Moving Least Squares

David Levin

presented by Niloy J. Mitra
Outline

• The Approximation Power of Moving Least-Squares
 D. Levin

• Mesh-Independent Surface Interpolation
 D. Levin

• Defining point-set surfaces
 N. Amenta and Y. Kil
Problem

- Collection of point
 - Source of data: laser scanner
- Points are unorganized
- Usually no information about normal
 - But not always the case (next paper)
Applications

• Implicit surface definition
 • Projection operator
• Noise removal / Thinning
• Upsampling
• Ray tracing
Interpolation vs Smoothing
One Approach (Mesh based)

- Smooth interpolation by joining local patches each being an approximation in local reference domain.
- Piecewise polynomial patches.
- In most cases, result depends on the mesh defining the patches.
Example

350 pieces/patches
Alternative Approach (Meshless)

- Implicit definition of surface.
- $S = f(\{p_i\})$
Roadmap

Given

R = \{x_i\}

Goal

• Define a projection operator P

 \(x \in \mathbb{R}^d \quad P : x \rightarrow P(x) \in S \)

• Unique manifold \(S \equiv \{x \mid P(x) = x\} \)
MLS Approach

• Step 1
 • Define a local/reference domain (like a tangent plane)
 • Local parameterization
 MLS Approach

• Step 1
 • Define a local/reference domain

• Step 2
 • MLS approximation wrt reference domain (polynomial fitting)
Fitting Functions

Given *(functional setting)*

\{x_i, f_i\}

Goal

Find \(p \) in \(\Pi_m \) such that \(\{x_i, f_i\} \) satisfies

\[
\min_{p \in \Pi_m} \sum_{i} (p(x_i) - f_i)^2 \theta(\|x_i\|) \]

\[\text{error} \quad \text{weight}\]
θ : The Weight Function

- Non-negative decaying function
- Typical example
 - Gaussian kernel \(\theta(d) = \exp(-d^2/h^2) \)
Basic MLS

• For a given point r near R, define a local approximating hyper-planer H_r
Equation of a line

$$H_{a,D} = \{ x \mid <a, x> - D = 0, x \in \mathbb{R}^d \}, a \in \mathbb{R}^d, \|a\| = 1$$
Basic MLS

• For a given point \(r \) near \(R \), define a local approximating hyper-planer \(H_r \)
Basic MLS

• For a given point r near R, define H_r

$$\min_{a,D} \sum_i (a^T r_i - D)^2 \theta(||r_i - r||)$$

• In case of multiple local minima, the plane closest to r is chosen.
Basic MLS

- For a given point \(r \) near \(R \), define \(H_r \)

Find a polynomial approx. of degree \(m \)

\[
\min_{p \in \Pi_m^{d-1}} \sum_i (p(x_i) - f_i)^2 \theta(|| r_i - r ||)
\]
MLS

Step 1

Step 2
Projection?

\[\tilde{P}_m(\tilde{P}_m(r)) \neq \tilde{P}_m(r) \]

\[\theta(||r_i - r||) \]

\[\min_{a,D} \sum_i (<a, r_i > - D)^2 \theta(||r_i - r||) \]
Basic MLS

$$\tilde{P}_m(\tilde{P}_m(r)) \neq \tilde{P}_m(r)$$

- Doesn’t project points to a (d-1)-dim manifold.
- Doesn’t define a surface.
Simple fix

\[\theta(\| r_i - r \|) \quad \theta(\| r_i - q \|) \]
Non-linear Optimization

\[I(q, a) = \min_{a,D} \sum_i (\langle a, r_i \rangle - D)^2 \theta(\| r_i - q \|) \]

constraints

\[
\begin{align*}
(r - q) \parallel a(q) \\
J(q) &= I(q, a(q)) \\
\partial_{a(q)} J(q) &= 0
\end{align*}
\]
Basic MLS

- For a given point r near R, define H_r

\[
\min_{a,D} \sum_i (\langle a, r_i \rangle - D)^2 \theta(\|r_i - q\|)
\]

- In case of multiple local minima, the plane closest to r is chosen.
Given

\[R = \{ x_i \} \]

MLS

- Define a projection operator \(P(P(x)) = P(x) \)
- Unique manifold \(S \equiv \{ x | P(x) = x \} \)
- Conjecture \(S \) is \(C^\infty \)
MLS surface
Computing H_r and p

- Computing hyper-plane H_r
- Non-linear optimization problem
- Computed iteratively
- Computing $\theta()$: time consuming step
 - $O(N)$ for each iteration step
 - Approximate by doing a hierarchical clustering
- Fitting a polynomial $p(.)$, given H_r
 - Solve a linear system
 - Size depends on the order of approximation (m)
Applications: Denoising
Applications: Upsampling / Hole Filing
Applications: Ray Tracing
Sampling Condition?
Conclusions

- Surface is smooth and a manifold
- Adjustable feature size h allows to smooth out noise

- The surface changes with addition of points.