
Efficiently Approximating the Minimum-Volume
Bounding Box of a Point Set in Three Dimensions ∗

Gill Barequet
Faculty of Computer Science,

The Technion—IIT,
Haifa 32000, Israel

Sariel Har-Peled
Department of Computer

Science, DCL 2111; University of Illinois;
1304 West Springfield Ave.; Urbana, IL 61801; USA

June 30, 2001

Abstract

We present an efficient O(n + 1/ε4.5)-time algorithm for computing a (1 + ε)-
approximation of the minimum-volume bounding box of n points in R3. We also present
a simpler algorithm (for the same purpose) whose running time is O(n log n+n/ε3). We
give some experimental results with implementations of various variants of the second
algorithm. The implementation of the algorithm described in this paper is available
online [Har00].

1 Introduction

In this paper we give efficient algorithms for solving the following problem:

Given a set S of n points in R3 and a parameter 0 < ε ≤ 1, find a box that encloses
S and approximates the minimum-volume bounding box of S by a factor (1 + ε).

∗Work on this paper by the first author was done while he was affiliated with the Center for Geometric
Computing, Dept. of Computer Science, Johns Hopkins University, Baltimore, MD 21218. A preliminary
version of this paper appeared in [BH99], and the final version appeared in [BH01] Work of the first author
has been supported by the U.S. Army Research Office under Grant DAAH04-96-1-0013. Work of the second
author has been supported by a grant from the U.S.-Israeli Binational Science Foundation.

1

We are not aware to any previously-published algorithm that solves this problem.
Three-dimensional boxes which enclose sets of points are used for maintaining hierarchical

partitioning of sets of points. These data structures have important applications in computer
graphics (e.g., for fast rendering of a scene or for collision detection), statistics (for storing
and performing range-search queries on a large database of samples), etc. From a top-
down viewpoint, the problem in such applications is divided into two (admittedly, related)
problems of splitting a given set of points into two (or more) subsets, and of computing a
nearly-optimal box (or another generic shape) that encloses each subset. In this paper we
concentrate on the second problem.

Numerous heuristics have been proposed for computing a box which encloses a given set
of points. The simplest heuristic was naturally to compute the axis-aligned bounding box
(AABB) of the point set. Two-dimensional variants of this heuristic include the well-known
R-tree, the packed R-tree [RL85], the R+-tree [SRF87], the R∗-tree [BKSS90], etc. [HKM95]
use a minimum-volume AABB trimmed in a fixed number of directions for speeding up
collision detection. [GLM96] implement in their RAPID system the OBB-tree (a tree of
arbitrarily-oriented bounding boxes), where each box which encloses a set of polygons is
aligned with the principal components of the distribution of polygon vertices. A similar idea
is used by [BCG+96] for the BOXTREE. The latter work suggests a few variants, in which
the computed box is aligned with only one principal component of the point distribution
(e.g., the one that corresponds to the smallest or largest eigenvalue of the covariance matrix
of the point coordinates), and the other two directions are determined by another method
(e.g., by computing the exact minimum-area bounding rectangle of the projection of the
points into a plane orthogonal to the first chosen direction). Other generic shapes, such as a
sphere [Hub95], a cone [Sam89], or a prism [FP87, BCG+96] were also used for maintaining
a hierarchical data structure of point containers. Most of these heuristics require O(n)
time and space for computing the bounding box (or another shape) but do not provide a
guaranteed value (approximation factor of the optimum) of the output.

An algorithm of [BS97] solves a similar problem, in which the n points are to be contained
in two axis-aligned boxes, and the goal is to minimize the volume (or any other monotone
measure) of the larger box. Their algorithm requires O(n2) time.

O’Rourke presented the only algorithm (to the best of our knowledge) for computing
the exact arbitrarily-oriented minimum-volume bounding box of a set of n points in R3.
His algorithm requires O(n3) time and O(n) space. In this paper we present the first two
(1 + ε)-approximation algorithms for the minimum-volume bounding-box problem. Both
algorithms are nearly linear in n. The running times of these algorithms are O(n + 1/ε4.5)
and O(n log n+ n/ε3).

The paper is organized as follows. In Section 2 we give the notations and definitions
used throughout the paper. In Sections 3 and 4 we present the two (1 + ε)-approximation
bounding-box approximations algorithms. In Section 5 we presents experimental results. We
end in Section 6 with some concluding remarks.

2 Notations and Definitions

We first present the notation used in this paper.

2

We denote the origin of coordinates by o and the unit cube by C. Throughout the pa-
per we denote by Q a point set in two dimensions, and use S to denote a similar set in
three dimensions. Unless specified otherwise, the set is assumed to contain n (or a com-
parable number of) points. We denote by CH(Q) (resp., CH(S)) the 2-dimensional (resp.,
3-dimensional) convex hull of Q (resp., S). The symbol P is used for denoting a convex
polyhedron in three-space.

The symbols R and B are used for rectangles and boxes, respectively. The notation B(S)
is used for any bounding box of a point set S. We also use the notation B = (b1, b2, b3), where
b1, b2, b3 are three orthogonal vectors in R3 having the directions and sizes of the edges of B.
The operators Area(R) and Vol(B) denote the area of R and the volume of B, respectively.

We denote by Ropt(Q) the minimum-area bounding rectangle of Q and by Bopt(S) the
minimum-volume bounding box of S.1 Let V be a set of orthogonal vectors in R3. We denote
by Bopt(S, V) for the minimum-volume bounding box of S whose set of directions contains
V . We denote some constant approximation of the minimum-volume bounding box of S
(for some predefined positive constant) by B∗(S). (Such a box is computed in Lemmas 3.4
and 3.6—see Section 3.)

Finally, given a box B = (b1, b2, b3) in R3, the grid of points spanned by B is

Grid(B) =
{
i1b1 + i2b2 + i3b3

∣∣∣ i1, i2, i3 ∈ ZZ
}
.

Let G = Grid(B). Denote by

BG(i,j,k) =

x1b1 + x2b2 + x3b3

∣∣∣∣∣∣
i ≤ x1 ≤ i+ 1,
j ≤ x2 ≤ j + 1,
k ≤ x3 ≤ k + 1,

i, j, k ∈ ZZ


the (i, j, k)-th cell of G. For a prescribed constant d > 0, let

G(B, d) =
{
i1b1 + i2b2 + i3b3

∣∣∣ i1, i2, i3 ∈ ZZ, |i1|, |i2|, |i3| ≤ d
}

be the set of points of G whose L∞-distance (along the directions b1, b2, b3) from o is at most
d.

3 An Efficient Approximation Algorithm

In this section we present our main approximation algorithm to the minimum-volume bound-
ing box of a set of points in three dimensions.

3.1 Approximating the Diameter

First we need a good-enough approximation of the diameter of the point set.

1Since we are interested in the area (or volume) of the object, we may pick an arbitrary minimum rectangle
(or box) if several exist.

3

Definition 3.1 The diameter of a point set S ∈ R3 (denoted by D(S)) is the distance
between the two furthest points of S. That is, D(S) = maxs,t∈S|st|.

We can easily find a pair of points in S whose mutual distance is a 1/
√
d-approximation

of the diameter of S:2

Lemma 3.2 Given a point set S in Rd (for a fixed d), one can compute in O(n) time a pair
of points s, t ∈ S, such that |st| ≤ D(S) ≤

√
d|st|.

Proof: Let B be the minimum axis-parallel box containing S, and let s and t be the
points in S that define the longest edge of B, whose length is denoted by l. By the diameter
defn, |st| ≤ D(S), and clearly, D(S) ≤

√
d l ≤

√
d|st|. The points s and t are easily found

in O(nd) time. Since d is fixed, this is actually O(n) time.
In particular, we can approximate in linear time the diameter of a point set in three

dimensions by a factor of 1/
√

3. (In fact, one can find in linear time a (1/
√

3)-approximation
of the diameter in any dimension; see [EK89].)

Actually, we can find any arbitrarily-good approximation of the diameter. Since we were
not able to find any reference with a proof of the following folklore lemma (see [Har99] for a
similar result), we include an easy proof of it here.

Lemma 3.3 Given a set S of n points in Rd (for a fixed d) and ε > 0, one can compute in
O(n+ 1/ε2(d−1)) time a pair of points s, t ∈ S such that |st| ≥ (1− ε)D(S).

Proof: LetB be the minimum axis-parallel box containing S, and let G = Grid((ε/(2
√
d))B).

For a point x ∈ Rd, denote by xG the closest point of G to x. Define SG =
{
xG

∣∣∣ x ∈ S}.

Finally, let l be the length of the longest diagonal of a cell of G. Clearly, l ≤ (ε/2)D(S). For
every pair of points x, y ∈ S we have

|xy| − l ≤ |xGyG| ≤ |xy|+ l.

Thus, D(SG) ≥ D(S)− l. Let s, t be the two points in S for which sG, tG realize the diameter
of SG. Now,

|st| ≥ |sGtG| − l = D(SG)− l ≥ D(S)− 2l ≥ (1− ε)D(S).

The set SG can be computed in O(n) time (where the hidden constant of proportionality
contains a factor d). The cardinality of SG is O(1/εd). Thus, we can compute the diameter
of SG (in a brute force manner) in O(1/ε2d) time. The two points of S that correspond to the
diameter of SG are, by the above analysis, the sought (1− ε)-approximation of the diameter
of S.

Any point of SG that lies between two other points of SG (along one of the axes) can not
correspond to a point of S that defines D(S). By removing all such points in O(n) time we
can consider only O(1/εd−1) points. Hence the running time of the algorithm is improved to
O(n+ 1/ε2(d−1)).

The two points of SG that realize its diameter must be vertices of the convex-hull of SG.
Thus, the running time of the algorithm of Lemma 3.3 can be further improved by first

2 Note that we approximate the diameter from below, while we approximate the minimum-volume bound-
ing box from above.

4

computing the set of vertices of CH(SG), denoted by SCH(SG). Set h = |SCH(SG)|. [And63]
showed that h = O(1/ε(d−1)d/(d+1)). For d ≤ 3 we compute SCH(SG) by computing the entire
convex-hull of SG in O(|SG| log |SG|) time. For higher dimensions we use an output-sensitive
algorithm [Cha96]. Let m denote the number of points in SG. Clearly, m = O(1/ε(d−1)).
The time required for computing SG is

O
(
m logd+2 h+ (mh)1− 1

bd/2c+1 logO(1) m
)

= O
(
m

2d
d+1

)
= O

((
1

ε

) 2d(d−1)
d+1

)
.

Computing the diameter of SCH(SG) (in a brute-force manner) requiresO(h2) = O
(

(1/ε)
2d(d−1)
d+1

)
time. Overall, the running time of the algorithm of Lemma 3.3 can be improved toO

(
(1/ε)

2d(d−1)
d+1

)
.

We can do even better in three dimensions if we are willing to sacrifice simplicity. In this
case we compute the exact diameter of CH(SG) in O((1/ε3/2) log (1/ε)) time [CS89]. Overall,
we compute a (1− ε)-approximation of the diameter of S ∈ R3 in O(n + (1/ε3/2) log (1/ε))
time.

3.2 Computing an Approximating Box

Let Q be a set of n points in R2. Computing Ropt(Q) can be done in O(n log n) time [Tou83].
(Hence, given a set S of n points and a direction v in R3, one can compute Bopt(S, {v}) in
O(n log n) time.) The bottleneck of the cited algorithm is the computation of CH(Q); when
the latter is given in advance, Ropt(Q) can be computed in optimal Θ(n) time.

Lemma 3.4 Given a set S of n points in R3, one can compute in O(n) time a bounding box
B(S) with Vol(Bopt(S)) ≤ Vol(B(S)) ≤ 6

√
6 Vol(Bopt(S)).

Proof: By using the algorithm of Lemma 3.2 we compute in O(n) time two points s, t ∈ S
which form a (1/

√
3)-approximation of the diameter of S. Let H be a plane perpendicular

to st, and let Q be the orthogonal projection of S into H.
Now, by using the algorithm of Lemma 3.2 again, we compute in O(n) time two points

s′, t′ ∈ Q (see Figure 1) for which
√

2|s′t′| ≥ D(Q). Let µ be a direction perpendicular to
st and s′t′. We claim that the box B∗ = Bopt(S, {st, s′t′, µ}) is a (6

√
6)-approximation of

Bopt(S).
Indeed, let R be the minimum-area bounding rectangle of Q in the directions s′t′ and µ,

let ω be the length of the edge of R in the direction µ, and let u, v be the two points of Q
lying on the two edges of R parallel to s′t′. Clearly,

Area(R) ≤ ωD(Q) ≤
√

2ω|s′t′|.

On the other hand, the quadrilateral F = s′ut′v is contained in CH(Q), and its area is
|s′t′|ω/2.

Set S = CH(S). Let sH be the orthogonal projection of s into H, and let T1, . . . , Tm be
a triangulation of CH(Q) (within H) in which all the triangles share the vertex sH .

We next show that Vol(S) ≥ Area(CH(Q))|st|/3. The outer edge p′iq
′
i of Ti is a projection

of a pair of points pi, qi ∈ S (for i = 1, . . . ,m) into H. Thus, each triangle Ti corresponds

5

v

µ

u
t′

s′

Q

ω

R

Figure 1: The convex hull of the projection of S contains a large quadrangle

to a tetrahedron Ti = CH ({pi, qi, s, t}) (for i = 1, . . . ,m). These tetrahedra are pairwise
disjoint in their interiors, and

Vol(Ti) = Vol(CH({pi, qi, s, t})) =
Area(Ti)|st|

3
,

where we use the fact that the volume of a tetrahedron does not change when we translate
one of its vertices u in a direction parallel to an edge (of the tetrahedron) that does not
coincide with u (or, in more generality, parallel to the opposite face of u). We thus have

|s′t′||st|ω
6

=
Area(F)|st|

3
≤ Area(CH(Q))|st|

3

=
(
∑m

i=1 Area(Ti))|st|
3

=
m∑
i=1

Vol(Ti) ≤ Vol(S).

On the other hand,

Vol(S) ≤ Vol(B∗) ≤ Area(R)D(S) ≤
√

2ω|s′t′|
√

3|st|.

Since S ⊆ B∗, we have Vol(S) ≤ Vol(B∗) ≤ 6
√

6 Vol(S), as required.
Note that the approximation factor for the diameter obtained in Lemma 3.4 can be

improved by using better approximation schemes, e.g., the algorithm of Lemma 3.3. In any
case a better constant approximation factor will be reflected by a higher constant hidden in
the big-Oh notation of the running time.

The algorithm of Lemma 3.4 can be extended to a d-dimensional space by choosing the
direction of the exact diameter v of the point set S as one direction of the bounding box,
projecting the points to a hyperplane H ∈ Rd−1 perpendicular to v, solving recursively the
(d − 1)-dimensional problem in H, and outputing the Cartesian product of the (d − 1)-
dimensional solution and v. The volume of the computed box is at most d! times the volume
of the optimal (minimum-volume) bounding box of S.3 Moreover, the side lengths of the
bounding box are found in decreasing order. [FL95] use a similar method for visualizing a

3 Here we can trade time for approximation quality. By investing less time we can compute a (1/
√

2)-
(resp., (1/

√
3)-) approximation of the diameter in two (resp., k, for 3 ≤ k ≤ d) dimensions, and obtain a (

√
2·

3(d−2)/2d!)-approximation of Bopt(S). By investing even less time we can compute a (1/
√
k)-approximation

of the diameter in k dimensions (for 2 ≤ k ≤ d), and obtain a (d!)3/2-approximation of Bopt(S).

6

set of points in a high-dimensional space. They compute in a similar manner the first two
(or three) directions, project the points into the subspace spanned by these directions, and
display the projected points in this subspace.

We next show that a large-enough convex polyhedron contained in the unit cube C must
contain a large-enough axis-parallel cube.

Lemma 3.5 Let P be a convex polyhedron with the properties that P ⊆ C and Vol(P) ≥
1/15. Then there exists a translation v ∈ R3 for which 1

107
C + v ⊆ P .

Proof: It is easy to verify that the area of the intersection of C with any plane is at most
3π/4. (Indeed, the intersection area is maximized when the plane passes through the center
of C, and such a cross-section is contained in a disk of radius

√
3/2.) Hence,

Width(P) ≥ Vol(P)/

(
3π

4

)
≥ 4

45π
,

where Width(P) is the minimum distance between two parallel planes supporting P . Let
r(P) be the radius of the largest ball K inscribed in P . It is known [GK92] that r(P) ≥
Width(P)/(2

√
3). This implies r(P) ≥ 2/(45

√
3π). Finally, K inscribes an axis-parallel

cube C ′ whose side is of length (2/
√

3)r(P) ≥ 1/107, and C ′ ⊆ K ⊆ P , as asserted.
Let A and B be two sets in R3. The Minkowski sum of A and B is the set A ⊕ B ={

a+ b
∣∣∣ a ∈ A, b ∈ B}. Given a constant c > 0 and a box B ∈ R3, it is easily verified that

B ⊕ (c ·B) is also a box whose volume is (1 + c)3 Vol(B).
The idea of our main algorithm is approximating CH(S) by a low-complexity convex

polyhedron P ⊇ CH(S), followed by computing (exactly) Bopt(P). The polyhedron P is
chosen such that Bopt(P) is an (1 + ε)-approximation of Bopt(S).

First we need a combined version of Lemmas 3.4 and 3.5:

Lemma 3.6 Let S be a set of n points in R3. One can compute in O(n) time a bounding box
B∗(S) such that Vol(Bopt(S)) ≤ Vol(B∗(S)) ≤ 15 Vol(Bopt(S)) and there exists a translation
v ∈ R3 for which 1

107
B∗(S) + v ⊆ CH(S).

Proof: Let B = B∗(S) be the bounding box of S computed by Lemma 3.4. Let T and t be
a nonsingular linear transformation and a translation, respectively, such that T (B) + t = C.
Careful observation of the construction in Lemma 3.4 shows that Vol(T (CH(S))) ≥ 1

15
. Hence

by Lemma 3.5 there exists a translation v′ such that 1
107

(T (B) + t) + v′ ⊆ T (CH(S)) + t,
where we use the fact that linear transformations preserve volume order. Therefore 1

107
B +

T−1(v′ − 106
107
t) ⊆ CH(S), and the claim follows.

Note that this lemma is true even if S is a planar set, in which case the minimum-area
bounding rectangle provided by Lemma 3.4 degenerates to a segment, and the volume of the
computed bounding box is 0. This guarantees that the approximation algorithm (described
below) produces a degenerate box (of volume 0) for a degenerate (planar) input point set.

We are now ready to present the approximation algorithm for Bopt(S).
Let B = B∗(S) be the bounding box of S computed by Lemma 3.6, and let Bε be a

translated copy of ε
428
B centered at o. In addition, define S⊕ = CH(S) ⊕ Bε and G =

Grid(1
2
Bε). We approximate S on G. For each point p ∈ S let G(p) be the set of eight

7

vertices of the cell of G that contains p, and let SG = ∪p∈SG(p). Define P = CH(SG). Clearly,
CH(S) ⊆ P ⊆ S⊕. Moreover, one can compute P in O(n + (1/ε2) log (1/ε)) time. On the
other hand, P ⊆ B ⊕ Bε. The latter term is a box which contains at most k = 860/ε + 4
grid points along each of the directions set by B, so k is also an upper bound for the number
of grid points contained by P in each direction. [And63] showed that the complexity of P
is O(k3/2) = O(1/ε3/2). We exploit this result in the analysis of the running time of the
algorithm. Finally, we compute Bopt(P) exactly.

It remains to show that Bopt(P) is a (1 + ε)-approximation of Bopt(S). Let Bε
opt be a

translation of ε
4
Bopt(S) that containsBε. (The existence ofBε

opt is guaranteed by Lemma 3.6.)
Thus, P ⊆ CH(S)⊕Bε ⊆ CH(S)⊕Bε

opt ⊆ Bopt(S)⊕Bε
opt. Since Bopt(S)⊕Bε

opt is a box, it
is a bounding box of P and therefore also of CH(S). Its volume is

Vol(Bopt(S)⊕Bε
opt) =

(
1 +

ε

4

)3

Vol(Bopt(S)) < (1 + ε) Vol(Bopt(S)),

as desired. (The last inequality is the only place where we use the assumption ε ≤ 1.)
To recap, the algorithm consists of the four following steps:

1. Compute the box B∗(S) (see Lemma 3.6) in O(n) time.

2. Compute the point set SG in O(n) time.

3. Compute P = CH(SG) in O(n+ (1/ε2) log (1/ε)) time. This is done by computing the
convex hull of all the extreme points of SG along vertical lines of G. We have O(1/ε2)
such points, thus computing their convex hull takes O((1/ε2) log(1/ε)) time.

4. ComputeBopt(P) by the algorithm of [O’R85]. The complexity of P isO(1/ε3/2) [And63],
so this step requires O((1/ε3/2)3) = O(1/ε4.5) time.

Thus we obtain our main result:

Theorem 3.7 Let S be a set of n points in R3, and let 0 < ε ≤ 1 be a parameter. One can
compute in O(n+ 1/ε4.5) time a bounding box B(S) with Vol(B(S)) ≤ (1 + ε) Vol(Bopt(S)).

Note that the box B(S) computed by the above algorithm is most likely not minimal
along its directions. The minimum bounding box of S homothet of B(S) can be computed
in additional O(n) time.

4 An Alternative Practical Algorithm

Unfortunately, the algorithm described in the previous section is perhaps too difficult to im-
plement. In this section we suggest an asymptotically less efficient, but easier to implement,
approximation algorithm for the minimum-volume bounding box problem.

In the algorithm described above we chose an approximation of the diameter of the set S
as a “favorable” direction v and computed Bopt(S, {v}), which served for the defn of the grid
G. Then we expanded CH(S) (which was not computed explicitly) into a low-complexity

8

Algorithm GridSearchMinVolBbx (S, ε)
Input: A set S of n points in R3, and a parameter 0 < ε ≤ 1.
Output: A (1 + ε)-approximation of Bopt(S).

begin
Compute CH(S);
Compute B∗(S); /* The box generated by Lemma 3.6 */
Compute BG = G(B∗(S), c/ε); /* Refer to the text for the value of c */
Set min_vol :=∞ and v∗ := undefined;
for v ∈ BG do

Compute B = Bopt(S, {v});
if min_vol > Vol(B) then do

Set min_vol := Vol(B) and v∗ := v;
od

end for
Return Bopt(S, {v∗});

end GridSearchMinVolBbx

Figure 2: An exhaustive grid-based search algorithm for approximating Bopt(S)

grid polyhedron P , and computed Bopt(P) exactly. We will next show that some grid point
v∗ ∈ G is itself favorable in the sense that Bopt(S, {ov∗}) is a (1 + ε)-approximation of
Bopt(S). Furthermore, the point v∗ is close enough to the origin of G so that we can perform
an exhaustive search for this point. For this purpose we will compute CH(S) explicitly and
output Bopt(S, {ov∗}) as the sought approximation.

The approximation algorithm is depicted in Figure 2. In a nutshell, the algorithm com-
putes B∗(S), builds the corresponding grid G, and computes the box Bopt(S, {v}) for all
the grid points v ∈ G close enough to o. The overall running time of the algorithm is
O(n log n+ n/ε3). We next prove the correctness of the algorithm and (implicitly) compute
the constant c which it uses.

Let B∗(S) be, as before, the bounding box of S computed by Lemma 3.6. Define the
grid G = Grid(cεB∗(S)). The set of directions induced by BG (points computed by the
algorithm) is a finite subset of G. Let m = max (d4/εe , 6). Also, let B1/m(S) be a translation

of 1
m
Bopt(S) centered at o, and let B = Bopt(S) ⊕ B

1/m
opt (S). We assume without loss of

generality that B is axis parallel, its minimum in all axes is o, and that the longest edge of
B is parallel to the z axis. Set δ = 1/(10m + 20), and define a second grid M = Grid(δB).
(The latter grid plays a role only in proving the correctness of the algorithm but not in the
algorithm itself.) Lemma 3.6 tells us that the constant c may be chosen small enough so as
to make the interior of every cell of M contain at least one grid point of G.

Is it fairly easy to prove that:

Lemma 4.1 Let R and H be a rectangle and a plane, respectively, in R3. There exists a
rectangle R′ ⊂ H that contains the orthogonal projection of R into H, such that Area(R′) ≤
Area(R).

Our next goal is to show that there exist two G-grid points, where the minimum-volume
bounding box of S perpendicular to the direction defined by these points is a good ap-

9

���������
	��

�

� ���

�������� ��� ���

���

��� ��
!#"

$&%
$

'

(

Figure 3: The construction used in Theorem 4.3

proximation of Bopt(S). (Note that in the grid-search algorithm the first point is actually
o.)

Lemma 4.2 Let p and q be points of G ∩ BM
(0,0,5) and G ∩ BM

(0,0,20m+15), respectively. Then

Bopt(S, {pq}) is a (1 + ε)-approximation of Bopt(S).

Proof: Refer to Figure 3. Denote by Hp and Hq the two planes that pass through p and
q, respectively, and are perpendicular to pq. Also denote the angle between pq and the z+

axis by α. By construction, the direction pq is almost vertical: A simple calculation shows
that tan(α) ≤

√
2/(10m). Let Hxy

p be the xy-parallel plane that passes through p, let r ∈ Hp

be an arbitrary point for which |pr| ≤ 2|pq|, and let r′ be the orthogonal projection of r into
Hxy
p .

Then,

|rr′| ≤ |pr| tan(α) ≤ 2
√

2|pq|
10m

≤ 3|pq|
10m

≤ 3|b1|
10m

≤ 4|b1|
10m+ 20

= 4δ|b1|,

where we use the fact that 3/(10m) ≤ 4/(10m+20) if and only if m ≥ 6, which is guaranteed.
This implies that Hp cannot intersect Bopt(S) since the vertical distance between Hp and
Hxy
p (for such a point r) is less than 4δ|b1| (four cells of M), whereas the vertical distance

between Hxy
p and the bottom of Bopt(S) is at least 4δ|b1|. Similarly, the plane Hq cannot

intersect the box Bopt(S). The same argument shows that Hp and Hq intersect only the
vertical edges of B but do not intersect its top and bottom faces.

LetA be the orthogonal projection of Bopt(S) into Hp (along pq), and let V be the product
of A and pq (that is, a prism whose base is A). It is easy to verify that Bopt(S) ⊆ V ⊆ B.
Obviously, the rectangle R = B ∩ Hxy

p contains the set V ∩ Hxy
p . Moreover, according to

10

Lemma 4.1 the orthogonal projection of R into Hp is contained in a rectangle R′ ∈ Hp such

that Area(R′) ≤ Area(R). Since V ∩Hxy
p ⊆ R, we also have A ⊆ R′. Let B̂ be the box with

R′ as its base and the opposite face lying on Hq. Clearly, S ⊆ Bopt(S) ⊆ V ⊆ B̂. Finally,
we have

Vol(B̂) = |pq|Area(R′) ≤ |b1|Area(R) ≤ Vol(B) ≤ (1 + ε) Vol(Bopt(S)).

Since Vol(B̂) ≥ Vol(Bopt(S, {pq})), the latter boxBopt(S, {pq}) is also a (1+ε)-approximation
of Bopt(S).

We complete this discussion by showing that ~pq is indeed “short,” namely, that |pq|∞
(measured by G-grid units) is small. Intuitively, this follows from the fact that the grid sizes
of M and G are comparable up to a multiplicative constant. By Lemma 3.5 we have that a
copy of the unit box of M (that is, δB), scaled down by a constant factor and translated, is
contained by the unit box of G (that is, cεB∗(S)). In particular, this implies that every grid
box of M is covered by a constant number of grid boxes of G. In addition, the segment pq
is contained in ∪20m+15

i=5 BM
(0,0,i), whose height (size along z) is O(1/ε). Thus, the segment pq

can be covered by O(1/ε) grid boxes of G. Hence, all the coordinates of q − p (in G units)
are O(1/ε), where the constant of proportionality hidden in the big-Oh notation is c (the
constant used by the algorithm). We thus establish the following theorem:

Theorem 4.3 Let S be a set of n points in R
3, and let 0 < ε ≤ 1 be a parameter.

One can compute in O(n log n + n/ε3) time a bounding box B(S) with Vol(B(S)) ≤ (1 +
ε) Vol(Bopt(S)).

The algorithm described above may be too slow to use in practice because the constant of
proportionality hidden in the big-Oh notation (affected by the value of c) may be too large.
However, it suggests the heuristic of computing the bounding boxes Bopt(S, {v}) induced by
directions defined by grid points of G “close” to o. Theorem 4.3 implies that the higher the
bound on the “length” of v is, the better the approximation is.

5 Experimental Results

We have implemented software that computes the exact 2-dimensional minimum-area bound-
ing rectangle of a planar point set (by computing its convex hull and then applying a rotating-
calipers algorithm). Based on this tool we have implemented software that computes the
exact 3-dimensional minimum-volume bounding box of a spatial point set, one of whose
directions is given. We have used the latter tool for implementing several approximation
heuristics for the minimum-volume bounding box, and report here on several of them. The
entire software was implemented in plain C and it runs under any Unix-like operating sys-
tem. The running times reported here were measured in a Linux environment on a 200-MHz
Pentium-Pro machine. The software consists of about 1,500 lines of code.

It was easy to observe that for any bounding box B(S), one can always “locally” im-
prove (decrease) the volume of the box by projecting it into a plane perpendicular to one
of the directions of B(S), followed by computing the minimum-area bounding rectangle of
the projected set in that plane, and by using this rectangle as the base of an improving

11

bounding box of S. Our experimental results revealed many examples in which this proce-
dure converges to a local (but not a global) minimum-volume bounding box. Nevertheless,
this procedure improves (by a small amount) the solutions produced by the approximation
algorithms described in this paper. We performed each experiment twice, without and with
this solution-improving step.

Here are three examples (out of the many examples we experimented with) of the per-
formance of the heuristics. Figure 4(a.1) shows a rotated version of the set

S = {(−1,−0.1, 0), (−1, 0.1, 0), (1, 0,−0.1), (1, 0, 0.1)} .

(The points are displayed as small triangles.) Figures 4(a.2) and 4(a.3) show B∗(S) (which
is also optimal among all boxes aligned with some diagonal of CH(S)), and the improved
B∗(S)-G(20) (see below), respectively. Figure 4(b) shows a set S of 48 arbitrary points. The
diameter of the set is shown as a nearly-vertical line segment. The figure shows B∗(S) (the
nearly-vertical box) and the minimum-volume bounding box of S among those aligned with
some hull diagonal. Figure 4(c) shows the same types of boxes bounding a set of 100 points
which were randomly and uniformly selected on the unit sphere.

Table 1 shows the volumes of several bounding boxes of the three spatial sets, and
the corresponding running times of our software. The box B∗(S) is the minimum-volume
bounding box aligned with the diameter of the set S. The “all-pairs” box is obtained by
minimizing the volume of all the boxes aligned with directions which connect some two points
of S. The suffix “-G(k)” stands for checking all the boxes aligned with directions obtained
by connecting the origin o with a grid point whose L∞ norm is at most k. The table reports
results for Grid(B∗(S)) and for the regular Cartesian grid. The column entitled “MVBB(v)”
details the number of calls to the function that computes Bopt(S, {v}).

Note that although the more laborious heuristics require much time to run, some of the
faster heuristics perform reasonably well in practice. For example, the B∗(S)-G(5) variant
combined with the improvement step produces good approximating boxes and runs fast.
Moreover, this heuristic performs considerably better than the uniform-grid heuristic for
“long and skinny” sets of points.

6 Conclusion

In this paper we present an efficient algorithm for approximating the minimum-volume
bounding box of a point set in R3. We also present a simpler algorithm which we im-
plemented and experimented with on numerous three-dimensional point sets.

Jeff Erickson pointed out in a personal communication that it was possible to reduce
the O(1/ε4.5) term in the running time of the first algorithm to O(1/ε3) (in the cost of
adding an O(n log n) term) by using Dudley’s method [Dud74, AHSV97]. The main idea is
to scale down the space so as to transform B∗(S) to a unit cube. There one computes a
(cε)-approximation (for a suitable constant c) of CH(S) and scales up this approximating
polyhedron back to the original space. Similarly to our argumentation in Section 3, one
can show that the minimum-volume bounding box of the scaled-up polyhedron is a (1 + ε)-
approximation of the minimum-volume bounding box of S. This version of the algorithm
requires O(n log n+ 1/ε3) time.

12

(a.1) Points (S)

(a.2) B∗(S) (a.3) Improved B∗(S)-G(20)

(a) 4 points

(b) 48 points (c) 100 points

Figure 4: Bounding boxes of three spatial point sets

13

Calls to Time
|S| Distribution Box Volume MVBB(v) Per call Total

4 B∗(S) 0.07980 1 (unreliable) 0
All pairs 0.07980 1 (unreliable) 0
B∗(S)-G(2) 0.03995 23 (unreliable) 0

(Improved) 0.03995 3 (unreliable) 0
B∗(S)-G(5) 0.03995 339 118 µSec 0.04 Sec

(Improved) 0.03995 3 (unreliable) 0
B∗(S)-G(10) 0.03995 3107 113 µSec 0.35 Sec

(Improved) 0.03995 3 (unreliable) 0
B∗(S)-G(20) 0.03995 26019 113 µSec 2.95 Sec

(Improved) 0.03995 3 (unreliable) 0
xyz-G(2) 0.07974 23 (unreliable) 0

(Improved) 0.05267 15 (unreliable) 0
xyz-G(5) 0.05674 339 118 µSec 0.04 Sec

(Improved) 0.04202 27 (unreliable) 0.01 Sec
xyz-G(10) 0.05005 3107 119 µSec 0.37 Sec

(Improved) 0.04009 9 (unreliable) 0
xyz-G(20) 0.04082 26019 119 µSec 3.10 Sec

(Improved) 0.04082 3 (unreliable) 0
48 Arbitrary B∗(S) 168.82 1 (unreliable) 0

All pairs 83.20 1,128 674 µSec 0.76 Sec
B∗(S)-G(2) 87.11 23 (unreliable) 0.02 Sec

(Improved) 83.24 18 (unreliable) 0.01
B∗(S)-G(5) 84.13 339 678 µSec 0.23 Sec

(Improved) 83.39 12 (unreliable) 0
B∗(S)-G(10) 83.28 3,107 679 µSec 2.11 Sec

(Improved) 83.18 9 (unreliable) 0
B∗(S)-G(20) 83.28 26,019 677 µSec 17.61 Sec

(Improved) 83.18 9 (unreliable) 0.01 Sec
xyz-G(2) 83.22 23 (unreliable) 0.02 Sec

(Improved) 83.20 6 (unreliable) 0
xyz-G(5) 83.22 339 678 µSec 0.23 Sec

(Improved) 83.20 6 (unreliable) 0
xyz-G(10) 83.22 3,107 653 µSec 0.23 Sec

(Improved) 83.20 6 (unreliable) 0.01 Sec
xyz-G(20) 83.22 26,019 658 µSec 17.13 Sec

(Improved) 83.11 6 (unreliable) 0
100 Uniform B∗ 7.333 1 (unreliable) 0

on a unit All pairs 6.422 4,950 1,596 µSec 7.99 Sec
sphere B∗(S)-G(2) 6.688 23 (unreliable) 0.04 Sec

(Improved) 6.601 15 (unreliable) 0.02
B∗(S)-G(5) 6.446 339 1,622 µSec 0.55 Sec

(Improved) 6.420 18 (unreliable) 0.03 Sec
B∗(S)-G(10) 6.427 3,107 1,641 µSec 5.10 Sec

(Improved) 6.418 9 (unreliable) 0.02 Sec
B∗(S)-G(20) 6.421 26,019 1,625 µSec 42.27 Sec

(Improved) 6.421 3 (unreliable) 0
xyz-G(2) 6.719 23 (unreliable) 0.04 Sec

(Improved) 6.526 21 (unreliable) 0.03 Sec
xyz-G(5) 6.462 339 1,622 µSec 0.55 Sec

(Improved) 6.418 12 (unreliable) 0.02 Sec
xyz-G(10) 6.440 3,107 1,629 µSec 5.06 Sec

(Improved) 6.422 12 (unreliable) 0.02 Sec
xyz-G(20) 6.426 26,019 1,638 µSec 42.63 Sec

(Improved) 6.419 9 (unreliable) 0.01 Sec

Table 1: Performance of the approximation heuristics
14

The implementation of the algorithm described in this paper is available online [Har00].
We conclude by mentioning two open problems:

• Can one maintain dynamically a (1+ε)-approximation of the minimum-volume bound-
ing box of a moving point set in R3?

• Can one compute efficiently and by a simple algorithm a (1 + ε)-approximation of the
minimum-volume bounding ellipsoid of a point set in R3?

Acknowledgement

The authors wish to thank Pankaj Agarwal, Jeff Erickson, and Micha Sharir for helpful dis-
cussions concerning the problem studied in this paper and related problems. This work is
part of the second author’s Ph.D. thesis, prepared at Tel-Aviv University under the super-
vision of Prof. Sharir.

References

[AHSV97] P.K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadarajan. Approximate
shortest paths on a convex polytope in three dimensions. J. Assoc. Comput.
Mach., 44:567–584, 1997.

[And63] G. E. Andrews. A lower bound for the volume of strictly convex bodies with
many boundary lattice points. Trans. Amer. Math. Soc., 106:270–279, 1963.

[BCG+96] G. Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchell, and A. Tal. BOX-
TREE: A hierarchical representation for surfaces in 3D. Comput. Graph. Forum,
15(3):C387–C396, C484, 1996. Proc. Eurographics’96.

[BH99] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. In Proc. 10th ACM-SIAM
Sympos. Discrete Algorithms, pages 82–91, 1999.

[BH01] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. J. Algorithms, 38:91–109, 2001.

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An
efficient and robust access method for points and rectangles. In ACM SIGMOD
Int. Conf. on Manag. of Data, pages 322–331, 1990.

[BS97] S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-parallel
boxes. In Proc. 9th Canad. Conf. Comput. Geom., pages 33–38, 1997.

[Cha96] T.M. Chan. Output-sensitive results on convex hulls, extreme points, and related
problems. Discrete Comput. Geom., 16:369–387, 1996.

15

[CS89] K. L. Clarkson and P.W. Shor. Applications of random sampling in computational
geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

[Dud74] R.M. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
J. Approx. Theory, 10(3):227–236, 1974.

[EK89] O. Egecioglu and B. Kalantari. Approximating the diameter of a set of points in
the Euclidean space. Inform. Process. Lett., 32:205–211, 1989.

[FL95] C. Faloutsos and K. I. Lin. FastMap: a fast algorithm for indexing, data-mining
and visualization of traditional and multimedia datasets. SIGMOD Record (ACM
Special Interest Group on Management of Data), 24(2):163–174, June 1995.

[FP87] O. D. Faugeras and J. Ponce. An object-centered hierarchical representation for
3-d objects: The prism-tree. Computer Vision, Graphics, and Image Processing,
38:1–28, 1987.

[GK92] P. Gritzmann and V. Klee. Inner and outer j-radii of convex bodies in finite-
dimensional normed spaces. Discrete Comput. Geom., 7:255–280, 1992.

[GLM96] S. Gottschalk, M.C. Lin, and D. Manocha. OBB-tree: A hierarchical structure
for rapid interference detection. In Proc. SIGGRAPH ’96, pages 171–180, 1996.

[Har99] S. Har-Peled. Approximate shortest paths and geodesic diameters on convex
polytopes in three dimensions. Discrete Comput. Geom., 21:216–231, 1999.

[Har00] S. Har-Peled. Source code of program for computing and
approximating the diameter of a point-set in 3d, 2000.
http://www.uiuc.edu/~sariel/papers/00/diameter /diam prog.html.

[HKM95] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Evaluation of collision detection
methods for virtual reality fly-throughs. In Proc. 7th Canad. Conf. Comput.
Geom., pages 205–210, 1995.

[Hub95] P. M. Hubbard. Collision detection for interactive graphics applications. IEEE
Trans. Visualization and Computer Graphics, 1(3):218–230, September 1995.

[O’R85] J. O’Rourke. Finding minimal enclosing boxes. Internat. J. Comput. Inform.
Sci., 14:183–199, 1985.

[RL85] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases
using packed R-trees. Proc. ACM SIGACT-SIGMOD Conf. Principles Database
Systems, pages 17–31, 1985.

[Sam89] H. Samet. Spatial Data Structures: Quadtrees, Octrees, and Other Hierarchical
Methods. Addison-Wesley, Reading, MA, 1989.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index
for multi-dimensional objects. In Proc. 13th VLDB Conference, pages 507–517,
1987.

16

http://www.uiuc.edu/~sariel/papers/00/diameter/diam_prog.html

[Tou83] G. T. Toussaint. Solving geometric problems with the rotating calipers. In Proc.
IEEE MELECON ’83, pages A10.02/1–4, 1983.

17

	Introduction
	Notations and Definitions
	An Efficient Approximation Algorithm
	Approximating the Diameter
	Computing an Approximating Box

	An Alternative Practical Algorithm
	Experimental Results
	Conclusion

