Sublinear Geometric Algorithms

B. Chazelle, D. Liu, A. Magen
Princeton University / University of Toronto

STOC 2003
Overview

What is this paper about?

Sublinear geometric algorithms, for *convex polygons* (2D) and *convex polyhedra* (3D):

- Intersection
- Ray shooting
- Volume approximation
- Shortest path approximation
Sublinear Algorithms

What means sublinear?

• Not reading the complete input
• Hence: *No preprocessing*
• Assuming “standard” input formats
• *Randomized* Las-Vegas algorithms
 • No wrong answers, but run time may vary
 • *Expected* runtimes are sublinear
Overview:

- Basic technique
 - Sublinear search algorithm
 - Optimality
- Polygons / polyhedra intersection
- Ray shooting & applications
- Volume approximation
- Shortest path approximation
Overview:

- Basic technique
 - Sublinear search algorithm
 - Optimality
- Polygons / polyhedra intersection
- Ray shooting & applications
- Volume approximation
- Shortest path approximation

Each new technique builds upon previous techniques.
Search Problem

Successor Search:

- Given a *sorted doubly-linked list* of numbers
- And a search value k
- Find first element greater than k
- List stored in *continuous memory block* (allowing sampling of list elements)
Data Structure

Looks like this:

Memory Layout:
Search Algorithm:

- Pick \sqrt{n} random list elements
- Determine closest predecessor and successor of k (within the random sample)
- Perform plain, linear search towards k (starting from these two elements)
The Search Algorithm (2)

Looks like this:

- list -

- random sample -

- linear search -
Analysis

The Algorithm:

• Takes expected $O(\sqrt{n})$ time.
• This is *optimal*.
Why?

Runtime:

Sampling:

Good case:

Bad case:
Runtime Analysis

Runtime depends on “empty” block around \(\text{succ}(k) \)

Probability of no hit within Factor \(c\sqrt{n} \) of target is \(O(\exp(-c)) \)

\textbf{Hence:} Expected distance \(O(\sqrt{n}) \) after \(\sqrt{n} \) trials.
Optimality

Why can’t we do O(any better)?

The proof employs Yao’s minimax principle:

The expected running time of an optimal deterministic algorithm for any chosen input distribution is a lower bound on the expected running time of the optimal Las Vegas randomized algorithm.
A Lower Bound for an Opt. Determ. Algorithm

Choose the following scenario:

- Input: Random permutation
- Search for last element

What can the algorithm do?

- Op. “A”: Visit neighbor of known node
- Op. “B”: Go to unknown node in memory
Random input:

• Consider the question: How likely is it, to discover one of the last \sqrt{n} elements?

• With every newly visited node, the chance of discovery increases

• After a A-Op’s and b B-Op’s:

\[
\Pr(\text{"saw not last } \sqrt{n} \text{ elem."}) \leq \left(1 - \frac{\sqrt{n} + a + b}{n}\right)^b
\]
Looks like this:

\[\Pr("\text{saw not last } \sqrt{n} \text{ elem.}") \geq \left(1 - \frac{\sqrt{n} + a + b}{n}\right)^b \]

unknown

target: last \(\sqrt{n} \)

new random choice

Pr("no discovery")

no-go
Constructing the Bound (3)

Number of B-Ops:

• Expected value of A and B-op’s until visiting one of the last \sqrt{n} is $O(\sqrt{n})$.

• If last \sqrt{n} elements have not been visited
 ⇒ \sqrt{n} more A-Ops necessary
What’s next?

Now: Construct sublinear geometric algorithms

- Similar basic idea
- All with $O(\sqrt{n})$ time complexity
- Some problems are “more general” than successor-searching

Thus: run-time also \textit{optimal}
Polygon Intersection
Problem Statement

Polygon Intersection:

- Given two polygons A, B
- Encoded as densely stored linked lists of vertices (same as before)
- Do they intersect?
- If so, report one intersection point.
Idea: Employ the same sampling approach

two input polygons

simplified by random subsampling
Idea of the Algorithm

Two step Approach:

(I) test for simplified polys intersection

(II) test potentially overlapping remaining region
First Step:

- Random subsampling
- Choose $O(\sqrt{n})$ sample points
- Compute intersection in linear time
First Step:

• If no intersection found:
 • Compute separating plane
 • Go to step 2
Second Step:

- Compute expected $O(\sqrt{n})$ vertices of A exceeding the separating plane
- Test intersection with simplified B
Second Step (2)

Second Step:

- If no intersection is found:
 - Compute new separating plane
 - Test against corresponding part of B
Second Step:

- If no intersection is found:
 - Compute new separating plane
 - Test against corresponding part of B
Second Step:

- If no intersection is found:
 - Compute new separating plane
 - Test against corresponding part of B
Second Step:

- Report intersection if found
- Otherwise repeat second step
 with A and B exchanged for final answer
Polyhedra Intersection
Intersection of Two Convex Polyhedra

- Same approach as for polygons
- Some additional technical problems...
First Step:

- Simplify Polyhedra
- Take $O(\sqrt{n})$ sample vertices
First Step:

- Test for intersection (lin. programming)
- If no intersection: Compute separating plane
Second Step:

- Compute full resolution part of B which exceeds separating plane
- Test with simplified A
Second Step:

- If no intersection is found:
 Compute new supporting plane...
Second Step:

- Test for intersection with full resolution piece of A on B-side of plane
- If no intersection found: repeat second step with A and B swapped (as for polygons)
Additional Problem for 3D-Polyhedra

- How compute full resolution cut-off pieces?
- Start at a low-res point
- Adjacency search
- Problem: Starting vertex with large out-degree
Solution

Handle Vertices with Large Out-Degree

- First, sample $O(\sqrt{n})$ edges randomly from polyhedron (only global sampling possible!)
- If out-degree larger than $O(\sqrt{n})$, then one can expect to find some of those edges
- Hence: Start linear search at edges closest to plane (c.f. successor search)
- Otherwise (small out-degree): All edges can be searched linearly
Complexity

• The cut-off caps are $O(\sqrt{n})$
 • Intuition: Similar to successor searching
 • Formal proof: See paper
• All other steps are also $O(\sqrt{n})$
• Yields $O(\sqrt{n})$ overall complexity
• The problem is a generalization of successor searching. Hence: *Optimal complexity*.
Ray Shooting & Applications
Ray Shooting

Same Technique Can Handle Ray Shooting:

- Rays are very skinny polyhedra
- Can use the same algorithm
- Computes intersections in $O(\sqrt{n})$ time
- This is also *optimal*
Applications

Point Location

• Point location in Delaunay triangulations
• Shoot vertical ray towards convex hull of \((x, y, x^2 + y^2)\)
• Similar construction also works for Voronoi Diagrams
• Yields point location algorithms with optimal \(O(\sqrt{n})\) complexity
Other Applications

Nearest Neighbor Search:

• Find nearest neighbor in polyhedron to a given point in space in $O(\sqrt{n})$ time

• Uses (slightly) modified polyhedron intersection algorithm
Other Applications (2)

Direction Search

- Find point with maximum projection on a line
- Find point with maximum projection on a line restricting input polyhedron to a plane
- Both in $O(\sqrt{n})$
Volume Approximation
Volume Approximation

The Task:

• Determine volume of polyhedron
• With accuracy up to factor ε

Main Idea:

• Dudley approximation
• Non-uniform rescaling to be able to guarantee ε-precision
Dudley Approximation

Dudley Approximation of Convex Polyhedra

- Given a convex polygon / polyhedron enclosed in a unit sphere
- An approximation of complexity $O\left(\frac{1}{\varepsilon^{(d-1)/2}}\right)$ with max. Hausdorff-distance ε can be constructed
Dudley Approximation (2)

Dudley Approximation of Convex Polyhedra

$O\left(\frac{1}{\varepsilon^{(d-1)/2}}\right)$

uniformly distributed sample points
Dudley Approximation (3)

Dudley Approximation of Convex Polyhedra

find nearest neighbor of each point
Dudley Approximation of Convex Polyhedra

convex hull of “supporting” planes
Dudley Approximation of Convex Polyhedra

convex hull of “supporting” planes

maximum error: ε
(with respect to unit sphere)
Volume Approximation

Volume Approximation using Dudley Construction

• Observation: All steps in Dudley Construction can be performed in $O(\sqrt{n})$ time

• Remaining problem: Poor approximation for skinny polyhedra

bounded absolute error
larger relative volume error
Solution: Non-Uniform Rescaling

1. Original polyhedron
2. Helper polyhedron
3. Enclosed ellipsoid
4. Main axis transform

\[\text{vol.} \geq c \cdot \text{original vol.} \]
Result

Rescaling:

- Enclosed ellipsoid has volume $\geq c \cdot \text{original volume}$
- Volume can be measured with arbitrary, constant accuracy by rescaling

Overall:

- Sublinear operations only
- Overall: $O(\varepsilon^{-1}\sqrt{n})$ running time for ε-approximation of volume
Shortest-Path Approximation
Approx. Shortest Path

The Task:

• Compute *shortest path* between *two surface points* on convex polyhedron

• Approximate up to factor ε

• Allow path to leave surface of polyhedron (otherwise, any path might be of complexity $\Omega(n)$)
How does it work?

Main Idea:

• Same basic idea: Dudley approximation
 • Construct simplified polyhedron
 • Constant number of faces
 ⇒ Can then use standard algorithm to compute shortest path

• Problem: Guaranteeing accuracy (again)

• Solution: Clipping to $O(path-length)$-Box
Using the Dudley Approx.

Dudley Approximation:

- Simplify polyhedron (Dudley)
- Build path along simplified w. std. method
The Problem

Remaining Problem: Relative Accuracy

- ε-approx for long paths
- Larger relative error for short paths
Clipping before Dudleying

- Estimate length of shortest path up to factor 8
- Place box of side length $16 \cdot est$ around start point
- Clip simplified polyhedron to box (additional constraints during computation)
- By scaling ε correspondingly, this guarantees ε-approximation of shortest path
Overall result:

- Can approximate shortest path up to factor $(1 + \varepsilon)$
- Using time $O(\varepsilon^{-5/4} \sqrt{n}) + f(\varepsilon^{-5/4})$ where f is time for exact solution
- Known: $f(k) \in O(k \log^2 k)$
- Authors use modified Dudley construction to achieve given bounds; see paper for details.
Conclusions
Conclusions

Sublinear Algorithms for Geometric Problems

- Convex polygons / polyhedra intersection
- Ray shooting (convex P’s, and similar problems)
- Volume approximation (convex P’s)
- Shortest path approximation (convex P’s)

Properties

- All in $O(\sqrt{n})$
- Techniques are generalizations of the successor searching algorithm