also allow the
point size to adapt to changing viewing conditions. For example,
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Figure 9: The Stanford Bunny: The points defining the bunny are depicted in (a) (some points are culled). Points are splatted in (b) to
satisfy screen space resolution. Note the difference of a piecewise linear mesh over the points (c) and close-up in (g) to the rendering of
non-conforming polynomial patches (d) and (h). The patches are color-coded in (e) and (f).

while rotating or zooming, sparser grids with large points are used
to guarantee an interactive frame rate. Once the viewer stops mov-
ing, a proper grid is chosen from the pyramid.

Results

We have tested our approach on a variety of point sets. Figure 9
shows the renderings of the Stanford Bunny. In (a), the original
point set is shown. Splatting (b) is not leading to good results, be-
cause the model is not sampled densely enough. The traditional
Gouraud-shaded mesh in (c) and (g) is compared to our approach
in (d) and (h). Note the accuracy of the highlights. The non-
conforming local polynomial patches are shown color-coded in (e)
and (f). An example of a environment mapping to demonstrate the
normal continuity is given in Figure 10. Note that silhouettes and
normals are smooth, which leads to less distortions on the boundary
and in the reflections.

The frame rates we achieve are mainly dictated by the number
of visible representation points (i.e. graph traversal time) and the
number of pixels to be filled. All models depicted in the paper
are displayed at more than 5 frames per second in a5122 screen
window (see the accompanying video for more information). The
number of representation points ranges from 1000 (for the torus)
to 900K (for the angel statue). Tests are performed on a PC with
GeForce2 graphics board.

6 Conclusion

In differential geometry, a smooth surface is characterized by the
existence of smooth local maps at any point. In this work we use
this as a framework to approximate a smooth surface defined by
a set of points and we introduced new techniques to resample the
surface to generate an adequate representation of the surface.

To render such surfaces, the surface is covered by a finite num-
ber, as small as possible, of non-conforming, overlapping, polyno-
mial patches. We showed that the error of these approximations is
bounded and dependent on the spacing among points. Thus, it is
possible to provide a point set representation that conforms with a
specified tolerance.

Our paradigm for representing surfaces advocates the use of a
point set (without connectivity) as a representation of shapes. This
representation is universal in the sense that it is used from the be-
ginning (i.e. acquisition) to the end (i.e. rendering) of a graphical
representation’s life cycle. Moreover, we believe that this work is
a step towards rendering with higher order polynomials. Note that
we have used simple primitives (points) to achieve this goal. This
admits to the current trend of integrating high quality rendering fea-
tures into graphics hardware.

It would be interesting to integrate our approach with combina-
torial methods such as the one of Amenta et al [1]. This would com-
bine topological guarantees with the additional precision of higher
order approximations and the possibility of smoothing out noise or
small features.

Using different values forh, it is easy to generate more smooth
or more detailed versions of a surface from one point set (see, for
example, Figure 4). A set of different versions could be used as a
smooth-to-detailed hierarchy and would allow for multiresolution
modeling [21]. Of course,h is not necessarily a global parameter
and could be adapted to the local feature size. Varyingh has sev-
eral implications and utility in handling point sets (see [24] for a
nice introduction to the issues in two dimensions), such as prop-
erly accounting for differences in sampling rate and levels of noise
during the acquisition process. Also, non radial functions might be
necessary to properly account for sharp features in the models.



Figure 10: Comparison of mesh rendering with our technique with
environment mapping. The left column shows renderings of a mesh
consisting of 1000 vertices. The right column shows our technique
using the vertices as input points. The environment maps empha-
size the improved normal and boundary continuity.
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