CS 468 — Winter 2004 Point Set Topology Afra Zomorodian

Point set topology is something that every analyst should know something about,
but it's easy to get carried away and do too much — it's like candy!

— Ron Getoor (UCSD), 1997 (quoted by Jason Lee)

1 Point Set Topology

In this lecture, we look at a major branch of topology: point set topology. This branch is devoted to the study of
continuity. Developed in the beginning of the last century, point set topology was the culmination of a movement
of theorists who wished to place mathematics on a rigorous and unified foundation. The theory is analytical and is
therefore not suitable for computational purposes. The concepts, however, are foundational. Therefore, it is important
to become familiar with them, as we will see them later, when studying combinatorial topology.

We know that topology is concerned witlonnectivity and therefore th@eighborhoodof points. We have
actually seen neighborhoods before. In studying high-school calculus, you may have degisitith-deltadefinition
of a limit (or continuity):

Definition 1.1 (Limit) Let f: D — R, D C R be a function with domai® C R. The limitlim,_,,, f(z) = yo iff
forall e > 0,36 > 0 such thatifz € D and|z — x¢| < ¢, then|f(z) — yo| < €.

Note that the definition requires thatfalls within an open interval of siz& aroundz,. The function, then, maps
to another open interval of sizearound the limit valug,. Open intervals and disks are natural neighborhoods in
a Euclidean world. We take their existence for granted because we know how to measure distarzes ifitee
definition), so we know who ieearto us. Our ability to measure distances (a metric) gives us the neighborhoods, and
therefore our topology.

But suppose we didn't have a metric. We still need neighborhoods to talk about connectivity. Topology formalizes
this notion using set theory. If you need to brush up on sets and their operations, read Sddiien

1.1 Topological Spaces

We begin with a set o objects we calpoints Both sets and points are primitive notions, that is, we cannot define
them. These points are not in any space yet. We endow our set with structure by using a topology to get a topological
space.

Definition 1.2 (topology) A topologyon a setX is a subsef” C 2% such that:
1.1f 5,5, €T, thenS; NSy €T.
2. 1f{S;|jeJ} CT,thenUjc;S; € T.
3.0, X eT.

The definition states implicitly that only finite intersections, and infinite unions, of the séfsaire also inT’. A
topology is simply a system of sets that describe the connectivity of the set. These sets have names:

Definition 1.3 (open, closed)Let X be a set and’ be a topologyS € T is anopen setThe complement of an open
set isclosed

A set may be only closed, only open, both open and closed, or neither. For indldadeth open and closed by
definition. These sets are precisely the neighborhoods that we will use to define topology. We combine a set with a
topology to get the spaces we are interested in.

Definition 1.4 (topological space)The pair(X,T) of a setX and a topologyl is atopological space

We often use&X as notation for a topological spadg with 7" being understood.

Definition 1.5 (continuous) A function f : X — Y is continuous if for every open setin Y, f~1(A) is open inX.
We call a continuous functionraap
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Compare this definition with Definitioh. 1. We next turn our attention to the individual sets.

Definition 1.6 (interior, closure, boundary) Let A C X. The closure A of A is the intersection of all closed sets
containingA. Theinterior A of A is the union of all open sets containedAn Theboundaryd A of Ais0A = A— A.

In Figurel, we see a set that is composed of a single point and a upside-down teardrop shape. We also see its closure,

(@ACX (b)A (c) A (d)yoA
Figure 1. A set A C X and related sets.

interior, and boundary. There are other equivalent ways of defining these concepts. For example, we may think of the
boundary of a set as the set of points all of whose neighborhoods intersect both the set and its complement. Similarly,
the closure of a set is the minimum closed set that contains the set. Using open sets, we can now define neighborhoods.

Definition 1.7 (neighborhoods) Let X = (X, T') be a topological space. Aeighborhoodof » € X is any A €
T such thatr € A. A basis of neighborhoods at € X is a collection of neighborhoods af such that every
neighborhood of: contains one of the basis neighborhoods.

Given a topological spacg = (X,T), we may induce topology on any subsetC X. We get therelative (or
induced topologyT'4 by defining

Ty = {SNA|SeT}. 1)
It is easy to verify thafl’, is, indeed, a topology oA, upgradingA to topological spacé.

Definition 1.8 (subspace)A subsetAd C X with induced topology’4 is a (topologicalsubspacef X.
The important point to keep in mind is that the same set of points may be endowed with different topologies. This is
very counter-intuitive at first, but will become clear when we learn about immersions.

1.2 Metric Spaces

As in the definition of limit earlier, we are more familiar with open sets that come from a metric. Let’s look at metric
spaces next, as they are useful places within which we shall place other spaces.

Definition 1.9 (metric) A metricor distance functior : X x X — R is a function satisfying the following axioms:
1. Forallz,y € X, d(x,y) > 0 (positivity).
2. If d(z,y) = 0, thenz = y (non-degeneracy).
3. Forallz,y € X, d(z,y) = d(y, z) (Symmetry).
4. Forallz,y, z € X, d(z,y) + d(y, z) > d(z, z) (the triangle inequality).

Definition 1.10 (open ball) Theopen ballB(z, r) with centerz and radius- > 0 with respect to metrid is defined
tobeB(z,r) = {y | d(z,y) < r}.
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A metric space is a topological space. We can show that open balls can serve as basis neighborhoods for a topology of
a setX with a metric.

Definition 1.11 (metric space)A set X with a metric functiond is called ametric space We give it themetric
topologyof d, where the set of open balls defined usihgerve as basis neighborhoods.

The most familiar of the metric spaces are the Euclidean spaces, where we use the Euclidean metric to measure
distances. Below, we use the Cartesian coordinate functip(i3efinition 1.20in the appendix.)

Definition 1.12 (Euclidean space)The Cartesian product of copies ofR, the set of real numbers, along with the
Euclidean metriel(z,y) = />, (u;(x) — u;(y))? is then-dimensional Euclidean spad.

We are most familiar with spaces that are subsets of Euclidean spaces. For example, if we have a circle sitting
in R2, we may measure the distance between points on the circle using the melRfc drnis is the length of the
chord connecting the two points. When we do so, we are using the topology induddgndow the circle with a
topology. We might, however, like to have the distance between the two points on the circle itself. This is a different
metric and a different neighborhood basis.

1.3 Manifolds

Manifolds are a type of topological space that we are interested in. In a sense, they are a generalization of Euclidean
spaces. Intuitively, a manifold is a topological space that is locally Euclidean. A two-dimensional maniéaallis
flat: locally, it looks like a plane. If we were living on a space like a sphere, we would think we are living on the plane.
In fact, we did.
To define manifolds, we look at maps between topological spaces.

Definition 1.13 (homeomorphism) A homeomorphisnf : X — Y is a 1-1 onto function, such that bofhf~! are
continuous. We say th& is homeomorphito Y, X ~ Y, and thatX andY have the samtpological type

Later, we will use homeomorphisms to define a classification of spaces. For now, we use homeomorphisms to define
charts, as shown in Figuge

¢!

X d

¢

Figure 2. Achartatp € X. ¢ maps U C X containing p to U’ C R%. As ¢ is a homeomorphism, ¢~ also exists and is continuous.

Definition 1.14 (chart) A chartatp € X is a functiony : U — R?, whereU C X is an open set containingand
is a homeomorphism onto an open subseR®f Thedimensionof the charty is d. Thecoordinate functionsf the
chartarer’ = v o ¢ : U — R, whereu’ : R® — R are the standard coordinatesRf.

We need two additional technical definitions, before we may define manifolds. These definitions rule out really strange
spaces which we will never see. | include them so that they do not get endowed with a sense of magic and mystery.

Definition 1.15 (Hausdorff) A topological spac& is Hausdorffif for every z,y € X,z # y, there are neighbor-
hoodsU, V of z, y, respectively, such thaf N V' = ().

The classic example of a non-Hausdorff space is the real line with the origin duplicated as a differenfpaire.
neighborhoods of the two origins intersect, but they are different points! A metric space, however, is always Hausdorff.
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Definition 1.16 (separable) A topological spac& is separabléf it has a countable basis of neighborhoods.

Countablemeans having the same cardinality as integers, that is, the infinity all of us are familiar with (there are bigger
ones, such as the cardinality of real numbers.) Again, metric spaces are separable (it's relatively easy to see this in
Euclidean space, as an irrational point is always near a rational one.) Finally, we can formally define a manifold.

Definition 1.17 (manifold) A separable Hausdorff spadeis called a(topological, abstract)i-manifoldif there is
a d-dimensional chart at every poiat € X, that is, ifz € X has a neighborhood homeomorphicRd. It is
called ad-manifold with boundaryf z € X has a neighborhood homeomorphicR® or the Euclidean half-space
H? = {z € R? | z; > 0}. TheboundarydX of X is the set of points with neighborhood homeomorphiélto The
manifold hadimensior.

Figure3displays a 2-manifold, and a 2-manifold with boundary.

Figure 3. The sphere (left) is a 2-manifold. The torus with two holes (right) is a 2-manifold with boundary. Its boundary, a 1-manifold,
is composed of the two circles.

Theorem 1.1 The boundary of @-manifold with boundary is & — 1)-manifold without boundary.

The manifolds shown are compact.

Definition 1.18 (compact) A covering ofA C X is a family{C; | j € J} in 2%, such thatd C UjeJ C;. An open
coveringis a covering consisting of open setssAbcoveringf a covering{C; | j € J} is a covering{C}, | k € K},
whereK C J. A C X is compactf every open covering ofi has a finite subcovering.

Intuitively, you might think any finite area manifold is compact. However, a manifold can have finite area and not be
compact, such as the cusp in Figdre

Figure 4. The cusp has finite area, but is not compact
A homeomorphism allows us to place one manifold within another.

Definition 1.19 (embedding) An embedding; : X — Y is a homeomorphism onto its imagéX). The image is
called anrembedded submanifolthd it is given its relative topology il.

Most of our interaction with manifolds in our lives has been with embedded manifolds in Euclidean spaces.
Consequently, we always think of manifolds in terms of an embedding. It is important to remember that a
manifold exists independently of any embedding: a sphere does not have to sitRittorbe a sphere. This is, by
far, the biggest shift in the view of the world required by topology.
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Example 1.1 Figure1.1(a) shows an map @& into R2. Note that while the map is 1-1 locally, it is not 1-1 globally.
The mapF wrapsR over the figure-eight over and over. Using the monotone fungtionFigure1.1(b), we first fit

all of R into the interval(0, 27) and then map it using’ once again. We get the same image (figure-eight) but cover
it only once, making?’ 1-1. However, the graph of approaches the origin in the limit, at both and —co. Any
neighborhood of the origin withilR? will have four pieces of the graph within it and will not be homeomorphiRto
Therefore, the map is not homeomorphic to its image and not an embedding.

(@) F(t) = 2cos(t — m/2),sin(2(t — (b) g(t) = m + 2tan—1(¢) © F(t) = F(g(t))
7/2))

Figure 5. Mapping of R into R? with topological consequences.

@ The maps shown in Figurk1lare both immersions. Immersions are defined for smooth manifolds, which are
described in further detail in the second appendix (for those of you who think differential manifolds are like

candy.) If our original manifoldX is compact, nothing “nasty” can happen. iemmersionF' : X — Y is simply a

local embedding. In other words, for any pomt X, there exists a neighborhoddcontainingp such thatF’|;; is an

embedding. Howevef; need not be an embedding within the neighborhooHB @f) in Y. That is, immersed compact

spaces may self-intersect.
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R={z:xz &z} . Then,Re Riff R¢Z R.
— Bertrand Russell (1872-1970)

1.4 Sets and Functions (Appendix)

We cannot define a set formally, other than stating theetés a well-defined collection of objects. We also assume
the following:

1. SetS is made up oklements: € S.
2. There is only one empty sét

3. We may describe a set by characterizing(it ( P(x)}), or by enumerating element§l( 2,3}). Here P is a
predicate.

4. A setS is well-definedf for each object, eithera € Sora ¢ S.

Note that “well-defined” really refers to the definition of a set, rather than the set itSetir card S is the size of the
set. We may multiply sets in order to get larger sets.

Definition 1.20 (Cartesian) Cartesian product of setS;, S, ..., .S, is the set of all ordered-tuples
(a1,as,...,a,), wherea; € S;. The Cartesian product is denoted by eitier< Sy x ... x S, orby[[;_, S;. The
i-th Cartesian coordinate functiom; : [T\, S; — S; is defined byu; (a1, as, . .., a,) = a;.

Having described sets, we define subsets.

Definition 1.21 (subsets)A set B is asubsetof a setA, denotedB C A or A D B, if every element ofB is in A.
B C Aor A D Bisgenerally used foB C A andB # A. If Ais any set, thed is theimproper subsebf A.
Any other subset iproper. If A is a set, we denote b3, the power set of4, the collection of all subsets of,
24 ={B| B C A}.

We also have a couple of fundamental set operations.

Definition 1.22 (intersection, union) TheintersectionA N B of setsA and B is the set consisting of those elements
which belong to bottd and B, thatis,AN B = {z | x € Aandx € B}. Theunion A U B of sets4 and B is the
set consisting of those elements which belonditor B, thatis,A U B = {z | € Aorxz € B}.

We indicate a collection of sets by labeling them with subscripts from an indeX,seg. A; with j € J. For
example, we us€);.; A; = (\[{4; | j € J} = {z | z € A;forallj € J} for general intersection. The next
definition summarizes functions, maps relating sets to sets.

Definition 1.23 (relations and functions) A relation ¢ between setsl and B is a collection of ordered paif:, b)
such that: € A andb € B. If (a,b) € ¢, we often denote the relationship by~ b. A functionor mappingy from a
setA into a setB is a rule that assigns to each elemenf A exactly one elemeritof B. We say thafp mapsa into b,
and thatp mapsA into B. We denote this by(a) = b. The element is theimage ofa undery. We show the map as
¢ : A — B. The setd is thedomain ofp, the setB is thecodomain ofip, and the seitm ¢ = p(A4) = {p(a) | a € A}

is theimage ofA underg. If ¢ andy are functions withp : A — B andy : B — C, then there is a natural function
mappingA into C, the composite functignconsisting ofp followed by . We write ¢)(p(a)) = ¢ and denote the
composite function by) o ¢. A function from a setd into a setB is one to one (1-1finjective if each elemen3
has at most one element mapped into it, and drito B (surjectivg if each element of3 has at least one element of
A mapped into it. If it is both, it’s &ijection A bijection of a set onto itself is called@ermutation

A permutation of a finite set is usually specified by its action on the elements of the set. For example, we may
denote a permutation of the dgt 2, 3,4, 5,6} by (6,5, 2, 4, 3, 1), where the notation states that the permutation maps
1to 6, 2to 5, 3to 2, and so on. We may then obtain a new permutation by a transposition: switching the order
of two neighboring elements. In our examp(§, 6,2, 4,3, 1) is a permutation that is one transposition away from
(6,5,2,4,3,1). We may place all permutations of a finite set in two sets.
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Theorem 1.2 (Parity) A permutation of a finite set can be expressed as either an even or an odd number of transpo-
sitions, but not both. In the former case, the permutaticevien In the latter, it isodd

1.5 Smooth Manifolds (Appendix)

We will next look at smooth manifolds. We know what smooth means within the Euclidean domain. It's easy to extend
the notion of smoothness to manifolds because we know that they are locally flat; that is, there is a local chart that
maps the neighborhood of a point to the Euclidean space.

Definition 1.24 (C>°) Let U,V C R¢ be open. A functionf : U — R is smoothor C> (continuous of orderc)
if f has partial derivatives of all orders and types. A function U — R° is aC> mapif all its components
e’ o : U — R are smooth Two chartg : U — R% ¢ : V — R® areC>-relatedif d = ¢ and eithet/ NV = ()
or p o~ andy o o~ areC> maps. AC™ atlasis one for which every pair of charts 6> -related. A chart is
admissiblego aC* atlas if it isC°°-related to every chart in the atlas.

C*-related charts allow us to pass from one coordinate system to another smoothly in the overlapping region, so we
may extend our notions of curves, functions, and differentials easily to manifolds.

Definition 1.25 (C*° manifold) A smooth ('°°) manifoldis a topological manifold together with all the admissible
charts of som&'™ atlas.

The map used between smooth manifolds is called a diffeomorphism.

Definition 1.26 (diffeomorphism) A diffeomorphisny : X — Y is aC° map that is a homeomorphism and whose
inverseg—! is C*>°. We say thakK is diffeomorphicto Y.

A diffeomorphismg allows us to place a smooth manifaldwithin another smooth manifoltf. We would like
to know more about the imaggX) C Y. To do so, we take advantage of the atlas on each manifold. Suppose that
U,pisachartap € XandV, v is a chart ay(p) € Y. This allows us to get an expression fpin terms of local
coordinates:
vcx —2 - vcy

d! |
o(U) TR — 9, (V) C R
Thatis,g = ogop™
Definition 1.27 (Jacobian) The Jacobian matrixDg of a mapg : X — Y with local chartdJ, p atp € X andV, ¢ is
achartay(p) € Yis:

o9t ... 9g'

1 Oxl Oxd
a(g g 796) . . .
Ozl zd - : :
@l o9t ... o4
Oxl Oxd

Dy is defined at each point @f, its d - ¢ entries being functions ofi.

The rank of the Jacobian tells us what the diffeomorphism does to its domain space.

Definition 1.28 (rank) The rank ofyg is the rank ofDyg.

This rank is independent of the coordinate system we use (and can be defined independently, too, but that's beyond
the scope of this class.)

Definition 1.29 (immersion) g : X — Y is animmersionf rank g = dim X.
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Intuitively, An immersion places a space within another one so that its dimension does not change, and it doesn't
develop any kinks. The immersed space, however, can intersect itself or behave in otherwise unappetizing ways, as
we saw in Examplé.1 What we are really after are nice immersions, or embeddings.

Definition 1.30 (embedding) An embedding; : X — Y is a 1-1 immersion that is a homeomorphism onto its image
¢(X) considered as a subspaceYofThe image is called aambedded submanifolthd is given the relative topology.

The definition of smooth manifolds also allows us to give a point-set theoretic definition of orientability. We will
see later that the following definitions also apply in non-smooth spaces, such as simplicial spaces.

Definition 1.31 (orientability) A pair of chartsc® andy’ is consistently orientei the Jacobian determinadét(9z¢/dy7)
is positive whenever defined. A manifold is orientableif there exists an atlas such that every pair of coordinate
systems in the atlas is consistently oriented. Such an attamstently orientednd determines aorientation on

M. If a manifold is not orientable, it isnorientable

In other words, a manifold of any dimension falls into two classes, depending on whether it is orientable or not.
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