Approximate Nearest Neighbors via Point Location Among Balls
Method of Har-Peled
(improved version from notes)

• Reduce $(1+\varepsilon)$-ANN query on n points to point location in equal balls (PLEB) queries

 – Preprocessing space $O\left(\frac{n}{\varepsilon} \log \frac{tn}{\varepsilon}\right)$

 – Preprocessing time $O(\log \frac{n}{\varepsilon})$

 – Query time $O(\log \frac{n}{\varepsilon})$
Notation

\[d_p(q) \] Distance from point q to nearest neighbor point in set P

\[U_{\text{balls}}(P, r) \] Union of balls of radius r about points in P

\[\text{NNbr}(P, r) \] “Nearest Neighbor” data structure
Returns TRUE and a witness point if query point q is in \(U_{\text{balls}}(P, r) \) and FALSE otherwise

\[\hat{I}(P, r, R, \varepsilon) \] “Interval Nearest Neighbor” data structure for points in set P, over range \([r, R]\), with approximation error \(\varepsilon \)
Indicates if \(d_p(q) \) is outside range \([r, R]\) or returns the ball centered at the point \((1+\varepsilon)\text{-ANN to } q\)
Reduction from ANN to PLEBs

• Build a tree D
 – Each node v has an interval NNbr data structure \hat{I}_v
 – Use \hat{I}_v to decide how to traverse the tree when search reaches node v
Constructing D

- Given set P of n points in metric space M
Constructing D

- Find the ball radius r such that $U_{balls}(P, r)$ has $\lceil n/2 \rceil$ connected components

\[r = 0 \quad \text{Connected Components: 8} \]
Constructing D

• Find the value of r such that $U_{balls}(P, r)$ has $\lceil n/2 \rceil$ connected components

r = 0.25 Connected Components: 8
Constructing D

• Find the value of r such that $U_{balls} (P, r)$ has $\lceil n/2 \rceil$ connected components

\[r = 0.5 \quad \text{Connected Components: 6} \]
Constructing D

• Find the value of r such that $U_{balls}(P, r)$ has $\lceil n/2 \rceil$ connected components

$r = 0.65$ Connected Components: 4
Constructing D

- Recursively build a sub tree for each connected component and add as child of root node v
Outer Child

• Choose one representative from each connected component to be in set Q
Outer Child

• Recursively build a tree over points in Q and hang it on on node v

• This child of v is the “outer child”
Constructing D

• Build the interval NNbr data structure for node \(v \)

\[
\hat{I}_v = \hat{I}(P, r, R, \varepsilon/4)
\]

Let \(R = 2\overline{c} \mu n r / \varepsilon \)

Where \(\mu \) & \(\overline{c} \) are parameters that will be defined later...
Answering a query using D

• Given query point q, use \hat{i}_v to decide between three cases
Answering a query using D

Case 1:

\[\hat{I}_v \] returns \((1+\varepsilon)\text{ANN}\) and search terminates
Answering a query using D

Case 2: $d_p(q) \leq r_v$

- Recurse into child corresponding to connected component containing q
Answering a query using D

Case 3: \(d_p(q) > R_v \)

- Recurse into outer child

*
algorithm terminates

• If at step i we consider a set of size n_i then at step $i+1$ we consider a set of size

$$n_{i+1} \leq n_i/2 + 1$$

• Thus search halts after number of steps

$$steps \leq \log_{3/2}(n)$$
Algorithm is correct

• Same result as target ball query on all constructed balls

• Approximation error
 – From node \(v \) to a connected component child
 • No approximation error
 – From node \(v \) to the “outer child”: \(1 + \varepsilon / (\bar{c} \mu) \)
 – From the interval NNbr search: \(1 + \varepsilon / 4 \)
Approximation error

\[t \leq \left(1 + \frac{\epsilon}{4}\right)^{\log_{3/2}(n)} \prod_{i=1}^{\log_{3/2}(n)} \left(1 + \frac{\epsilon}{\bar{c} \mu}\right) \]

\[\leq \exp\left(\frac{\epsilon}{4}\right) \prod_{i=1}^{\log_{3/2}(n)} \left(\frac{c \epsilon}{\bar{c} \mu}\right) \]

set \(\mu = \lceil \log_{3/2} n \rceil \) and \(\bar{c} \) large enough so that...

\[\leq \exp\left(\frac{\epsilon}{4} + \sum_{i=1}^{\log_{3/2}(n)} \frac{\epsilon}{\bar{c} \mu}\right) \]

\[\leq \exp\left(\frac{\epsilon}{2}\right) \]

\[\leq 1 + \epsilon \]

Thus result of a query on d is \((1 + \epsilon)\)-ANN to query point q
Query time

- As search proceeds down tree D
 - at most two NNbr queries are performed at a node and we traverse $O(\log n)$ nodes
 - at last node the \hat{I}_v data structure performs
 $O(\log (\log (\frac{n}{\varepsilon})/\varepsilon)) = O(\log \frac{n}{\varepsilon})$ NNbr queries
 - Query time is $O(\log \frac{n}{\varepsilon})$
Efficient Construction

• Construction space/time is currently $O(n^2)$
• Use HST of P to t-approximate metric M
• Use correspondence between subtrees in HST and connected components to find the ball radius r that gives $\lceil n/2 \rceil$ connected components
• Results in construction space/time $O(\frac{n}{\epsilon} \log \frac{tn}{\epsilon})$
• What have we done?

• Reduced an ANN query to multiple NNbr queries

• But NNbr queries seem hard to solve efficiently
 – Solution: Use deformed “approximate balls”
 – Same bounds hold for the extension to “approximate balls”
Questions