Approximate Nearest Neighbor Problem: Improving Query Time

CS468, 10/9/2006
Outline

- Reducing the "constant" from $O(\epsilon^{-d})$ to $O(\epsilon^{-(d-1)/2})$ in query time
- Need to know ϵ ahead of time
 - Preprocessing time and storage feature $O(\epsilon^{-d})$, $O(\epsilon^{-(d-1)/2})$ etc.
Outline

• Reducing the "constant" from $O(\epsilon^{-d})$ to $O(\epsilon^{-(d-1)/2})$ in query time
• Need to know ϵ ahead of time
 – Preprocessing time and storage feature $O(\epsilon^{-d})$, $O(\epsilon^{-(d-1)/2})$ etc.

 – Decomposition of space into cones
 – BBD-tree for range searching in \mathbb{R}^{d-k} + point location in \mathbb{R}^k

 – Additional $\log(\rho/\epsilon)$ in space complexity
 – Polytope approximation in \mathbb{R}^{d+1}
Chen’s Algorithm: Motivation

$(1 + \epsilon)$-ANN among (sorted) points in a narrow cone

Need a data structure that returns a sorted points given q and a cone direction
Chen’s Algorithm: Motivation

$(1 + \epsilon)$-ANN among (sorted) points in a narrow cone

Given a query point $q \in \mathbb{R}^d$ and a radius r, one can find $O(\log n)$ cells of the BBD-tree which contain $B(q, r)$ and are contained in $B(q, 2r)$. This takes $O(\log n)$ time.

Use for approximate range searching in \mathbb{R}^{d-1}

Uses the BBD-tree data structure

$O(\log n)$ by binary search

Need a data structure that returns a sorted points given q and a cone direction
Conic ANN (with a Hint)

Input: Query point q and a 2-approximation r to the NN distance

Output: A points s such that

\[||q - s|| \leq (1 + \epsilon)||q - p|| \]

where p is the NN inside a cone with apex q and angle $\delta = \sqrt{\epsilon/16}$

Note: s need not be in the cone!
Note: The cone is fixed (not a part of input, mod. translation to q)
Main \((1 + \epsilon)\)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subroutine

Query (given only \(q\))

- Obtain \(r\) by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to \(q\)
Main \((1 + \epsilon)\)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subroutine

Query (given only \(q\))

- Obtain \(r\) by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to \(q\)

Preprocessing

- "Tile" \(\mathbb{R}^d\) with \(O(\epsilon^{-(d-1)/2})\) cones of angle \(\delta = \Theta(\sqrt{\epsilon})\)
- Build a "conic-ANN" data structure for each cone
Main \((1 + \epsilon)\)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subroutine

Query (given only \(q\))

- Obtain \(r\) by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to \(q\)

Preprocessing

- "Tile" \(\mathbb{R}^d\) with \(O(\epsilon^{-(d-1)/2})\) cones of angle \(\delta = \Theta(\sqrt{\epsilon})\)
- Build a "conic-ANN" data structure for each cone

Correctness

- \((1 + \epsilon)\)-ANN (returned from that cone’s data structure)
Main \((1 + \epsilon)\)-ANN Algorithm

Uses the "conic-ANN with a hint" as a subroutine

Query (given only \(q\))

- Obtain \(r\) by [Arya and Mount 1998]
- Get one point per data structure, return the one closest to \(q\)

Preprocessing

- "Tile" \(\mathbb{R}^d\) with \(O(\epsilon^{-(d-1)/2})\) cones of angle \(\delta = \Theta(\sqrt{\epsilon})\)
- Build a "conic-ANN" data structure for each cone

Correctness

true NN

\((1 + \epsilon)\)-ANN (returned from that cone's data structure)

Query time

\(O(\epsilon^{-(d-1)/2} \log n)\)

[\# of cones][conic query]
Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ
Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: d-axis) and angle δ

Query Algorithm (given q and r)

Approximate range query on the set of projections
\[\{p' = [p_1, p_2, \ldots, p_{d-1}]^T, \ p \in P \} \] with $B(q, \delta r)$

- returns $O(\log n)$ BBD-nodes (cells) in $O(\log n)$ time

$O(\log n)$ binary searches

Return the point s such that $|s_d - q_d|$ is min
Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: \(d \)-axis) and angle \(\delta \)

Query Algorithm (given \(q \) and \(r \))

Approximate range query on the set of projections
\[
\{p' = [p_1 \ p_2 \ \cdots \ p_{d-1}]^T, \ p \in P\} \text{ with } B(q, \delta r)
\]

- returns \(O(\log n) \) BBD-nodes (cells) in \(O(\log n) \) time

\(O(\log n) \) binary searches

Return the point \(s \) such that \(|s_d - q_d| \) is min

Correctness (proof for \(||q - s|| \leq (1 + \epsilon)||q - p|| \))

\[
|s_d - q_d| \leq |p_d - q_d| \leq ||p - q||
\]

\[
|s' - q'| \leq 2\delta r \leq 4\delta||p - q||
\]

\[
||s - q|| \leq \sqrt{1 + 16\delta^2}||p - q|| = (1 + \epsilon)||p - q||
\]
Conic-ANN Data Structure

For preprocessing given only direction of the cone (wlog: \(d \)-axis) and angle \(\delta \)

Query Algorithm (given \(q \) and \(r \))

Approximate range query on the set of projections \(\{p' = [p_1 \ p_2 \ \cdots \ p_{d-1}]^T, \ p \in P\} \) with \(B(q, \delta r) \)

- returns \(O(\log n) \) BBD-nodes (cells) in \(O(\log n) \) time

\(O(\log n) \) binary searches

Return the point \(s \) such that \(|s_d - q_d| \) is min

Correctness (proof for \(||q - s|| \leq (1 + \epsilon)||q - p|| \))

\[
|s_d - q_d| \leq |p_d - q_d| \leq ||p - q||
\]

\[
|s' - q'| \leq 2\delta r \leq 4\delta ||p - q||
\]

\[
||s - q|| \leq \sqrt{1 + 16\delta^2} ||p - q|| = (1 + \epsilon)||p - q||
\]

Data structure

BBD-tree on the projection set

For every tree node \(v \) the associated list of points is sorted in the \(d \) coordinate
Conic-ANN Analysis

Construction (preprocessing)
BBD-tree $O(n \log n)$ + sorting $O(n \log n) = O(n \log n)$

Query
Approximate range query $O(\log n)$ + bin. searches $O(\log^2 n) = O(\log^2 n)$

Improving query time by exploiting correlation [Lueker and Willard]
Summary and Remarks

Variant with projecting to $d - 2$ dimensions

- BBD tree + planar point location

Rough ($\approx d^{3/2}$) approximation algorithms

- Polynomial dependence on d
Clarkson’s Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L_s of other sites such that for any query point q

if s is not the nearest neighbor of q, then L_s contains a site closer to q
Clarkson’s Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L_s of other sites such that

for **any** query point q

if s is not the nearest neighbor of q, then L_s contains a site closer to q

Algorithm

$s \leftarrow$ arbitrary site

while $\exists t \in L_s : ||t - q|| < ||s - q||$ do $s \leftarrow t$

return s
Clarkson’s Algorithm: Iterative Improvement

Exact nearest neighbor problem

Data structure For each site s, a (small) list L_s of other sites such that for any query point q

if s is not the nearest neighbor of q, then L_s contains a site closer to q

Algorithm

$s \leftarrow$ arbitrary site

while $\exists t \in L_s : ||t - q|| < ||s - q||$ do $s \leftarrow t$

return s

Note
The same L_s valid for all q!
Not Useful for Exact NN

Reason 1: space complexity $\Omega(n^2)$

For all s, L_s has to include all Delaunay neighbors of s

For $d > 2$, Delaunay triangulation may have $\Omega(n^2)$ edges
Not Useful for Exact NN

Reason 1: space complexity $\Omega(n^2)$

For all s, L_s has to include all Delaunay neighbors of s

For $d > 2$, Delaunay triangulation may have $\Omega(n^2)$ edges

Proof:

t Delaunay neighbor of s, but $t \notin L_s$

t is the only site closer to q than s
Not Useful for Exact NN

Reason 1: space complexity $\Omega(n^2)$
For all s, L_s has to include all Delaunay neighbors of s

For $d > 2$, Delaunay triangulation may have $\Omega(n^2)$ edges

Proof:
t Delaunay neighbor of s, but $t \notin L_s$
t is the only site closer to q than s

Reason 2: query time $\Omega(n)$
No "sufficient progress" guarantee, may have to visit all sites
Not Useful for Exact NN

Reason 1: space complexity $\Omega(n^2)$
For all s, L_s has to include all Delaunay neighbors of s

For $d > 2$, Delaunay triangulation may have $\Omega(n^2)$ edges

Proof:
t Delaunay neighbor of s, but $t \notin L_s$
t is the only site closer to q than s

Conclusion
No improvement over the trivial algorithm!

Reason 2: query time $\Omega(n)$
No "sufficient progress" guarantee, may have to visit all sites

No improvement over the trivial algorithm!
Modification for ANN

Data structure For each site s, a (small) list L_s of other sites such that for any query point q

if s is not a $(1 + \epsilon)$-ANN of q,
then L_s contains a site $(1 + \epsilon/2)$-closer to q
Modification for ANN

Data structure For each site s, a (small) list L_s of other sites such that for any query point q

if s is not a $(1 + \epsilon)$-ANN of q,
then L_s contains a site $(1 + \epsilon/2)$-closer to q

Algorithm (simple version)

$s \leftarrow$ arbitrary site
while $\exists t \in L_s : \|q - t\| \leq \frac{\|q - s\|}{1 + \epsilon/2}$ do $s \leftarrow t$
return s
Query Algorithm

Skip list approach [Arya and Mount 1993]

$R_0 = S$
Query Algorithm

Skip list approach [Arya and Mount 1993]
Query Algorithm

Skip list approach [Arya and Mount 1993]
Query Algorithm

Skip list approach [Arya and Mount 1993]
Query Algorithm

Skip list approach [Arya and Mount 1993]

R_K

R_3

R_2

R_1

$R_0 = S$
Query Algorithm

Skip list approach [Arya and Mount 1993]

R_K

R_3

R_2

R_1

$R_0 = S$

Algorithm

- start with any $t_{K-1} \in R_{K-1}$
- for $j = K - 2, K - 3, \ldots, 0$
 - find $t_j = (1 + \epsilon)$-ANN of q in R_j starting from t_{j+1}
- return t_0

[using naive algorithm]
Query Time Analysis

Suppose that any node’s list size is at most c

Observation: Query time $= c \cdot$ number of visited nodes

Compare with a regular path

- Visit nodes *in the order of proximity to* q, then go to the lower level
Query Time Analysis

Suppose that any node’s list size is at most c

Observation: Query time $= c \cdot$ number of visited nodes

Compare with a regular path

- Visit nodes in the order of proximity to q, then go to the lower level

Claim: Our path visits at most $2K$ nodes more

$$ (1 + \epsilon/2)^2 \geq 1 + \epsilon \quad \Rightarrow \quad ||q - t'|| \leq ||q - t|| $$
Query Time Analysis

Suppose that any node’s list size is at most c

Observation: Query time $= c \cdot$ number of visited nodes

Compare with a regular path

- Visit nodes in the order of proximity to q, then go to the lower level

Claim: Our path visits at most $2K$ nodes more

\[
(1 + \epsilon/2)^2 \geq 1 + \epsilon \quad \Rightarrow \quad \|q - t'\| \leq \|q - t\|
\]

\[
\text{Pr}[\text{regular path length} \geq C \log n] \leq O(n^{-C})
\]

[starting search point]
Query Time Analysis

What about any q?

Skip list

n possible search targets

Probability of failure $n \cdot O(n^{-C}) = O(n^{-(C-1)})$
Query Time Analysis

What about any q?

Skip list

n possible search targets

Probability of failure $n \cdot O(n^{-C}) = O(n^{-(C-1)})$

Only $n^{O(d)}$ "combinatorially distinct" regular paths

- If q_1 and q_2 incude the same distance ordering on the input sites, their regular paths are the same

- Arrangement of $\binom{n}{2}$ bisecting hyperplanes has

$$\binom{n}{2 \choose d} \leq (n^2)^d = n^{2d}$$

d-dimensional cells
Query Time Analysis

What about any \(q \)?

Skip list

- \(n \) possible search targets
- Probability of failure \(n \cdot O(n^{-C}) = O(n^{-(C-1)}) \)

Only \(n^{O(d)} \) ”combinatorially distinct” regular paths

- If \(q_1 \) and \(q_2 \) include the same distance ordering on the input sites, their regular paths are the same
- Arrangement of \(\binom{n}{2} \) bisecting hyperplanes has

\[
\binom{n}{2} = (n^2)^d = n^{2d}
\]

\(d \)-dimensional cells

Setting \(C = 2d + C' \)

\[
\Pr[\text{regular path length } \leq O(d) \log n] = O(n^{-C'})
\]
Weighted Voronoi Diagrams

Goal For each site s, compute L_s such that

$$\forall q \in \mathbb{R}^d$$

$$\forall b \in S : \|q - b\| \geq \frac{\|q - s\|}{1 + \epsilon} \iff \forall t \in L_s : \|q - t\| \geq \frac{\|q - s\|}{1 + \epsilon / 2}$$

s is an $(1 + \epsilon)$-ANN of q [no "improvement" in L_s]
Weighted Voronoi Diagrams

Goal For each site s, compute L_s such that

$$\forall q \in \mathbb{R}^d$$

$$\forall b \in S : \|q - b\| \geq \frac{\|q - s\|}{1 + \epsilon}$$

[s is an $(1 + \epsilon)$-ANN of q]

$$\Leftrightarrow$$

$$\forall t \in L_s : \|q - t\| \geq \frac{\|q - s\|}{1 + \epsilon/2}$$

[no "improvement" in L_s]

Diagram showing weighted Voronoi diagrams with annotations providing the relationships between points q, s, t, b, and ϵ.
Weighted Voronoi Diagrams

Goal For each site \(s \), compute \(L_s \) such that

\[
\forall q \in \mathbb{R}^d \quad \forall b \in S : \|q - b\| \geq \frac{\|q - s\|}{1 + \epsilon} \quad \Leftarrow \quad \forall t \in L_s : \|q - t\| \geq \frac{\|q - s\|}{1 + \epsilon/2}
\]

\([s \text{ is an } (1 + \epsilon)-\text{ANN of } q]\)

\[
\forall b \in S : q \in Q(b, \epsilon) \quad \Leftarrow \quad \forall t \in L_s : q \in Q(t, \epsilon/2)
\]

\([\text{no "improvement" in } L_s]\)

Diagram

- **Left Diagram**
 - \(s, b, \epsilon \text{ fixed} \)
 - \(Q(b, \epsilon) \)
 - \[
 \frac{1}{\epsilon(2 + \epsilon)} \|s - b\|\]
 - \[
 \frac{2(1 + \epsilon)}{\epsilon(2 + \epsilon)} \|s - b\|\]

- **Right Diagram**
 - \(s, t, \epsilon \text{ fixed} \)
 - \(Q(t, \epsilon/2) \)
 - \[
 \frac{1}{\epsilon(2 + \epsilon/2)} \|s - t\|\]
 - \[
 \frac{2(1 + \epsilon/2)}{(\epsilon/2)(2 + \epsilon/2)} \|s - t\|\]
Weighted Voronoi Diagrams

Goal For each site s, compute L_s such that

$$\forall q \in \mathbb{R}^d$$

$$\forall b \in S : \|q - b\| \geq \frac{\|q - s\|}{1 + \epsilon} \iff \forall t \in L_s : \|q - t\| \geq \frac{\|q - s\|}{1 + \epsilon/2}$$

[s is an $(1 + \epsilon)$-ANN of q]

$$\forall b \in S : q \in Q(b, \epsilon) \iff \forall t \in L_s : q \in Q(t, \epsilon/2)$$

$$\bigcap_{b \in S} Q(b, \epsilon) \supseteq \bigcap_{t \in L_s} Q(t, \epsilon/2)$$

![Diagram with annotations](attachment:diagram.png)
Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^d?

$\uparrow \downarrow$

A point above/below a hyperplane in \mathbb{R}^{d+1}?

Example for $d=1$

$$y = ||q||^2$$
Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^d?

$\uparrow\downarrow$

A point above/below a hyperplane in \mathbb{R}^{d+1}?

Example for $d=1$

$$y = ||q||^2$$

$$Q(b, \epsilon) = \{ q \in \mathbb{R}^d : ||q - s|| \leq (1 + \epsilon)||q - b|| \}$$
Linearization ("Lifting")

A point inside/outside a sphere in \mathbb{R}^d?

\uparrow

A point above/below a hyperplane in \mathbb{R}^{d+1}?

Example for $d=1$

$$y = ||q||^2$$

$P(b, \epsilon) = \{(q, y) : \alpha y \geq 2\langle q, b \rangle - ||b||^2\} \cap \{(q, y) : y = ||q||^2\}$

$Q(b, \epsilon) = \{q \in \mathbb{R}^d : ||q - s|| \leq (1 + \epsilon)||q - b||\}$

$\alpha \approx 2\epsilon$

$H(b, \epsilon)$, halfspace in \mathbb{R}^{d+1} (note: contains the origin)

Ψ, standard paraboloid in \mathbb{R}^{d+1} (note: independent of b, ϵ)

D, D', b, s, q, q', $Q(b, \epsilon)$, standard paraboloid in \mathbb{R}^{d+1} (note: independent of b, ϵ)
Paraboloid

\[\Psi = \{(q, y) : y = \|q\|^2\} \]
Final Formulation

Paraboloid
\[\Psi = \{(q, y) : y = \|q\|^2\} \]

Halfspaces
\[H(b, \epsilon) = \{(q, y) : \alpha y \geq 2\langle b, q \rangle - \|b\|^2\} \]
for all \(b \in S \)

[can compute using \(S \) and \(\epsilon \)]
Final Formulation

Paraboloid
\[\Psi = \{(q, y) : \ y = \|q\|^2\} \]

Halfspaces
\[H(b, \epsilon) = \{(q, y) : \ \alpha y \geq 2 \langle b, q \rangle - \|b\|^2\} \]
for all \(b \in S \)

Halfspaces
\[G(t, \epsilon) = \{(q, y) : \ \alpha' y \geq 2 \langle t, q \rangle - \|t\|^2\} \]
for all \(t \in L_s \)

Goal
It suffices to make sure that
\[\subseteq \]
Preprocessing

initialize the weight of all sites to 1

repeat

pick a (weighted) random sample $R \subseteq S$ of size $C_1 cd \log c$

if $\bigcap_{t \in R} G(t, \epsilon/2) \cap \Psi \subseteq \bigcap_{b \in S} H(b, \epsilon)$

return R

else

$v = \text{a violating vertex of } \bigcap_{t \in R} G(t, \epsilon/2) \cap \Psi$

double the weight of $V = \{t \in S \setminus R : v \notin G(t, \epsilon/2)\}$

The sample size depends on c, the \textbf{optimal} size of L_s

Next we bound c using polytope approximation
Size of L_S

Exhibit a list of size $O\left(\epsilon^{-(d-1)/2} \log \frac{\rho}{\epsilon}\right)$, where $\rho = \frac{\max_{s,t \in S} ||s-t||}{\min_{s,t \in S} ||s-t||}$

Lemma For any convex and compact set $P \subset \mathbb{R}^d$ contained in the unit sphere and any $\epsilon \in (0, 1)$, there is a polytope $P' \supset P$ with at most $O(\epsilon^{(d-1)/2})$ facets which is in the ϵ-neighborhood of P.

Note Always "outer" approximation
Size of L_S

Exhibit a list of size $O\left(\epsilon^{-(d-1)/2} \log \frac{\rho}{\epsilon}\right)$, where $\rho = \frac{\max_{s, t \in S} ||s-t||}{\min_{s, t \in S} ||s-t||}$

Lemma For any convex and compact set $P \subset \mathbb{R}^d$ contained in the unit sphere and any $\epsilon \in (0, 1)$, there is a polytope $P' \supset P$ with at most $O(\epsilon^{(d-1)/2})$ facets which is in the ϵ-neighborhood of P.

Note Always "outer" approximation

Recall We need an "inner" approximation of this
Size of L_s

Want an "inner" approximation of this
Size of L_s

Want an "inner" approximation of this using only these hyperplanes as potential facets

"stretching" ≈ 2 times
Size of L_S

Want an "inner" approximation of this using only these hyperplanes as potential facets

"stretching" ≈ 2 times

Goal: Subsample (as much as possible) the hyperplanes on the right so that
Size of L_s

Straightforward application of Dudley’s Theorem does not work!
The value of ϵ dictated by the smallest scale.
Size of L_s

Solution: height-dependent slicing, per-slice Dudley approximations

Slices have

- geometrically increasing height
- "constant" gap
Size of L_S

\[d_m > \frac{4}{\alpha^2} \max_{b \in S} ||b||^2 \]

\[d_i = \frac{3}{2} d_{i-1} \]

\[d_0 = \frac{1}{4} \min_{b \in S} ||b||^2 \]

Number of slices
\[m = O(\log(\rho/\alpha)) \]

Recall: ρ – spread

Complexity (number of facets) of approximation \(O(\epsilon^{-(d-1)/2}) \) per slice

Key fact
Red and blue projections into the q-hyperplane within one slice are at least a factor of $1 + \epsilon$ apart, so the same ϵ can be used in all approximations.
Clarkson’s Algorithm: Summary

- Improved query time at the expense of specifying ϵ in advance
- $O(\epsilon^{-(d-1)/2})$ instead of $O(\epsilon^{-d})$
- Express the condition on L_s in the form of $P(S, \epsilon) \supseteq Q(L_s, \epsilon/2)$
- Preprocessing by iterative random sampling from S and checking the containment condition
- Query procedure using
 - top-down search on a skip list
 - iterative improvement algorithm within one level