Approximate Voronoi Diagrams

Presentation by Maks Ovsjanikov

S. Har-Peled's notes, Chapters 6 and 7
Outline

- Preliminaries
- Problem Statement
- ANN using PLEB
- Bounds and Improvements
 - Near Linear Space
 - Linear Space
- ANN in \mathbb{R}^d using compressed quad-trees
Preliminaries
Preliminaries

\[d(u, v) \]
\[d(u, v)\]

\[d(q, u)\]

\[d(q, v)\]
Preliminaries

\[d(q, v) \geq \frac{d(u, v)}{\epsilon} \]

\[d(q, u) \geq \frac{d(u, v)}{\epsilon} \]

\[d(u, v) \]

\[d(q, u, v) \]

\[d(u, v) \]

\[d(q, v) \]

\[d(q, u, v) \]
Preliminaries

\[
\begin{align*}
\{ & d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
& d(q, v) \geq \frac{d(u, v)}{\epsilon} \}
\implies \frac{d(q, v)}{d(q, u)} \leq 1 + \epsilon
\end{align*}
\]
\[
\begin{align*}
d(q', v) &= (1 + \alpha)d(u, v) \\
&= (1 + \frac{\epsilon}{d(u, v)})d(u, v) \\
d(q', u) &= \alpha d(u, v) \\
d(q, u) &\geq \frac{d(u, v)}{\epsilon} \\
d(q, v) &\geq \frac{d(u, v)}{\epsilon} \\
\end{align*}
\]

\[
\begin{align*}
d(q, v) &\geq \frac{d(u, v)}{\epsilon} \\
\Rightarrow \quad \frac{d(q, v)}{d(q, u)} &\leq 1 + \epsilon
\end{align*}
\]
\[\begin{align*}
\{ & d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
& d(q, v) \geq \frac{d(u, v)}{\epsilon} \} \implies \frac{d(q, v)}{d(q, u)} \leq 1 + \epsilon
\end{align*} \]

Holds in any metric space:
Preliminaries

\[
\begin{align*}
 d(q,u) & \geq \frac{d(u,v)}{\epsilon} \\
 d(q,v) & \geq \frac{d(u,v)}{\epsilon}
\end{align*}
\implies \frac{d(q,v)}{d(q,u)} \leq 1 + \epsilon
\]

Holds in any metric space:

\[
d(q,u) = \alpha d(u,v) \\
d(q,v) \leq d(q,u) + d(u,v) = (1 + \frac{1}{\alpha})d(q,u)
\]

\[
\implies \frac{d(q,v)}{d(q,u)} \leq (1 + \frac{1}{\alpha}) \leq (1 + \epsilon) \text{ if } \alpha \geq \frac{1}{\epsilon}
\]
\[
\begin{align*}
\begin{cases}
 d(q, u) & \geq \frac{d(u, v)}{\epsilon} \\
 d(q, v) & \geq \frac{d(u, v)}{\epsilon}
\end{cases} \implies \frac{d(q, v)}{d(q, u)} \leq 1 + \epsilon
\end{align*}
\]

Holds in any metric space:

\[
d(q, u) = \alpha d(u, v)
\]

\[
d(q, v) \leq d(q, u) + d(u, v) = (1 + \frac{1}{\alpha})d(q, u)
\]

\[
\implies \frac{d(q, v)}{d(q, u)} \leq (1 + \frac{1}{\alpha}) \leq (1 + \epsilon) \text{ if } \alpha \geq \frac{1}{\epsilon}
\]

Similarly:

\[
d(q, v) = \alpha d(u, v)
\]

\[
\implies \frac{d(q, u)}{d(q, v)} \leq (1 + \frac{1}{\alpha}) \leq (1 + \epsilon) \text{ if } \alpha \geq \frac{1}{\epsilon}
\]
\[\begin{cases}
 d(q, u) \geq \frac{d(u, v)}{\epsilon} \\
 d(q, v) \geq \frac{d(u, v)}{\epsilon}
\end{cases} \implies \frac{d(q, v)}{d(q, u)} \leq 1 + \epsilon
\]

Moral:

Any of the far away points is a \((1 + \epsilon)\) closest neighbor
Problem Statement:

For a given ϵ, find a $(1 + \epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_i per region, such that for any point q in region i, r_i is a $(1 + \epsilon)$ nearest neighbor of q.
Problem Statement:

For a given ϵ, find a $(1 + \epsilon)$ Aproximate Voronoi Diagram:

Partition of space into regions with one representative r_i per region, such that for any point q in region i, r_i is a $(1 + \epsilon)$ nearest neighbor of q.
Problem Statement:

For a given ϵ, find a $(1 + \epsilon)$ Approximate Voronoi Diagram:

Partition of space into regions with one representative r_i per region, such that for any point q in region i, r_i is a $(1 + \epsilon)$ nearest neighbor of q.

Constraints:
- bounded construction time and space (complexity)
- Cover all space
- sub-linear $(1+\epsilon)$ NN queries
Reduce $(1 + \epsilon)$-ANN queries to target ball queries
ANN using PLEB

Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

1) Construct balls of radius \((1 + \epsilon)^i\) around each point, for \(i = 1..\infty\)
Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

1) Construct balls of radius \((1 + \epsilon)^i\) around each point, for \(i = 1..\infty\)
Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

1) Construct balls of radius \((1 + \epsilon)^i\) around each point, for \(i = 1..\infty\)
ANN using PLEB

Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

1) Construct balls of radius \((1 + \epsilon)^i\) around each point, for \(i = 1..\infty\)
ANN using PLEB

Reduce $(1 + \epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1 + \epsilon)^i$ around each point, for $i = 1..\infty$
ANN using PLEB

Reduce $(1 + \epsilon)$-ANN queries to target ball queries

1) Construct balls of radius $(1 + \epsilon)^i$ around each point, for $i = 1..\infty$
ANN using PLEB

Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

1) Construct balls of radius \((1 + \epsilon)^i\) around each point, for \(i = 1..\infty\)
ANN using PLEB

Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

1) Construct balls of radius \((1 + \epsilon)^i\) around each point, for \(i = 1..\infty\)
ANN using PLEB

Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

For any query point \(q\), return the center \(p\) of the smallest ball that contains it:

\[
d(q, n) > (1 + \epsilon)^{i-1}, \quad \text{and} \quad d(q, p) \leq (1 + \epsilon)^i < (1 + \epsilon) \cdot d(q, n)
\]

\(\implies\) always get a \((1 + \epsilon)\)-Nearest Neighbor
ANN using PLEB

Reduce \((1 + \epsilon)\)-ANN queries to target ball queries

Problems:
- Unbounded Number of Balls
- Not clear how to preform target ball queries efficiently
 - Partition the space into regions of influence
Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in \left[\frac{d(u,v)}{\epsilon + 2}, \frac{d(u,v)}{\epsilon}\right]$
Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in \left[\frac{d(u,v)}{\epsilon + 2}, \frac{d(u,v)}{\epsilon} \right]$

 • if $\min d(q, \{u, v\}) > \frac{d(u,v)}{\epsilon} \implies$ either u or v are $(1 + \epsilon)$ NN
Bounding the number of balls

Intuition:
* For a given pair \(u \) and \(v \), we only care if \(\min d(q, \{u, v\}) \in \left[\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon} \right] \)

 • if \(\min d(q, \{u, v\}) > \frac{d(u,v)}{\epsilon} \implies \) either \(u \) or \(v \) are \((1 + \epsilon)\) NN

 • if \(\min d(q, \{u, v\}) < \frac{d(u,v)}{\epsilon+2} \implies q \) has a unique \((1 + \epsilon)\) NN

* Do not need to grow balls of radius smaller than \(\frac{d(u,v)}{\epsilon+2} \) or larger than \(\frac{2d(u,v)}{\epsilon} \)
Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in \left[\frac{d(u,v)}{\epsilon+2}, \frac{2d(u,v)}{\epsilon} \right]$

 - if $\min d(q, \{u, v\}) > \frac{d(u,v)}{\epsilon} \Rightarrow$ either u or v are $(1 + \epsilon)$ NN

 - if $\min d(q, \{u, v\}) < \frac{d(u,v)}{\epsilon+2} \Rightarrow q$ has a unique $(1 + \epsilon)$ NN

* Do not need to grow balls of radius smaller than $\frac{d(u,v)}{4}$ or larger than $\frac{2d(u,v)}{\epsilon}$

Method 1:

for every pair of points $\{u, v\}$, construct enough balls to cover $\left[\frac{d(u,v)}{4}, \frac{2d(u,v)}{\epsilon} \right]$ on u, v
Bounding the number of balls

Intuition:
* For a given pair u and v, we only care if $\min d(q, \{u, v\}) \in \left[\frac{d(u,v)}{\epsilon+2}, \frac{d(u,v)}{\epsilon}\right]$
 - if $\min d(q, \{u, v\}) > \frac{d(u,v)}{\epsilon}$ \implies either u or v are $(1 + \epsilon)$ NN
 - if $\min d(q, \{u, v\}) < \frac{d(u,v)}{\epsilon+2}$ \implies q has a unique $(1 + \epsilon)$ NN

* Do not need to grow balls of radius smaller than $\frac{d(u,v)}{4}$ or larger than $\frac{2d(u,v)}{\epsilon}$

Method 1:

for every pair of points $\{u, v\}$, construct enough balls to cover $\left[\frac{d(u,v)}{4}, \frac{2d(u,v)}{\epsilon}\right]$ on u, v

Overall: $O(n^2 \log_{\epsilon+1}(\frac{2C}{\epsilon} - \frac{C}{4})) = O(n^2 \log(\frac{7C}{\epsilon})_{\log(\epsilon+1)}) = O(n^2 \frac{1}{\epsilon} \log(\frac{1}{\epsilon}))$ balls

Note: $\log(1 + \epsilon) = \epsilon - \epsilon^2/2 + \epsilon^3/3 - ... = O(\epsilon)$ in most cases
Bounding the number of balls

Interval Near-Neighbor data structure
given a range of distances \([a, b]\), and a set of points \(P\), answers:

1. \(d_P(q) > b\)
2. \(d_P(q) < a\) with a witness
3. otherwise, finds a point \(p \in P\), s.t. \(d_P(q) \leq d(p, q) \leq (1 + \epsilon)d_P(q)\)
Bounding the number of balls

Interval Near-Neighbor data structure

given a range of distances \([a, b]\), and a set of points \(P\), answers:

1. \(d_P(q) > b\)
2. \(d_P(q) < a\) with a witness
3. otherwise, finds a point \(p \in P\), s.t. \(d_P(q) \leq d(p, q) \leq (1 + \epsilon)d_P(q)\)

Can be realized by a set of balls of radius \(a(1 + \epsilon)^i\) for \(i = 0...M - 1\), where \(M = \lceil \log_{1+\epsilon}(b/a) \rceil\) and a ball of radius \(b\) around every point in \(P\)
Bounding the number of balls

Interval Near-Neighbor data structure

given a range of distances \([a, b]\), and a set of points \(P\), answers:

1. \(d_P(q) > b\)
2. \(d_P(q) < a\) with a witness
3. otherwise, finds a point \(p \in P\), s.t. \(d_P(q) \leq d(p, q) \leq (1 + \epsilon)d_P(q)\)

Can be realized by a set of balls of radius \(a(1 + \epsilon)^i\) for \(i = 0...M - 1\), where \(M = \lceil \log_{1+\epsilon}(b/a) \rceil\) and a ball of radius \(b\) around every point in \(P\)

Contains \(O(n\frac{1}{\epsilon}\log(b/a))\) balls. Takes at most 2 target ball queries if 1 or 2 hold, and

\[O(\log(M)) = O(\log\frac{\log(b/a)}{\epsilon})\] otherwise
Bounding the number of balls

A data structure to answer \((1 + \epsilon)\)-ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer $(1 + \epsilon)$-ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node.

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer $(1 + \epsilon)$-ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node

Recursively find $\min r$ such that there are $\lceil n/2 \rceil$ connected components

(Sariel Har-Peled: *A Replacement for Voronoi Diagrams of Near Linear Size*. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer \((1 + \epsilon)\)-ANN queries on general points

Build a tree, with an Interval Near Neighbor structure associated with each node

Recursively find \(\min r\) such that there are \(\lceil n/2 \rceil\) connected components

For each component find a representative and recursively build the outer tree

(Sariel Har-Peled: *A Replacement for Voronoi Diagrams of Near Linear Size*. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer \((1 + \epsilon)\)-ANN queries on general points

Given a query point \(q\):

1) \(q\) is outside \(R\) descend into the outer tree

(Sariel Har-Peled: *A Replacement for Voronoi Diagrams of Near Linear Size*. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer \((1 + \epsilon)\)-ANN queries on general points

Given a query point \(q\):

2) if \(q\) is inside \(r\) descend into the cluster

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer \((1 + \epsilon)\)-ANN queries on general points

Given a query point \(q\):

3) otherwise \(I\) will return a
\((1 + \frac{\epsilon}{4})\)-NN

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)
Bounding the number of balls

A data structure to answer \((1 + \epsilon)\)-ANN queries on general points

Given a query point \(q\):

Because of rounding up, after each step, continue on set containing \(\leq n/2 + 1\) points

\(\implies\) number of steps \(\leq \log_{3/2} n\)

(Sariel Har-Peled: *A Replacement for Voronoi Diagrams of Near Linear Size*. FOCS 2001: 94-103)
Bounding the number of balls

1) \(q \) is outside \(R \) descend into the outer tree

2) if \(q \) is inside \(r \) descend into the cluster

3) otherwise \(I \) will return a
\((1 + \frac{\epsilon}{4}) \)-NN

Note that:
- last step is always 3)
- no error is incurred in 2)
- diameter of a cluster \(\leq 2nr \implies \) error in 1) is at most \((1 + \frac{\epsilon}{c\mu}) \)

Thus, overall error is bounded by:
\[
(1 + \frac{\epsilon}{4}) \prod_{i=1}^{\log_3 n} \left(1 + \frac{\epsilon}{c\mu}\right) \leq \exp\left(\frac{\epsilon}{4}\right) \prod_{i=1}^{\log_3 n} \exp\left(\frac{\epsilon}{c\mu}\right) \leq \exp\left(\frac{\epsilon}{4} + \sum_{i=1}^{\log_3 n} \frac{\epsilon}{c\mu}\right) \leq \exp\left(\frac{\epsilon}{2}\right) \leq (1 + \epsilon)
\]

If \(\mu = \lceil \log_3 n \rceil, \ c = 4 \) and \(\epsilon < 1 \)
Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P, r, 2\bar{c}mu r/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of

$$O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$$

(Sariel Har-Peled: A Replacement for Voronoi Diagrams of Near Linear Size. FOCS 2001: 94-103)
Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_\nu, r, 2\epsilon \mu n r / \epsilon, \epsilon / 4)$ with $M = n \log n$ balls

we get an immediate bound of

$$O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree

Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_\nu, r, 2\bar{c}\mu n r / \epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of

$$O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree.

Bounding the number of balls

Overall Number of Balls:

Since
- the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_\nu, r, 2\bar{c}µnr/\epsilon, \epsilon/4)$ with $M = n \log n$ balls

we get an immediate bound of

$O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree.
Bounding the number of balls

Overall Number of Balls:

Since

- the depth of the tree is at most $\log_{3/2} n$
- each node ν has $I(P_\nu, r, 2\epsilon \mu n r / \epsilon, \epsilon / 4)$ with $M = n \log n$ balls

we get an immediate bound of

$O(M \log M) = O(n \log(n) \log(n \log n)) = O(n \log^2 n)$

However, can achieve $O(n \log n)$ by considering the connection with the Cluster Tree

$r_{loss}(p) =$ radius of the ball around p, when p ceases to be a root
Bounding the number of balls

Apart from the outer trees, going down the \((1 + \epsilon)\) ANN tree is equivalent to disconnecting edges of the MST tree.

The subtrees of a node are disjoint in edges \(\implies\) can charge at least 1 edge to each child.

Namely: if \(n_\nu\) is the number of children of \(\nu\)

\(|P_\nu| = O(n_\nu)\) and \(\sum_{\nu \in D} n_\nu = O(n)\)

Thus, total number of balls:

\[
\sum_{\nu \in D} O\left(\frac{n_\nu}{\epsilon} \log \frac{\mu n_\nu}{\epsilon} \right) = O\left(\frac{n}{\epsilon} \log \frac{n \log n}{\epsilon} \right) = O\left(\frac{n}{\epsilon} \log \frac{n}{\epsilon} \right)
\]
Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time
Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

In \mathbb{R}^d the cluster tree can be $(2n - 2)$-approximated by a HST in $O(n \log n)$ time:
1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n - 1)$ approximates the spanner in $O(n \log n)$ time
Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

In \mathbb{R}^d the cluster tree can be $(2n - 2)$-approximated by a HST in $O(n \log n)$ time:
1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n - 1)$ approximates the spanner in $O(n \log n)$ time

Only possible in \mathbb{R}^d, in general no HST can be computed in subquadratic time
Construction Time

Construction time will be dominated by constructing the tree D
Can be constructed directly from the cluster tree but this takes time $O(n^2)$ time

In \mathbb{R}^d the cluster tree can be $(2n - 2)$-approximated by a HST in $O(n \log n)$ time:
1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n - 1)$ approximates the spanner in $O(n \log n)$ time

Only possible in \mathbb{R}^d, in general no HST can be computed in subquadratic time
Construction Time

In \mathbb{R}^d the cluster tree can be $(2n - 2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n - 1)$ approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls:

Instead of $I(P, r, 2\bar{c}unr/\epsilon, \epsilon/4)$ construct $I(P, r/(2n), 2\bar{c}unr/\epsilon, \epsilon/4)$
In \mathbb{R}^d the cluster tree can be $(2n - 2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n - 1)$ approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls:
Instead of $I(P, r, 2\bar{c}\mu n r/\epsilon, \epsilon/4)$ construct $I(P, r/(2n), 2\bar{c}\mu n r/\epsilon, \epsilon/4)$

Instead of $O\left(\frac{n}{\epsilon} \log \frac{b}{a}\right) = O\left(\frac{n}{\epsilon} \log n\right)$ will have:
$O\left(\frac{n}{\epsilon} \log \frac{nr}{n^2}\right) = O\left(\frac{n}{\epsilon} \log n^2\right) = O\left(\frac{n}{\epsilon} \log n\right)$ balls at every node
Construction Time

In \mathbb{R}^d the cluster tree can be $(2n - 2)$-approximated by a HST in $O(n \log n)$ time:

1. construct a 2-spanner of P of size $O(n)$ in $O(n \log n)$ time
2. construct an HST that $(n - 1)$ approximates the spanner in $O(n \log n)$ time

To compensate for the approximation factor, grow more balls:
Instead of $I(P, r, 2\bar{c}\mu nr/\epsilon, \epsilon/4)$ construct $I(P, r/(2n), 2\bar{c}\mu nr/\epsilon, \epsilon/4)$

Instead of $O\left(\frac{n}{\epsilon} \log \frac{b}{a}\right) = O\left(\frac{n}{\epsilon} \log n\right)$ will have:

$O\left(\frac{n}{\epsilon} \log \frac{nr}{n}\right) = O\left(\frac{n}{\epsilon} \log n^2\right) = O\left(\frac{n}{\epsilon} \log n\right)$ balls at every node

Same asymptotic space and time complexity
Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem
Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem

Don’t need exact balls

\[(1 + \epsilon) \text{ ball}\]

\[b_\approx \text{ is } (1 + \epsilon) \text{ approximation of } b = b(p, r), \text{ if } b \subseteq b_\approx \subseteq b(p, r(1 + \epsilon))\]
Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem
Don’t need exact balls

$$(1 + \epsilon) \text{ ball}$$

b_{\approx} is $(1 + \epsilon)$ approximation of $b = b(p, r)$, if $b \subseteq b_{\approx} \subseteq b(p, r(1 + \epsilon))$
Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem

Don’t need exact balls

\[(1 + \epsilon) \text{ ball}\]

\[b_\approx \text{ is } (1 + \epsilon) \text{ approximation of } b = b(p, r), \text{ if } b \subseteq b_\approx \subseteq b(p, r(1 + \epsilon))\]
Answering ANN queries

Haven’t made our life easier, since answering target ball queries is a difficult problem

Don’t need exact balls

(1 + ϵ) ball

\[b \approx \] is (1 + ϵ) approximation of \(b = b(p, r) \), if \(b \subseteq b \approx \subseteq b(p, r(1 + ϵ)) \)

Consider Interval Near Neighbor structure on approximate balls:

If \(I_{\approx}(P, r, R, ϵ/16) \) is a \((1 + ϵ/16)\) approximation to \(I(P, r, R, ϵ/16) \)

If for point \(q \), \(I_{\approx}(P, r, R, ϵ/16) \) returns a ball \((p, α) \), \(α \in [r, R] \) \(\implies \) \(p \) is \((1 + ϵ/4)\)-ANN to \(q \):

\[
r(1 + ϵ/16)^i \leq d_P(q) \leq d(p, q) \leq r(1 + ϵ/16)^{i+1}(1 + ϵ/16) \leq (1 + ϵ/4)r
\]
Fast ANN in \mathbb{R}^d

The distance between 2 points in a d-dimensional cell of size α is at most $\sqrt{\sum_{i=1}^{d} \alpha^2} = \sqrt{d\alpha}$

For a given ball, $b(p, r)$, construct a grid centered at p, with cell-size 2^i, s.t. $\sqrt{d2^i} \leq \frac{(er)}{16}$

Call, b_\approx the set of cells that intersect $b(p, r)$

b_\approx is a $(1 + \epsilon/16)$ approximate ball, and contains $O \left(\frac{r^d}{(er)^d} \right) = O \left(\frac{1^d}{\epsilon} \right)$ cells
Fast ANN in \mathbb{R}^d

The distance between 2 points in a d-dimensional cell of size α is at most $\sqrt{\sum_{i=1}^{d} \alpha^2} = \sqrt{d} \alpha$

For a given ball, $b(p, r)$, construct a grid centered at p, with cell-size 2^i, s.t. $\sqrt{d} 2^i \leq \frac{(er)}{16}$

Call, b_\approx the set of cells that intersect $b(p, r)$

b_\approx is a $(1 + \epsilon/16)$ approximate ball, and contains $O\left(\frac{r^d}{(er)^d}\right) = O\left(\frac{1^d}{\epsilon}\right)$ cells
Fast ANN in \mathbb{R}^d

• Fix the origin, and construct grid-cells from there
• If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
• Thus construct an approximate $I-(1 + \epsilon/16)$ data structure C
Fast ANN in \mathbb{R}^d

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1 + \epsilon/16)$ data structure C

Finding the smallest ball containing $q \iff$ finding the smallest grid-cell containing q
Fast ANN in \mathbb{R}^d

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1 + \epsilon/16)$ data structure C

Finding the smallest ball containing $q \iff$ finding the smallest grid-cell containing q

Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node
- Construction takes $O(|C| \log |C'|)$ time
- Finding the appropriate node in C takes $O(\log |C|)$ time
- If information about smallest ball is propagated down the tree, answering a query takes $O(\log |C|)$
Fast ANN in \mathbb{R}^d

- Fix the origin, and construct grid-cells from there
- If there are 2 cells with the same size, pick the one, corresponding to the smallest ball
- Thus construct an approximate $I-(1 + \epsilon/16)$ data structure C

Finding the smallest ball containing $q \iff$ finding the smallest grid-cell containing q

Encode all the cells of C into a compressed quad-tree, such that each cell appears as a node

- Construction takes $O(|C| \log |C'|)$ time
- Finding the appropriate node in C takes $O(\log |C|)$ time
- If information about smallest ball is propagated down the tree, answering a query takes $O(\log |C|)$

Recall that we had a data structure with $O(n \epsilon \log n)$ balls. Each ball is approximated by $O(\frac{1}{\epsilon^d})$ cells

\Rightarrow The overall complexity of the quad-tree is $O(N)$, where $N = O(\frac{n}{\epsilon^{d+1}} \log \frac{n}{\epsilon})$.

By noticing that there are many balls of similar sizes, we reduce the complexity to:

- Construction: $O(n \epsilon^{-d} \log^2 (n/\epsilon))$ time
- Storage: $O(n \epsilon^{-d} \log(n/\epsilon))$ space
- Point location query: $O(\log(n/\epsilon))$