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Q: What’s purple and commutes?
A: An abelian grape!

— Anonymous

4 Group Theory

Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as tri-
angulations of the spaces. We also showed how the connectivity of compact 2-manifolds is fully characterized by an
invariant, the Euler characteristic, that may be computed using any triangulation of the space. In this lecture, we study
group theory. This theory is part of the beautiful machinery ofabstract algebra, which is based on abstracting from
algebra its core properties, and studying algebra in terms of those properties. Because of this abstraction, group theory
is fundamental and applicable to questions in many theoretical fields such as quantum physics and crystallography, as
well as questions in practical fields, such as establishing bar codes for products, serial numbers on currency, or solving
Rubik’s Magic cube. For us, the theory provides powerful tools to define equivalence relations usinghomomorphisms
andfactor groups. These equivalence relations will enable us to partition the space of manifolds into coarser classifi-
cations that are computable. We begin with an introduction to groups, their subgroups, and associated cosets. We then
look at how wefactor a group much like the way we divide a composite integer. We end by developing techniques for
characterizing a specific type of groups: finitely generated abelian groups.

4.1 Groups

Addition of integers is an operation which assigns another integer to every pair of integers. We begin by extending the
concept of addition.

Definition 4.1 (binary operation) A binary operation∗ on a setS is a rule that assigns to each ordered pair(a, b) of
elements ofS some element inS.

If S is finite, we may display a binary operation∗ in a table, listing the elements of the set on the top and side of the
table, and statinga ∗ b in row a, columnb of the table, as in Table1. Note that the operation defined by this table
depends on the order of the pair, asa ∗ b 6= b ∗ a.

a b c

a a c c
b a c b
c b b c

Table 1. A closed binary operation ∗, defined on the set {a, b, c}.

Definition 4.2 (properties) Let ∗ be a binary operation on a setS. If ∗ assigns a single element to each pair of
elements inS it is well-defined. Otherwise, we say it isnot definedwhen it assigns zero elements, ornot well-defined
when it assigns more than one element. If it always assigns an element inS to a pair of elements fromS, it is closed.
It is associativeiff (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S. It is commutativeiff a ∗ b = b ∗ a for all a, b ∈ S.

If S is finite, the table for a commutative binary operation is symmetric with respect to the upper-left to lower-right
diagonal. If a binary operation∗ is associative, we may write unambiguous long expressions without using parentheses.

The study of groups, as well as the need for new types of numbers, was motivated by solving equations.

Example 4.1 (solving equations)Suppose we were interested in solving the following three equations:

1. 5 + x = 2

2. 2x = 3

3. x2 = −1

1

http://graphics.stanford.edu/courses/cs468-04-winter/


CS 468 – Winter 2004 Group Theory Afra Zomorodian

The equations imply the need for negative integersZ−, rational numbersQ, and complex numbersC, respectively.
Recalling algebra from 8th grade, I solve equation (1) above, listing the properties needed at each step.

5 + x = 2 Given
−5 + (5 + x) = −5 + 2 Addition property of equality
(−5 + 5) + x = −5 + 2 Associative property of addition

0 + x = −5 + 2 Inverse property of addition
x = −5 + 2 Identity property of addition
x = −3 Addition

We take all the properties we need to solve this equation to define a group.

Definition 4.3 (group) A group 〈G, ∗〉 is a setG, together with a binary operation∗ on G, such that the following
axioms are satisfied:

(a) ∗ is associative.

(b) ∃e ∈ G such thate ∗ x = x ∗ e = x for all x ∈ G. The elemente is anidentityelement for∗ onG.

(c) ∀a ∈ G,∃a′ ∈ G such thata′ ∗ a = a ∗ a′ = e. The elementa′ is aninverse ofa with respect to the operation∗.

If G is finite, theorder of G is |G|. We often omit the operation and refer toG as the group.

The identity and inverses are unique in a group. We may easily show, furthermore that(a∗b)′ = b′∗a′, for all a, b ∈ G
in group〈G, ∗〉.

Example 4.2 〈Z,+〉, 〈R− {0}, ·〉, 〈R,+〉, are all groups.

� Note that only one operation is allowed for groups, so we choose either multiplication or addition for integers,
for example. When we do so, the other operation is not even defined. So, do not use it!

We are mainly interested in groups with commutative binary operations.

Definition 4.4 (abelian) A groupG is abelianif its binary operation∗ is commutative.

We borrow terminology from arithmetic usually for abelian groups, using+ or juxtaposition for the operation, 0 or
1 to denote identity, and−a or a−1 for inverses. It is easy to list the possible structures for small groups using the
following fact, derived from the definition of groups: each element of a finite group must appear once and only once
in each row and column of its table. Using this fact, Table2 shows all possible structures for groups of size 2, 3, and 4
in Table2. There are, in fact, three possible groups of size 4, but only two unique structures: we get the other one by
renaming elements.

Z2 e a

e e a
a a e

Z3 e a b

e e a b
a a b e
b b e a

Z4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

V4 e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Table 2. Structures for groups of size 2, 3, 4.

Example 4.3 (symmetry groups)An application of group theory is the study of symmetries of geometric figures. An
isometryis a distance-preserving transformation in a metric space. Asymmetryis any isometry that leaves the object
as a whole unchanged. The symmetries of a figure form a group. A human, abstracted in Figure1(a) as a stick figure,
has only two symmetries: the identity, and reflection along the vertical line shown. It is immediate that a human’s
group of symmetry isZ2, as this is the only group with two elements. The letter “H” (b) has three different types of
symmetries shown: reflections along the horizontal and vertical axes, and rotation by 180 degrees. If we write down

2

http://graphics.stanford.edu/courses/cs468-04-winter/


CS 468 – Winter 2004 Group Theory Afra Zomorodian

a

(a) Humans haveZ2 symmetry

a
c

b

(b) The letter “H” hasV4 symmetry

Figure 1. Two figures and their symmetry groups.

(a) View of column (b) Motif & Design

Figure 2. Tiled Design from Masjid-e-Shah in Isfahan, Iran (a) repeats the prophet’s name (b) to obtain a figure (c) with Z4 symmetry.

the table corresponding to compositions of these symmetries, we get the groupV4, one of the two groups with four
elements, as shown in Table2.

Designers have used symmetries throughout history to decorate buildings. Figure2(a) shows a view of a column
of Masjid-e-Shah, a mosque in Isfahan, Iran, that was completed in 1637. The design in the center of the photo
pictorializes the name of the prophet of Islam, Mohammad as the motif in a design (b). This figure is unchanged by
rotations by multiples of 90 degrees. Lettinge, a, b, c be rotations by 0, 90, 180, and 270 degrees, respectively, and
writing down the table of compositions, we getZ4, the other group with four elements in Table2. That is, the design
hasZ4 symmetry.

4.2 Subgroups and Cosets

As for sets, we may try to understand groups by examining the building blocks they are composed of. We begin by
extending the concept of a subset to groups.

Definition 4.5 (induced operation) Let 〈G, ∗〉 be a group andS ⊆ G. If S is closed under∗, then∗ is theinduced
operation onS fromG.

Definition 4.6 (subgroup) A subsetH ⊆ G of group〈G, ∗〉 is asubgroup ofG if H is a group and is closed under
∗. The subgroup consisting of the identity element ofG, {e} is the trivial subgroupof G. All other subgroups are
nontrivial.

We can identify subgroups easily, using the following theorem.

Theorem 4.1 H ⊆ G of a group〈G, ∗〉 is a subgroup ofG iff:
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1. H is closed under∗,

2. the identitye of G is in H,

3. for all a ∈ H, a−1 ∈ H.

Example 4.4 [Z4] The empty set is a trivial subgroup of any group, includingZ4. The only nontrivial proper subgroup
of Z4 in Table2 is {0, 2}. {0, 3} is not a subgroup ofZ4 as3∗3 = 2 6∈ {0, 3}, so the set is not closed under the binary
operation stated in the table. In other words, the operation is not induced in the subset.

Example 4.5 [transformations] In the first lecture, we talked about Felix Klein’s unifying definition of geometry and
topology as the study of invariant properties under transformation. We may now state his full definition. The set of
all transformations of a space forms a group under composition. Ageometryis the study of those properties of a
space that remain invariant under some fixed subgroup of the full transformation group. The set of isometries forms a
subgroup of the full transformation group. TheEuclidean geometryis the study of those properties left invariant under
the group of isometries. Similarly, homeomorphisms form a subgroup of the full transformation group, andtopology
is the study of invariants of spaces under this subgroup.

Given a subgroup, we may partition a group into sets, all having the same size as the subgroup. The cosets are
basically like the “evil” siblings of the subgroup we use to partition the group. They look very much like the subgroup,
but are not groups themselves.

Theorem 4.2 Let H be a subgroup ofG. Let the relation∼L be defined onG by: a ∼L b iff a−1b ∈ H. Let∼R be
defined by:a ∼R b iff ab−1 ∈ H. Then∼L and∼R are both equivalence relations onG.

Note thata−1b ∈ H ⇒ a−1b = h ∈ H ⇒ b = ah. We use these relations to define cosets.

Definition 4.7 (cosets)Let H be a subgroup of groupG. Fora ∈ G, the subsetaH = {ah | h ∈ H} of G is theleft
cosetof H containinga, andHa = {ha | h ∈ H} is theright cosetof H containinga.

For an abelian subgroupH of G, ah = ha,∀a ∈ G, h ∈ H, so left and right cosets match. We may easily show that
every left coset and every right coset has the same size by constructing a 1-1 map ofH onto a left cosetgH of H for
a fixed elementg of G. If a subgroup’s left and right cosets match, we say that the subgroup is normal.

Definition 4.8 (normal) A subgroupH of a groupG is normalif its left and right cosets coincide, that is, ifgH = Hg
for all g ∈ G.

Example 4.6 [Z4] As we saw in Example4.4, {0, 2} is a subgroup ofZ4. It is normal asZ4 is abelian. The coset of
1 is1 + {0, 2} = {1, 3}. The cosets{0, 2} and{1, 3} exhaust all ofZ4.

4.3 Factor Groups

Given a normal subgroup, we would like to treat the cosets as individual elements of a smaller group. To do so, we
first derive a binary operation from the group operation ofG.

Theorem 4.3 Let H be a subgroup of a groupG. Then, left coset multiplication is well-defined by the equation
(aH)(bH) = (ab)H, iff left and right cosets coincide.

We can show that this multiplication is well-defined as it does not depend on the elementsa, b chosen from the cosets.
Using left coset multiplication as a binary operation, we get new groups.

Corollary 4.1 Let H be a subgroup ofG whose left and right cosets coincide. Then, the cosets ofH form a group
G/H under the binary operation(aH)(bH) = (ab)H.

Definition 4.9 (factor group) The groupG/H in Corollary4.1is thefactor group(orquotient group) ofG moduloH.
The elements in the same coset ofH are said to becongruent moduloH.

4

http://graphics.stanford.edu/courses/cs468-04-winter/


CS 468 – Winter 2004 Group Theory Afra Zomorodian

Example 4.7 (FactoringZ6) The cyclic groupZ6, on the left, has{0, 3} as a subgroup. AsZ6 is abelian,{0, 3} is
normal, so we may factorZ6 using this subgroup, getting cosets{0, 3}, {1, 4}, and{2, 5}. Figure3 shows the table
for Z6, ordered and colored according to the cosets. The color pattern gives rise to a smaller group, shown on the

0 3

3 0

0 3

3 0

0 3

3 0

1 4 2 5

25

1 4

1 4

4 1

2 5

2 5

254 1

4 1

25

ZZ6 524130

0

3

4

2

5

1

*

Figure 3. Z6/{0, 3} is isomorphic to Z3.

right, where each coset is collapsed to a single element. Comparing this new group to the structures in Table2, we
observe that it looks very much likeZ3, the group of order 3. That is, the two groups areisomorphic(we formalize
this concept later in this lecture.) We writeZ6/{0, 3} ∼= Z3. Moreover,{0, 3} with binary operation+6 is isomorphic
to Z2, as one may see from the top left corner of the table forZ6. So, we haveZ6/Z2

∼= Z3. Similarly, Z6/Z3
∼= Z2,

as shown in Figure4.

ZZ6 0

0

5

2 4

2

4

0 2 4

1 3 5

2 4 0

4 0 2

1

3

531

3 5 1

5 1 3

531

3 5 1

5 1 3

42 0

4

0 2 4

0 2

*

Figure 4. Z6/{0, 2, 4} is isomorphic to Z2.

� For a beginner, factor groups seem to be of the hardest concepts in group theory. Given a factor groupG/H,
the key idea to remember is that eachelementof the factor group has the formaH: it is a set, a coset ofH.

Now, we could represent each element of a factor group with a representative from the coset. For example, the element
4 could represent the coset{1, 4} for factor groupZ6/{0, 3}. However, don’t forget that this element is congruent to
1 modulo{0, 3}.

4.4 Homomorphisms

Having defined groups, a natural question that arises is to characterize groups: how many “different” groups are there?
This is yet another classification problem and it is the fundamental question studied in group theory. Since we are
interested in characterizing the structure of groups, we define maps between groups to relate their structures.

Definition 4.10 (homomorphism) A mapϕ of a groupG into a groupG′ is ahomomorphismif ϕ(ab) = ϕ(a)ϕ(b)
for all a, b ∈ G. For any groupsG andG′, there’s always at least one homomorphismϕ : G → G′, namely thetrivial
homomorphismdefined byϕ(g) = e′ for all g ∈ G, wheree′ is the identity inG′.

In other words, a homomorphism is alinear map, where linearity is defined relative to the group binary operation.
Analogs of injections, surjections, and bijections exist for maps between groups. They have their own special names,
however.
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Definition 4.11 (mono-, epi-, iso-morphism)A 1-1 homomorphism is anmonomorphism. A homomorphism that is
onto is anepimorphism. A homomorphism that is 1-1 and onto is anisomorphism. We use∼= for isomorphisms.

Isomorphisms between groups are like homeomorphisms between topological spaces. We may use isomorphisms to
define an equivalence relationship between groups, formalizing our notion for similar structures for groups.

Theorem 4.4 LetG be any collection of groups. Then∼= is an equivalence relation onG.

All groups of order 4, for example, are isomorphic to one of the two 4 by 4 tables in Table2, so the classification
problem is fully solved for that order. We need smarter techniques, however, to settle this question for higher orders.

Homomorphisms preserve the identity, inverses, and subgroups in the following formal sense.

Theorem 4.5 Letϕ be a homomorphism of a groupG into a groupG′.

1. If e is the identity inG, thenϕ(e) is the identitye′ in G′.

2. If a ∈ G, thenϕ(a−1) = ϕ(a)−1.

3. If H is a subgroup ofG, thenϕ(H) is a subgroup ofG′.

4. If K ′ is a subgroup ofG′, thenϕ−1(K ′) is a subgroup ofG.

Homomorphisms also define a special subgroup in their domain.

Definition 4.12 (kernel) Let ϕ : G → G′ be a homomorphism. The subgroupϕ−1({e′}) ⊆ G, consisting of all
elements ofG mapped byϕ into the identitye′ of G′, is thekernel ofϕ, denoted byker ϕ.

We illustrate the kernel in Figure5. Note thatker ϕ is a subgroup by an application of the fourth statement of
Theorem4.5 as{e′} is the trivial subgroup ofG′. Since the kernel is a subgroup, we may use it to partitionG into
cosets.

Theorem 4.6 Letϕ : G → G′ be a homomorphism, and letH = kerϕ. Leta ∈ G. Then the set

ϕ−1{ϕ(a)} = {x ∈ G | ϕ(x) = ϕ(a)}

is the left cosetaH of H, and is also the right cosetHa of H.

The two partitions ofG into left cosets and into right cosets ofker ϕ are the same, according to the theorem. That is,
the kernel is normal.

4.5 Finitely Generated Abelian Groups

We are primarily interested infinitely generated abelian groups. These groups will arise as descriptions of the con-
nectivity of topological spaces. To understand the structure of these groups, we utilize our usual approach: understand
simple structures first, and try to construct complicated structures from these building blocks. We begin with cyclic
groups, the simplest group there is.

e’

G
ϕ

ker ϕ

G’

Figure 5. A homomorphism ϕ : G → G′ and its kernel.
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Theorem 4.7 Let G be a group and leta ∈ G. Then,H = {an | n ∈ Z} is a subgroup ofG and is the smallest
subgroup ofG that containsa, that is, every subgroup containinga containsH.

Definition 4.13 (cyclic group) The groupH of Theorem4.7 is thecyclic subgroup ofG generated bya, and will be
denoted by〈a〉. If 〈a〉 is finite, then theorder ofa is |〈a〉|. An elementa of a groupG generatesG and is agenerator
for G if 〈a〉 = G. A groupG is cyclic if it has a generator.

For example,Z = 〈1〉 under addition, and is therefore cyclic. We can also define finite cyclic groups using a new
binary operation.

Definition 4.14 (modulo) Let n be a fixed positive integer and leth andk be any integers. The remainderr when
h + k is divided byn is thesum ofh andk modulon.

Definition 4.15 (Zn) The set{0, 1, 2, . . . , n− 1} is a cyclic groupZn of elements under addition modulon.

This definition is the reason why we named the single group of order three and one of the groups of order four in
Table2 Z3 andZ4, respectively. We may fully classify cyclic groups, using the theorem below.

Theorem 4.8 (classification of cyclic groups)Any infinite cyclic group is isomorphic toZ under addition. Any finite
cyclic group of ordern is isomorphic toZn under addition modulon.

Consequently, we may useZ andZn as the prototypical cyclic groups.
We next extend the idea of a generator to multiple generators for a group. Each generator generates some portion

of the elements. We put them together using intersection of groups.

Theorem 4.9 The intersection of subgroupsHi of a groupG for i ∈ I is again a subgroup of G.

Let G be a group and letai ∈ G for i ∈ I. There is at least one subgroup ofG containing all the elementsai, namely
G, itself. Theorem4.9allows us to take the intersection of all the subgroups ofG containing allai to obtain a subgroup
H of G. Clearly,H is the smallest subgroup containing allai.

Definition 4.16 (finitely generated) Let G be a group and letai ∈ G for i ∈ I. The smallest subgroup ofG contain-
ing {ai | i ∈ I} is thesubgroup generated by{ai | i ∈ I}. If this subgroup is all ofG, then{ai | i ∈ I} generatesG
and theai are thegenerators ofG. If there is a finite set{ai | i ∈ I} that generatesG, thenG is finitely generated.

Having defined what we mean by finitely generated groups, we may look at a complete description of their structure.

Theorem 4.10 (direct products) LetG1, G2, . . . , Gn be groups. For(a1, a2, . . . , an) and
(b1, b2, . . . , bn) in

∏n
i=1 Gi, define(a1, a2, . . . , an)(b1, b2, . . . , bn) to be(a1b1, a2b2, . . . , anbn). Then

∏n
i=1 Gi is a

group, thedirect product of the groupsGi, under this binary operation.

� The definition defines its elements to be tuples made up from elements from each of the sets. It also defines its
binary operation by utilizing the binary operations of all the groups. That is, in the product of the two tuples,

aibi is the element in groupGi that the group binary operation assigns to it.

The direct product is often written with the symbol⊗ to distinguish it from the binary operation of the group (which
may be indicated as a product.) Sometimes, it is called thedirect sum, indicated by a⊕. Although these symbols
seem to be designed to scare non-specialists away, they do help to keep the distinction between different operations
clear, especially when we have additional operations in advanced algebra. The following theorem gives a complete
characterization of the structure of finitely generated abelian groups as the direct product of cyclic groups.

Theorem 4.11 (fundamental theorem of finitely generated abelian groups)Every finitely generated abelian group
is isomorphic to product of cyclic groups of the form

Zm1 × Zm2 × . . .× Zmr
× Z× Z× . . .× Z,

wheremi dividesmi+1 for i = 1, . . . , r− 1. The direct product is unique; that is, the number of factors ofZ is unique
and the cyclic group ordersmi are unique.
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Note how the product is composed of a number of infinite and finite cyclic group factors. Intuitively, the infinite part
captures those generators that are “free” to generate as many elements as they wish. This portion of the group is afree
group that acts like a vector space. The group may be given abasisof generators from which we may generate the
group. The number of generators is called therank of the free group. The finite or “torsion” part, on the other hand,
captures generators with finite order. This portion is like a strange vector space that does not allow us to move freely
in every dimension. In fact, this portion is called amodule. We do not have enough time in this course to discuss these
structures in detail.

Definition 4.17 (Betti number, torsion) The number of factors ofZ in Theorem4.11is theBetti numberβ(G) of G.
The orders of the finite cyclic groups are thetorsion coefficients ofG.

Example 4.8 (V4) In Table2, we listed the binary operations for the two different groups of order four. We now
know Z4 to be the cyclic group under addition modulo four. It is already characterized in the form specified by the
fundamental theorem, so there is nothing for us to do. It is clear from the structure ofV4 that it is not cyclic, that is, no
single element generates it. Otherwise, it would simply be isomorphic toZ4 by Theorem4.8. But V4 is a finite group,
so it is finitely generated, and we should be able to characterize it according to the theorem. The only other way to
get a direct product of cyclic groups with four elements isZ2 × Z2. This group must be isomorphic to eitherZ4 or
V4 by our claim. By its definition, the order of each element inZ2 × Z2 is two. ButZ4 has one element, namely the
generator, with order four. Therefore,Z4 6∼= Z2 × Z2 and it must be thatV4

∼= Z2 × Z2. Let us check this fact by
writing the table for the binary operation ofZ2 × Z2.

Z2 × Z2 (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

This quickly establishes an explicit isomorphismh : Z2 × Z2 → V4, whereh(0, 0) = e, h(0, 1) = a, h(1, 0) = b, and
h(1, 1) = c (we have abused notation for clarity.) This group is known as theKlein Viergruppe.

4.6 Group Presentations

We end this lecture with a short and informal treatment ofgroup presentations, a method for specifying finitely gen-
erated groups. By the fundamental theorem, a finitely generated group has a number of free and torsional generators.
We represent each generator of the group as a uniqueletter in analphabet. Any symbol of the forman = aaaa · · · a (a
string ofn ∈ Z a’s) is asyllableand a finite string of syllables is aword. Theempty word1 does not have any syllables.
We modify words naturally usingelementary contractions, replacingaman by am+n. Recall now that the torsional
generators have limited power: they cannot generate as many elements as they wish. We represent this limitation via
relations, equations of the formr = 1, wherer is a word in our alphabet.

A presentation allows us to write all possible strings that correspond to the elements of the presented groups.
Formally, there is an isomorphism between the strings generated and the group elements. For example, the cyclic group
Z6 may be presented by a single generatora and the relationa6 = 1. We use(a : a6) for denoting this presentation.
Another presentation forZ6 is (a, b : a2, b3, aba−1b−1). This presentation shows the underlying structure ofZ6 as
Z2 × Z3. The last relation captures the commutativity of the group operation and is usually called thecommutator.
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