Approximate Nearest Neighbors

Sariel Har Peled: Notes

Arya, Mount, Netenyahu, Silverman, Wu An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
Approximate Nearest Neighbors

- What we want
 - $O(n \log n)$ preprocess
 - $O(n)$ space
 - $O(\log n)$ time query
- Possible in 1 and 2D
- Not really in 3D
Lets Approximate

- Return a point within distance \((1 + \varepsilon)r\)
- Can achieve the bounds several ways
- First
 - compute rough approximation
 - use it to set scale for final solution
- Second
 - build a tree which solves the problem
Ring Separator Tree
Ring Separator Tree

- Answer \((1 + 4/t)\)-ANN queries in \(O(\text{height})\)
- Check if rep is closest, if so update closest
- Recurse on correct side of halfway ball
Error Bounds

- Closest: $rt/2$
- Returned: $2r + rt/2$
Construction

• Find circle containing n/c points
Construction

- Grid of side \[L = \frac{r}{16\sqrt{d}} \]
- Number of points \[\frac{(4L)^d n}{c} \]
- Set \[c = 2(4L)^d \]
- Ring has \(n/2 \) points
Construction

- Put ring in largest gap
- Size $2r/n$
The Upshot

- Can preprocess in \(O(n \log n)\) time
- Query time is \(O(\log n)\)
- \(4n+1\) approximation!
- Amazingly, this is good enough
Bounded Distance

- Normal quadtree gives $O\left(\frac{1}{\epsilon^d} + \log \delta\right)$
- Why?
 - Approximation and r eliminates small cells $(\epsilon/4)r$
 - Bound number of cells visited by last level
 - Do some algebra to get bound...
A Complete Algorithm

- Build
 - a compressed quadtree/finger tree
 - a ring separator tree
- Compute approximate value, R
- Start from
 - nodes of size approximately R
 - and closer than R to query point
Arya and Mount

- $O(dn \log n)$ time
- $O(dn)$ space
- $O(c_{d,\epsilon} \log n)$ time ANN
 - where $c_{d,\epsilon} \leq d(1 + 6d/\epsilon)^d$
- Can find k NN
- Any Minkowski metric
- Preprocessing does not depend on ϵ or metric
Overview

• Build BBD tree
• Locate leaf containing q
• Try nearby nodes in order of distance
• Stop when no node is close enough
Tree types

- KD reduce number of points each level
- Quadtree reduces size
- BBD does both
 - either KD-like split
 - or shrink
Properties

• Bounded aspect ratio
 – bound number of cells intersecting a volume

• Stickiness
 – control number of nearby cells

• Inner boxes not cut by children
 – so everything packs
An Important Trick

- Maintain 3 sorted lists of points \((x,y,z)\)
- Have links between lists
- Allows
 - removal of first \(k\) points in time \(k\)
 - \(O(d)\) time determination of min bounding box
Computing Shrinks

• Compute a set of splits
 – until have n/c in a rectangle
 – trivially sticky

• Problems
 – doesn’t respect nesting
 – may have to split many times
Computing Shrinks II

- Always cut min enclosing box
 - constant time
 - always remove points
 - make sure it respects stickyness
- Include parent inner rectangle
 - go until it is cut out
Computing Shrinks 2

- More flexible
- Shrink roughly as before
Tweaks

• Collapse trivial splits/shrinks
 – now no sequence of trivial splits
• Assign one point to each leaf
 – even to empty shrink cells
Properties

- Bounded occupancy
- Point near each leaf
- Can do point location in $O(d \log n)$ time
- Packing constraint
- Distance enumeration
Proof of Packing

• Ball of radius r
 – intersects $(1+6r/s)^d$ leaves of size s

• Trivial packing argument except for shrinks
 – use stickiness to replace outer boxes
ANN using BBD

- Number of leaves visited is $O((1 + 6d/\varepsilon)^d)$
- r is distance to last non-terminating leaf
- $r(1 + \varepsilon) \leq \text{dist}(q, p)$
- Can't have visited cell smaller than $r \varepsilon / d$
 - this cell must have a point closer than $r(1 + \varepsilon)$
- Use packing argument from before
Experimental Results

• Choices
 – shrink only when necessary
 – leaves held 5-8 points

• Results
 – Slightly slower than Kd trees for even data
 – Much faster for clustered data (10x or so)
 – Slightly slower than Kd trees for surfaces (20%)