CS 468 — Winter 2004 Group Theory Afra Zomorodian

Q: What's purple and commutes?
A: An abelian grape!

— Anonymous

4 Group Theory

Last lecture, we learned about a combinatorial method for characterizing spaces: using simplicial complexes as tri-
angulations of the spaces. We also showed how the connectivity of compact 2-manifolds is fully characterized by an
invariant, the Euler characteristic, that may be computed using any triangulation of the space. In this lecture, we study
group theory This theory is part of the beautiful machineryaidistract algebrawhich is based on abstracting from
algebra its core properties, and studying algebra in terms of those properties. Because of this abstraction, group theory
is fundamental and applicable to questions in many theoretical fields such as quantum physics and crystallography, as
well as questions in practical fields, such as establishing bar codes for products, serial numbers on currency, or solving
Rubik’'s Magic cube. For us, the theory provides powerful tools to define equivalence relationbasiagorphisms
andfactor groups These equivalence relations will enable us to partition the space of manifolds into coarser classifi-
cations that are computable. We begin with an introduction to groups, their subgroups, and associated cosets. We then
look at how wefactor a group much like the way we divide a composite integer. We end by developing techniques for
characterizing a specific type of groups: finitely generated abelian groups.

4.1 Groups

Addition of integers is an operation which assigns another integer to every pair of integers. We begin by extending the
concept of addition.

Definition 4.1 (binary operation) A binary operation« on a setS is a rule that assigns to each ordered pajb) of
elements ofS some element iis.

If Sis finite, we may display a binary operatierin a table, listing the elements of the set on the top and side of the
table, and stating * b in row a, columnb of the table, as in Tablé. Note that the operation defined by this table
depends on the order of the pair,@sb # b * a.

:
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c

Table 1. A closed binary operation *, defined on the set {a, b, c}.

Definition 4.2 (properties) Let x be a binary operation on a s8t If x assigns a single element to each pair of
elements inS it is well-defined Otherwise, we say it inot definedvhen it assigns zero elements,rat well-defined
when it assigns more than one element. If it always assigns an elemgm i pair of elements frorf, it is closed
Itis associativeff (a xb) xc=ax* (bx*c)foralla,b,c € S. Itiscommutativeff a «b=bx*aforalla,bec S.

If S is finite, the table for a commutative binary operation is symmetric with respect to the upper-left to lower-right
diagonal. If a binary operationis associative, we may write unambiguous long expressions without using parentheses.
The study of groups, as well as the need for new types of numbers, was motivated by solving equations.

Example 4.1 (solving equations)Suppose we were interested in solving the following three equations:
1.5+x=2
2.2x=3
3. 22=-1
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The equations imply the need for negative intedérs rational number§), and complex number§, respectively.
Recalling algebra from 8th grade, | solve equation (1) above, listing the properties needed at each step.

54z = 2 Given
—5+(+z) = —-5+2 Addition property of equality
(=5+5)4+x = —-5+2 Associative property of addition
0+x = —-5+4+2 Inverse property of addition
xr = =542 Identity property of addition
r = -3 Addition

We take all the properties we need to solve this equation to define a group.

Definition 4.3 (group) A group (G, %) is a setG, together with a binary operationon G, such that the following
axioms are satisfied:

(a) = is associative.

(b) Je € G suchthak x x = x x e = x for all x € G. The element is anidentityelement for on G.

(c) Va € G,3d’ € G suchthat' xa = axa’ = e. The element’ is aninverse ofz with respect to the operation
If G is finite, theorder of G is |G|. We often omit the operation and refer@bas the group.

The identity and inverses are unique in a group. We may easily show, furthermofethgt= ' xd’, foralla,b € G
in group(G, *).

Example 4.2 (Z,+), (R — {0}, -), (R, +), are all groups.

@ Note that only one operation is allowed for groups, so we choose either multiplication or addition for integers,
for example. When we do so, the other operation is not even defined. So, do not use it!

We are mainly interested in groups with commutative binary operations.

Definition 4.4 (abelian) A groupG is abelianif its binary operation: is commutative.

We borrow terminology from arithmetic usually for abelian groups, usingr juxtaposition for the operation, O or

1 to denote identity, ane-a or ! for inverses. It is easy to list the possible structures for small groups using the
following fact, derived from the definition of groups: each element of a finite group must appear once and only once
in each row and column of its table. Using this fact, Tabghows all possible structures for groups of size 2, 3, and 4

in Table2. There are, in fact, three possible groups of size 4, but only two unique structures: we get the other one by
renaming elements.

Zollelaly Zall0f1]2]38  Vaelalb]c

Zs || e | a T elals 00123 e lelalblc
e |lela a Taldle 1 (|112(3]0 a|lale|cl|bd
a |lale b T el a 2 121301 blblclela
313012 cllelblale

Table 2. Structures for groups of size 2, 3, 4.

Example 4.3 (symmetry groups)An application of group theory is the study of symmetries of geometric figures. An
isometryis a distance-preserving transformation in a metric spacgymmetryis any isometry that leaves the object

as a whole unchanged. The symmetries of a figure form a group. A human, abstracted il Faya®a stick figure,

has only two symmetries: the identity, and reflection along the vertical line shown. It is immediate that a human’s
group of symmetry i&,, as this is the only group with two elements. The letter “H” (b) has three different types of
symmetries shown: reflections along the horizontal and vertical axes, and rotation by 180 degrees. If we write down
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(a) Humans hav&y symmetry (b) The letter “H” hasl; symmetry

Figure 1. Two figures and their symmetry groups.
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(a) View of column (b) Motif & Design

Figure 2. Tiled Design from Masjid-e-Shah in Isfahan, Iran (a) repeats the prophet's name (b) to obtain a figure (c) with Z4 symmetry.

the table corresponding to compositions of these symmetries, we get thelgroope of the two groups with four
elements, as shown in Talite

Designers have used symmetries throughout history to decorate buildings. F{glishows a view of a column
of Masjid-e-Shaha mosque in Isfahan, Iran, that was completed in 1637. The design in the center of the photo
pictorializes the name of the prophet of Islam, Mohammad as the moatif in a design (b). This figure is unchanged by
rotations by multiples of 90 degrees. Lettiag:, b, ¢ be rotations by 0, 90, 180, and 270 degrees, respectively, and
writing down the table of compositions, we d&f, the other group with four elements in TaldleThat is, the design
hasZ, symmetry.

4.2 Subgroups and Cosets

As for sets, we may try to understand groups by examining the building blocks they are composed of. We begin by
extending the concept of a subset to groups.

Definition 4.5 (induced operation) Let (G, ) be a group and C G. If S is closed undex, thenx is theinduced
operation onS fromG.

Definition 4.6 (subgroup) A subsetd C G of group(G, =) is asubgroup ofG if H is a group and is closed under
. The subgroup consisting of the identity elementif{e} is thetrivial subgroupof G. All other subgroups are
nontrivial.

We can identify subgroups easily, using the following theorem.

Theorem 4.1 H C G of a group(G, «) is a subgroup of7 iff:
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1. H is closed undek,
2. the identitye of G isin H,

3. foralla e H,a~ ! € H.

Example 4.4 [Z4] The empty setis a trivial subgroup of any group, includifig The only nontrivial proper subgroup
of Z4 in Table2is {0, 2}. {0, 3} is not a subgroup df4 as3*3 = 2 ¢ {0, 3}, so the set is not closed under the binary
operation stated in the table. In other words, the operation is not induced in the subset.

Example 4.5 [transformations] In the first lecture, we talked about Felix Klein’s unifying definition of geometry and
topology as the study of invariant properties under transformation. We may now state his full definition. The set of
all transformations of a space forms a group under compositiogednetryis the study of those properties of a
space that remain invariant under some fixed subgroup of the full transformation group. The set of isometries forms a
subgroup of the full transformation group. TRaclidean geometrig the study of those properties left invariant under

the group of isometries. Similarly, homeomorphisms form a subgroup of the full transformation grouppalod)y

is the study of invariants of spaces under this subgroup.

Given a subgroup, we may partition a group into sets, all having the same size as the subgroup. The cosets are
basically like the “evil” siblings of the subgroup we use to partition the group. They look very much like the subgroup,
but are not groups themselves.

Theorem 4.2 Let H be a subgroup ofi. Let the relation~;, be defined o7 by: a ~; biff a='b € H. Let~p be
defined bya ~5 biff ab~! € H. Then~ and~p are both equivalence relations @

Note thate—'b € H = a~'b = h € H = b = ah. We use these relations to define cosets.

Definition 4.7 (cosets)Let H be a subgroup of grouf. Fora € G, the subset H = {ah | h € H} of G is theleft
cosetof H containinga, andHa = {ha | h € H} is theright cosetof H containinga.

For an abelian subgroufi of G, ah = ha,Va € G, h € H, so left and right cosets match. We may easily show that
every left coset and every right coset has the same size by constructing a 1-1 famtf a left cosey H of H for
a fixed elemeny of G. If a subgroup’s left and right cosets match, we say that the subgroup is normal.

Definition 4.8 (normal) A subgroupH of a groupG is normalif its left and right cosets coincide, thatisgifl = Hg
forall g € G.

Example 4.6 [Z4] As we saw in Exampld.4, {0, 2} is a subgroup oZ,. It is normal asZ, is abelian. The coset of
lis1+{0,2} = {1,3}. The coset40, 2} and{1, 3} exhaust all oZ,.
4.3 Factor Groups

Given a normal subgroup, we would like to treat the cosets as individual elements of a smaller group. To do so, we
first derive a binary operation from the group operatio-of

Theorem 4.3 Let H be a subgroup of a grougs. Then, left coset multiplication is well-defined by the equation
(aH)(bH) = (ab)H, iff left and right cosets coincide.

We can show that this multiplication is well-defined as it does not depend on the elemieaktesen from the cosets.
Using left coset multiplication as a binary operation, we get new groups.

Corollary 4.1 Let H be a subgroup ofs whose left and right cosets coincide. Then, the cosef$ &drm a group
G/H under the binary operatiotuH )(bH) = (ab)H.

Definition 4.9 (factor group) The groupG/H in Corollary4.1is thefactor group(or quotient groupof G moduloH .
The elements in the same cosetrbfare said to beongruent moduldd.
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Example 4.7 (FactoringZs) The cyclic grouZg, on the left, haqd0, 3} as a subgroup. AZg is abelian,{0, 3} is
normal, so we may factdfs using this subgroup, getting cos€ts 3}, {1,4}, and{2,5}. Figure3 shows the table
for Zg, ordered and colored according to the cosets. The color pattern gives rise to a smaller group, shown on the
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Figure 3. Zg/{0, 3} is isomorphic to Zs.

right, where each coset is collapsed to a single element. Comparing this new group to the structuresZnvilable
observe that it looks very much lik8s, the group of order 3. That is, the two groups m@morphic(we formalize
this concept later in this lecture.) We writg /{0, 3} = Z3. Moreover {0, 3} with binary operationt is isomorphic

to Z,, as one may see from the top left corner of the tableZfprSo, we haveZs /Z, = Z3. Similarly, Zs /Z3 = Zs,

as shown in Figurd.
+ [ 1

Figure 4. Zg /{0, 2,4} is isomorphic to Z.
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@ For a beginner, factor groups seem to be of the hardest concepts in group theory. Given a fact6f/dfoup
the key idea to remember is that easlbmentof the factor group has the form¥{: it is a set, a coset aoff.
Now, we could represent each element of a factor group with a representative from the coset. For example, the element
4 could represent the cosgt, 4} for factor groupZs /{0, 3}. However, don't forget that this element is congruent to
1 modulo{0, 3}.

4.4 Homomorphisms

Having defined groups, a natural question that arises is to characterize groups: how many “different” groups are there?
This is yet another classification problem and it is the fundamental question studied in group theory. Since we are
interested in characterizing the structure of groups, we define maps between groups to relate their structures.

Definition 4.10 (homomorphism) A map ¢ of a groupG into a groupG’ is ahomomorphisnif ¢(ab) = p(a)p(b)
for all a,b € G. For any groupss andG’, there's always at least one homomorphismG — G’, namely therivial
homomorphisndefined byy(g) = €’ for all g € G, wheree' is the identity inG’.

In other words, a homomaorphism isliaear map, where linearity is defined relative to the group binary operation.
Analogs of injections, surjections, and bijections exist for maps between groups. They have their own special names,
however.
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Definition 4.11 (mono-, epi-, iso-morphism)A 1-1 homomorphism is amonomorphismA homomorphism that is
onto is anepimorphismA homomorphism that is 1-1 and onto is i@omorphismWe usex for isomorphisms.

Isomorphisms between groups are like homeomorphisms between topological spaces. We may use isomorphisms to
define an equivalence relationship between groups, formalizing our notion for similar structures for groups.

Theorem 4.4 Let G be any collection of groups. Theéais an equivalence relation o§.

All groups of order 4, for example, are isomorphic to one of the two 4 by 4 tables in Zable the classification
problem is fully solved for that order. We need smarter techniques, however, to settle this question for higher orders.
Homomorphisms preserve the identity, inverses, and subgroups in the following formal sense.

Theorem 4.5 Letp be a homomorphism of a grodp into a groupG’.
1. If eis the identity inG, theny(e) is the identitye’ in G.
2. Ifa € G, thenp(a™!) = ¢(a) .
3. If H is a subgroup of7, thenyp(H) is a subgroup ofy'.
4. If K’ is a subgroup ofy’, thenpy~!(K’) is a subgroup of5.

Homomorphisms also define a special subgroup in their domain.

Definition 4.12 (kernel) Let ¢ : G — G’ be a homomorphism. The subgroup'({e’}) C G, consisting of all
elements of7 mapped byp into the identitye’ of G, is thekernel of p, denoted byker (.

We illustrate the kernel in Figurb. Note thatker ¢ is a subgroup by an application of the fourth statement of
Theoremd.5as{e’} is the trivial subgroup ofz’. Since the kernel is a subgroup, we may use it to partifionto
cosets.

Theorem 4.6 Lety : G — G’ be a homomorphism, and I&f = ker ¢. Leta € G. Then the set

e Hela)} = {z € G| p(z) = ¢(a)}
is the left coset H of H, and is also the right cosét a of H.
The two partitions of7 into left cosets and into right cosetslafr p are the same, according to the theorem. That is,

the kernel is normal.

4.5 Finitely Generated Abelian Groups

We are primarily interested ifinitely generated abelian group§hese groups will arise as descriptions of the con-
nectivity of topological spaces. To understand the structure of these groups, we utilize our usual approach: understand
simple structures first, and try to construct complicated structures from these building blocks. We begin with cyclic
groups, the simplest group there is.

@

Figure 5. A homomorphism ¢: G — G’ and its kernel.
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Theorem 4.7 Let G be a group and let. € G. Then,H = {a™ | n € Z} is a subgroup of7 and is the smallest
subgroup of& that contains, that is, every subgroup containimgcontainsH .

Definition 4.13 (cyclic group) The groupH of Theoremd.7is thecyclic subgroup ofs generated by:, and will be
denoted by(a). If {a) is finite, then theorder ofa is |{a}|. An element: of a groupG generatess and is agenerator
for G if {(a) = G. A groupG is cyclicif it has a generator.

For exampleZ = (1) under addition, and is therefore cyclic. We can also define finite cyclic groups using a new
binary operation.

Definition 4.14 (modulo) Let n be a fixed positive integer and |letand k. be any integers. The remaindemwhen
h + k is divided byn is thesum ofh and & modulon.

Definition 4.15 Z,,) The set{0,1,2,...,n — 1} is a cyclic grougZ,, of elements under addition moduto

This definition is the reason why we named the single group of order three and one of the groups of order four in
Table2 Z3 andZ,, respectively. We may fully classify cyclic groups, using the theorem below.

Theorem 4.8 (classification of cyclic groups)Any infinite cyclic group is isomorphic % under addition. Any finite
cyclic group of ordem is isomorphic tdZ,, under addition modula.

Consequently, we may ugkandZ,, as the prototypical cyclic groups.
We next extend the idea of a generator to multiple generators for a group. Each generator generates some portion
of the elements. We put them together using intersection of groups.

Theorem 4.9 The intersection of subgroug$; of a groupG for i € I is again a subgroup of G.

Let G be a group and let; € G for i € I. There is at least one subgroup@®@fcontaining all the elements, namely
G, itself. Theoremt.9allows us to take the intersection of all the subgroups abntaining allz; to obtain a subgroup
H of G. Clearly, H is the smallest subgroup containing @l

Definition 4.16 (finitely generated) Let G be a group and let; € G for i € I. The smallest subgroup ¢f contain-
ing {a; | i € I} is thesubgroup generated b; | i € I}. If this subgroup is all of7, then{a; | i € I} generategz
and thea; are thegenerators ofG. If there is a finite sefa; | ¢ € I} that generate&, theng is finitely generated.

Having defined what we mean by finitely generated groups, we may look at a complete description of their structure.

Theorem 4.10 (direct products) LetG1, Go, ..., G, be groups. Fofa;, as,...,a,) and
(bl, b27 ey bn) in H?:l Gi, deme(al, ag, ... 70%)([)1, bg, ey bn) to be (albl, agbg, - ,anb”). ThenH?:l Gi is a
group, thedirect product of the groups;, under this binary operation.

@ The definition defines its elements to be tuples made up from elements from each of the sets. It also defines its
binary operation by utilizing the binary operations of all the groups. That is, in the product of the two tuples,
a;b; is the element in grou@; that the group binary operation assigns to it.

The direct product is often written with the symholto distinguish it from the binary operation of the group (which

may be indicated as a product.) Sometimes, it is calledditeet sum indicated by ab. Although these symbols

seem to be designed to scare non-specialists away, they do help to keep the distinction between different operations
clear, especially when we have additional operations in advanced algebra. The following theorem gives a complete
characterization of the structure of finitely generated abelian groups as the direct product of cyclic groups.

Theorem 4.11 (fundamental theorem of finitely generated abelian groupskvery finitely generated abelian group
is isomorphic to product of cyclic groups of the form

Loy X Loy X oo X Lo, X L XL X ... X L,

wherem, dividesm;; fori = 1,...,r — 1. The direct product is unique; that is, the number of factorg & unique
and the cyclic group ordersy; are unique.
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Note how the product is composed of a number of infinite and finite cyclic group factors. Intuitively, the infinite part
captures those generators that are “free” to generate as many elements as they wish. This portion of thefgeeup is a
groupthat acts like a vector space. The group may be givbasisof generators from which we may generate the
group. The number of generators is called tuek of the free group. The finite or “torsion” part, on the other hand,
captures generators with finite order. This portion is like a strange vector space that does not allow us to move freely
in every dimension. In fact, this portion is calledndule We do not have enough time in this course to discuss these
structures in detail.

Definition 4.17 (Betti number, torsion) The number of factors d& in Theoremd4.11is theBetti numbers(G) of G.
The orders of the finite cyclic groups are tioesion coefficients of;.

Example 4.8 (4) In Table 2, we listed the binary operations for the two different groups of order four. We now
know Z, to be the cyclic group under addition modulo four. It is already characterized in the form specified by the
fundamental theorem, so there is nothing for us to do. It is clear from the structujélwdt it is not cyclic, that is, no

single element generates it. Otherwise, it would simply be isomorplig toy Theoremi.8. But V; is a finite group,

so it is finitely generated, and we should be able to characterize it according to the theorem. The only other way to
get a direct product of cyclic groups with four element&isx Z,. This group must be isomorphic to eithgg or

V4 by our claim. By its definition, the order of each elemenZinx Z, is two. ButZ, has one element, namely the
generator, with order four. Thereforg, % Z, x Z, and it must be thaVy = Z, x Z,. Let us check this fact by
writing the table for the binary operation @b x Z,.

Zy x Zs || (0,0) [ (0,1) | (1,0) | (1,1)
(0,0) (0,0) | (0,1) | (1,0) | (1,1)
(0,1) (0,1) | (0,0) | (1,1) | (1,0)
(1,0) (1,0) | (1,1) | (0,0) | (0,1)
(1,1) [[(1,1) ]| (1,0) ] (0,1) | (0,0)

This quickly establishes an explicit isomorphismZs, x Zs — V4, whereh(0,0) = e, h(0,1) = a, h(1,0) = b, and
h(1,1) = ¢ (we have abused notation for clarity.) This group is known a¥ie& Viergruppe

4.6 Group Presentations

We end this lecture with a short and informal treatmengrolup presentationsa method for specifying finitely gen-

erated groups. By the fundamental theorem, a finitely generated group has a number of free and torsional generators.
We represent each generator of the group as a ufédieein analphabet Any symbol of the formu™ = aaaa ---a (a

string ofn € Z a’s) is asyllableand a finite string of syllables isvaord. Theempty wordl does not have any syllables.

We modify words naturally usinglementary contractionseplacinga™a™ by a™*". Recall now that the torsional
generators have limited power: they cannot generate as many elements as they wish. We represent this limitation via
relations equations of the form = 1, wherer is a word in our alphabet.

A presentation allows us to write all possible strings that correspond to the elements of the presented groups.
Formally, there is an isomorphism between the strings generated and the group elements. For example, the cyclic group
Z¢ may be presented by a single generatand the relatiom’ = 1. We use(a : a°) for denoting this presentation.
Another presentation fof is (a,b : a2, b3 aba=tb~1). This presentation shows the underlying structur&efis
Zo x Z3. The last relation captures the commutativity of the group operation and is usually callmhheitator
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