Dimensionality Reduction Techniques for Proximity Problems

Piotr Indyk, SODA 2000
Talk Summary

Core algorithm: dimensionality reduction using hashing

Applied to:

- c-nearest neighbor search algorithm (c-NNS)
- c-furthest neighbor search algorithm (c-FNS)
Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion
Talk Overview

Introduction
- Problem Statement
- Hamming Metric
- Dimensionality Reduction

c-Nearest Neighbor Search
c-Furthest Neighbor Search

Conclusion
Problem Statement

We are dealing with proximity problems

\((n \text{ points, dimension } d) \)

\[P \]

nearest neighbor search

(NNS)

\[P \]

furthest neighbor search

(FNS)
Problem Statement

High dimensions: curse of dimensionality

- time and/or space exponential in d

Use approximate algorithms

c-NNS

c-FNS
Problem Statement

Problems with (most) existing work in high d

- randomized Monte Carlo
 - incorrect answers possible

Randomized algorithms in low d

- Las Vegas
 - always correct answer

→ can’t we have Las Vegas algorithms for high d?
Hamming Metric

Hamming Space of dimension d
- points are bit-vectors $\{0, 1\}^d$

 $d = 3 : 000, 001, 010, 011, 100, 101, 110, 111$
- hamming distance $d(x, y)$
 - # positions where x and y differ

Remarks
- simplest high-dimensional setting
- generalizes to larger alphabets Σ

 $\Sigma = \{\alpha, \beta, \gamma, \delta, \ldots\}$
Dimensionality Reduction

Main idea

- map from high to low dimension
- preserve distances
- solve problem in low dimension space

→ improved performance at the cost of approximation error
Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion
Las Vegas 1+\(\varepsilon\)-NNS

Probabilistic NNS
- for Hamming metric
- approximation error 1+\(\varepsilon\)
- always returns correct answer

Recall: c-NNS can be reduced to (\(r, R\))-PLEB
- so we will solve this problem
Las Vegas 1+\(\varepsilon\)-NNS

Main outline

1. **hash** \(\{0, 1\}^d\) into \(\{\alpha, \beta, \gamma, \delta, \ldots\}^{O(R)}\)
 - dimension \(O(R)\)
2. **encode** symbols \(\alpha, \beta, \gamma, \delta, \ldots\) as binary codes of length \(O(\log n)\)
 - dimension \(O(R \log n)\)
3. **divide and conquer**
 - divide into sets of size \(O(\log n)\)
 - solve each subproblem
 - take best found solution
Las Vegas $1+\varepsilon$-NNS

Main outline

1. hash $\{0, 1\}^d$ into $\{\alpha, \beta, \gamma, \delta, \ldots\}^{O(R)}$
 - dimension $O(R)$

2. encode symbols $\alpha, \beta, \gamma, \delta, \ldots$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$

3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution
Hashing

Find a mapping $f : \{0, 1\}^d \rightarrow \Sigma^D$

- f is non-expansive
 $$d(f(x), f(y)) \leq Sd(x, y)$$

- f is (ε, R)-contractive (almost non-contractive)
 $$d(x, y) \geq R \Rightarrow d(f(x), f(y)) \geq SR(1 - \varepsilon)$$
Hashing

• $f(x)$ is defined as concatenation

$$f = f_{h_1}(x)f_{h_2}(x) \ldots f_{h_{|\mathcal{H}|}}(x)$$

• one $f_h(x)$ is defined using a hash function

$$h(x) = ax \mod P, \ P = \frac{R}{e}, \ a \in [P]$$

• in total there are P such hash functions, i.e.,

$$|\mathcal{H}| = P$$
Mapping $f_h(x)$

- map each bit x_i into bucket $h(i)$
- sort bits in ascending order of i’s
- concatenate all bits within each bucket to one symbol

Diagram:

```
| 11 | - | 00 | 0011 |
|-------------------|
| h(2)h(4)  | h(0)h(5) | h(1)h(3)h(6)h(7) |
```

```
γ α δ ζ
```

$\gamma\alpha\delta\zeta$
Hashing

d-dimensional
small alphabet

R-dimensional
large alphabet

PR-dimensional
large alphabet

```
<table>
<thead>
<tr>
<th>11</th>
<th>-</th>
<th>00</th>
<th>0011</th>
</tr>
</thead>
<tbody>
<tr>
<td>h(2)h(4)</td>
<td>h(0)h(5)</td>
<td>h(1)h(3)h(6)h(7)</td>
<td></td>
</tr>
</tbody>
</table>
```

\[
\begin{array}{c}
\gamma \\
\alpha \\
\delta \\
\zeta \\
\end{array}
\]

\[\alpha \alpha \eta \gamma \ldots \gamma \alpha \delta \zeta \ldots \delta \xi \alpha \delta\]
Hashing

With \(S = |\mathcal{H}| \), one can prove that

- \(f \) is non-expansive

\[
d(f(x), f(y)) \leq Sd(x, y)
\]

→ proof: for each difference bit,
\(f \) can generate at most \(|\mathcal{H}| = S \) difference symbols.
With \(S = |\mathcal{H}| \), Piotr Indyk states that one can prove that

- \(f \) is \((\varepsilon, R)\)-contractive

\[
d(x, y) \geq R \Rightarrow d(f(x), f(y)) \geq SR(1 - \varepsilon)
\]

→ however, recall that \(h(x) = ax \mod P, P = \frac{R}{\varepsilon} \)

→ it is known that \(Pr[h(x) = h(y)] \leq \frac{1}{R/\varepsilon} \)

→ \((\varepsilon, R)\)-contractive only holds with a certain (large) probability (?)
Las Vegas $1 + \varepsilon$-NNS

Main outline

1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,\ldots\}^{O(R)}$
 - dimension $O(R)$

2. encode symbols $\alpha,\beta,\gamma,\delta,\ldots$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$

3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution

\[
\begin{array}{c}
\text{αγγ} \\
R \\
R \log n \\
0001111111 \\
\end{array}
\]

\[
\begin{array}{c}
d \\
11001001101010001 \\
\end{array}
\]
Coding

Each symbol α from Σ mapped to a binary word $C(\alpha)$ of length l, so that

$$d(C(\alpha), C(\beta)) \in \left[\frac{(1-\epsilon)l}{2}, \frac{l}{2}\right] \quad l = O\left(\frac{\log |\Sigma|}{\epsilon^2}\right)$$

Example ($l=8$)

$\alpha \rightarrow C(\alpha) = 01000101$

$\beta \rightarrow C(\beta) = 11011111$
It can be shown, or also seen by intuition, that this mapping is
- non-expansive
- almost non-contractive

Also, the resulting mapping $g = C \circ f$
(hashing + coding) is
- non-expansive
- almost non-contractive
Las Vegas $1+\varepsilon$-NNS

Main outline

1. hash $\{0,1\}^d$ into $\{\alpha,\beta,\gamma,\delta,\ldots\}^{O(R)}$
 - dimension $O(R)$
2. encode symbols $\alpha,\beta,\gamma,\delta,\ldots$ as binary codes of length $O(\log n)$
 - dimension $O(R \log n)$
3. divide and conquer
 - divide into sets of size $O(\log n)$
 - solve each subproblem
 - take best found solution
Divide and Conquer

Partition the set of coordinates into random sets S_1, \ldots, S_k of size $s = O(\log n)$

Project g on coordinate sets

One of the projections should be

- non-expansive
- almost non-contractive
Divide and Conquer

Solve NNS problem on each sub-problem $g(x)|_{S_i}$

- dimension $\log n$
- easy problem
- can precompute all solutions with $O(n)$ space

$$O(2^{\log n}) = O(n)$$

Take best solution as answer

Resulting algorithm is $1+\varepsilon$ approximate
(lots of algebra to prove)
Main outline

1. hash \{0, 1\}^d into \{α, β, γ, δ, ...\}^{O(R)}
 - dimension \(O(R)\)

2. encode symbols \(α, β, γ, δ, ...\) as binary codes of length \(O(\log n)\)
 - dimension \(O(R \log n)\)

3. divide and conquer
 - divide into sets of size \(O(\log n)\)
 - solve each subproblem
 - take best found solution
Extensions

Basic algorithm can be adapted

- $3+\epsilon$-approximate deterministic algorithm
 - make step 3 (divide and conquer) deterministic

- other metrics
 - embed l^d_1 into $O\left(\frac{\Delta d}{\epsilon}\right)$-dimensional Hamming metric (Δ is diameter/closest pair ratio)
 - embed l^d_2 into $l^O_1(d^2)$
Talk Overview

Introduction

c-Nearest Neighbor Search

c-Furthest Neighbor Search

Conclusion
FNS to NNS Reduction

Reduce $(1+\varepsilon)$-FNS to $(1+\varepsilon/6)$-NNS

- for $\varepsilon \in [0, 2]$
- in Hamming spaces

\[r^2 \in [0, 2] \]

\[c \cdot \text{FNS} \]
Basic Idea

For $p, q \in \{0, 1\}^d$

$$d(p, q) = d - d(p, \bar{q})$$

$p = 110011$ \hspace{1cm} p = 110011$
$q = 101011$ \hspace{1cm} \bar{q} = 010100$

$$d(p, q) = 2 = 6 - 4$$ \hspace{1cm} $$d(p, \bar{q}) = 4 = 6 - 2$$
Set of points P in $\{0,1\}^d$

p furthest neighbor of q in P

p is nearest neighbor of \bar{q} in P

\rightarrow exact versions of NNS and FNS are equivalent
Approximate FNS to NNS

Reduction does not preserve approximation

- p FN of q, with $d(q, p) = R$
 - therefore p (exact) NN of \bar{q}
- p' c-NN of \bar{q}

 $$d(\bar{q}, p') = cd(\bar{q}, p) = c(d - R)$$
 - therefore

 $$\frac{d(q, p)}{d(q, p')} = \frac{R}{d - c(d - R)}$$

- so, if we want p' to be c'-FN of q

 $$c' \geq \frac{R}{d - c(d - R)}$$
Approximate FNS to NNS

Reduction does not preserve approximation

- so, if we want p' to be c'-FN of q

$$c' \geq \frac{R}{d-c(d-R)}$$

- or, equivalently,

$$\frac{1}{c'} \leq \frac{d}{R} + (1 - \frac{d}{R})c$$

- so, the smaller d/R, the better the reduction

→ apply dimensionality reduction
 to decrease d/R
Approximate FNS to NNS

With a similar hashing and coding technique, one can reduce d/R and prove:

There is a reduction of

$(1+\varepsilon)$-FNS to $(1+\varepsilon/6)$-NNS

for $\varepsilon \in [0, 2]$.
Conclusion

Hashing can be used effectively to overcome the “curse of dimensionality”.

Dimensionality reduction used for two different purposes:

- Las Vegas c-NNS: reduce storage
- FNS → NNS: relate approximation factors