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ting n-Point Con�gurations from theDistribution of Distan
es or AreasMireille Boutin and Gregor KemperFebruary 25, 2003Abstra
tOne way to 
hara
terize 
on�gurations of points up to 
ongruen
e is by 
onsidering thedistribution of all mutual distan
es between points. This paper deals with the question if point
on�gurations are uniquely determined by this distribution. After giving some 
ounterexamples,we prove that this is the 
ase for the vast majority of 
on�gurations.In the se
ond part of the paper, the distribution of areas of sub-triangles is used for 
har-a
terizing point 
on�gurations. Again it turns out that most 
on�gurations are re
onstru
tiblefrom the distribution of areas, though there are 
ounterexamples.Introdu
tionIn this paper, we study a type of shape representation whi
h attempts to 
ombine both the ap-proa
hes of invariant theory and statisti
s. We 
onsider the problem of 
hara
terizing the shapeor, more generally, the geometry of a 
on�guration of points. More pre
isely, we are interested in�nding a good representation for 
on�gurations of points in a ve
tor spa
e modulo the a
tion of aLie group G. The solution we investigate 
onsists in using distributions of invariants of the a
tionof G.Our main motivation 
omes from appli
ations in 
omputer vision. A 
entral problem in imageunderstanding is that of identifying obje
ts from a pi
ture. In that problem, one must take intoa

ount that variations in the position of the obje
t or in the parameters of the 
amera indu
evariations in the image whi
h 
orrespond to group transformations that need to be moded out inorder to establish the 
orresponden
e between two pi
tures of the same obje
t.The obvious way to obtain image features whi
h are not a�e
ted by the a
tion of the group isto use invariants of the group a
tion. However, in order to be able to positively identify any obje
t,we need to �nd a set of invariants whose values 
ompletely 
hara
terize the image of the obje
t upto the a
tion of the group. In other words, we need to �nd a set of invariants su
h that two imagesare in the same orbit if and only if the values of these invariants evaluated on the two images arethe same. Su
h invariants are 
alled separating be
ause they 
an be used to separate the orbits.In traditional approa
hes to obje
t re
ognition (see for example Mundy and Zisserman [7℄), thismethod is 
ommonly used.In the following, we address the 
ase of shapes de�ned by a �nite set of points. This is a
tually animportant 
ase for appli
ations. Indeed for many reasons (e.g. the amount of noise or the nature ofthe data) it is 
ommon to represent an obje
t of interest by a �nite set of points 
alled landmarks.For example, landmarks 
an be de�ned by salient features on the boundary of the image of theobje
t. Spe
i�
ally, one might think of minutiae in �ngerprints, 
orners on edges of ar
haeologi
alsherds, or stellar 
onstellations. In order to re
ognize the obje
t, one thus needs to 
hara
terize thepoint 
on�guration given by the landmarks up to the a
tion of the group.Given a Lie group G a
ting on a ve
tor spa
e V and two sets of n points P1; : : : ; Pn and�P1; : : : ; �Pn 2 V , we want to be able to determine whether there exists g 2 G and a permutation1
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e, a priori, we don't know whether the points are labeled in 
orresponden
e) su
h thatg(Pi) = �P�(i); for all i = 1; : : : ; n:In appli
ations, we are often interested in pi
tures, so V is usually R2 or R3 and the Lie groupG is typi
ally a subgroup of the proje
tive group and depends on how the pi
ture of the obje
twas taken. Examples of important groups in
lude AO(2), the group of rigid motions in the plane(rotations, re
e
tions and translations, sometime also denoted by E(2)), and A(2), the group ofaÆne transformations in the plane, i.e. all translations and linear maps with determinant �1.In prin
iple, this problem 
an indeed be solved using invariants. If we assume that the pointsare distinguishable so we know how to 
orre
tly label them, then all we need to do is to �nd a setof separating invariants of the diagonal a
tion of G on V n,g � (Q1; : : : ; Qn) = (g(Q1); : : : ; g(Qn)) for all g 2 G; and all Q1; : : : ; Qn 2 V:For example, if G = AO(2) the group of Eu
lidean transformations in the plane then two sets oflandmarks P1; : : : ; Pn and �P1; : : : ; �Pn (labeled in 
orresponden
e) belong to the same orbit under thea
tion of AO(2) if and only if all their pairwise distan
es d(Pi; Pj) = d( �Pi; �Pj) are the same for alli; j = 1; : : : ; n. So the shape of the set of labeled landmarks P1; : : : ; Pn is 
ompletely 
hara
terizedby the value of the pairwise (labeled) distan
es between the landmarks.However, in most appli
ations the point 
orresponden
e is unknown so things are more 
ompli-
ated, espe
ially when the number of points n is big. Indeed, labeling the points is a non-trivialtask whi
h, although feasible, takes time. (See for example Hartley and Zisserman [6℄ for an easyexposition of some existing methods.) And the bigger the number of points, the longer it takes. Wewould thus prefer to simply skip the labeling step. So, 
an we, instead, �nd separating invariantsof the a
tion of AO(2)� Sn?The answer to this question is, of 
ourse, yes. For example, in the 
ase n = 3, instead of distan
esone 
an use the following symmetri
 fun
tions of the distan
es,f1(P1; P2; P3) = d(P1; P2) + d(P1; P3) + d(P2; P3);f2(P1; P2; P3) = d(P1; P2)d(P2; P3) + d(P1; P2)d(P1; P3) + d(P1; P3)d(P2; P3);f3(P1; P2; P3) = d(P1; P2)d(P1; P3)d(P2; P3):These are separating invariants of the a
tion of AO(2) � S3 on �R2�3. Continuing in this way,we 
an try to �nd expressions in the distan
es d(P1; P2), d(P1; P3), d(P1; P4), d(P2; P3) d(P2; P4),and d(P3; P4), whi
h are invariant under the a
tion of S4 by permuting the Pi, and whi
h form agenerating (or at least separating) subset of all su
h invariants. But noti
e that the elementarysymmetri
 fun
tions in the distan
es will not qualify anymore, sin
e these are the invariants underthe a
tion of S6 instead of S4. Thus this approa
h requires a fresh 
omputation of invariants forea
h value of n.The Sn-invariants needed here are often 
alled graph invariants, and have been studied in agraph theoreti
al 
ontext by various authors, e.g. Thi�ery [11℄, Pouzet [9℄, and Aslaksen et al. [1℄.Aslaksen et al. [1℄ 
al
ulated a generating set of graph invariants for n = 4, obtaining a minimal setof 9 invariants. But for n = 5 the 
omputation of graph invariants is already very hard and stood asa 
hallenge problem for a while (see [1, 11℄) until the 
omputation was done by the se
ond author(see Derksen and Kemper [5, p. 221℄). The minimal generating set for n = 5 
ontains 56 invariants,and storing them takes several MBytes of memory. For n � 6 the 
omputation is presently notfeasible. This 
learly shows that the approa
h of using graph invariants is far from pra
ti
al. Apartfrom their number and the diÆ
ulties of 
omputing them, they 
annot be used in pra
ti
e forquestions of robustness, sin
e high degree polynomials vary immensely when small variations in thepoints P1; : : : ; Pn are introdu
ed. We thus need to �nd better invariants than graph invariants; weneed invariants that not only separate the orbits of the a
tion of G � Sn but that are also robustand simple to 
ompute.



Re
onstru
ting Point Con�gurations 3We were inspired by looking at what engineers do in pra
ti
e. In order to identify images ofthe same obje
t, they often drop the separation requirement and simply look for invariant featuresof the image of whi
h they 
ompare the distribution. The distribution of the pairwise distan
es ofa set of points is obviously invariant under a relabeling of the point. It is also mu
h more robustthan a set of polynomial fun
tions of the pairwise distan
es. In addition, it is not too 
ompli
atedto 
ompute and very easy to manipulate.So we asked ourselves if the distribution of distan
es of a set of points is a
tually also a separatinginvariant and thus 
ompletely 
hara
terizes point 
on�gurations up to rigid motions. In other words,
an an n-point 
on�guration be re
onstru
ted uniquely (up to the labeling of the points and upto rigid motions) from the distribution of distan
es? It turns out that this is false in general, aswe demonstrate with 
ounterexamples. But fortunately, 
ounterexamples are rare, in a sense tobe explained shortly. This is the 
ontents of our �rst main result (Theorem 1.6). Moreover, it istrue lo
ally, i.e. the shape of n-point 
on�gurations that are 
lose enough 
an be 
ompared usingtheir distribution of invariants. We also explore methods to verify re
onstru
tibility for parti
ular
on�gurations. Most of the results for the 
ase of distan
es in the real plane naturally extend toany ve
tor spa
e with a non-degenerate quadrati
 form over a �eld of 
hara
teristi
 not equal to 2.We shall thus simply treat this general 
ase in the �rst part of this paper.In the se
ond part, we attempt to 
hara
terize point 
on�gurations up to the a
tion of the equi-aÆne group A(2) and, again, the symmetri
 group Sn. This a
tion is relevant in 
omputer visionsin
e, up to a s
ale fa
tor, it adequately approximates what happens to the 
amera image of a verydistant planar obje
t as it is rotated and translated in three-dimensional spa
e. As above, thereare obvious invariants for separating orbits under A(2). These are the areas of triangles spannedby a sele
tion of three of the n points. As before, we attempt to separate Sn-orbits by 
onsideringthe distribution of all these areas. We obtain results whi
h are 
ompletely analogous to those inthe �rst se
tion: There are examples of 
on�gurations whi
h 
annot be re
onstru
ted (up to thea
tion of A(2) � Sn) from the distribution of areas; but a dense open subset of 
on�gurations arere
onstru
tible in this sense (see Theorem 2.7). We believe that for most purposes in 
omputervision, this is a satisfa
tory result. Again our results generalize to 
on�gurations in any dimensionand to any ground �eld.Let us emphasize here that the use of 
omputer algebra systems played a vital role in thepreparation of this paper. In parti
ular, Magma [2℄ was an indispensable tool. For example, the�rst example of an n-point 
on�guration whi
h is not re
onstru
tible from distan
es was the upshotof a prolonged Magma session. The examples in Se
tions 2.1 and 2.4 were 
onstru
ted with the helpof Magma and Maple [3℄. But also the proof of Theorem 1.6 was inspired by sample 
omputationsin Magma.1 Re
onstru
tion from distan
esAn n-point 
on�guration is a tuple of points P1; : : : ; Pn 2 Rm . To an n-point 
on�guration weasso
iate the squared (Eu
lidean) distan
es di;j between ea
h pair of points Pi and Pj , and then
onsider the distribution of distan
es, i.e. the relative frequen
ies of the value of the distan
es.In other words, the distribution of distan
es of an n-point 
on�guration tells us how many timesea
h distan
e o

urs relative to the total number of distan
es. This means that, for n �xed, thedistribution of distan
es is given by the set of the numbers di;j possibly with multipli
ities if somedistan
es o

ur several times. So 
onsidering the distribution of distan
es of an n-point 
on�gurationis equivalent to 
onsidering the polynomialFP1;:::;Pn(X) := Y1�i<j�n(X � di;j):In order to better visualize the information 
ontained in a distribution of distan
es, one 
an plot ahistogram of the distan
es, i.e. one 
an group the data into bins of a �xed size and 
ount how many
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es lie in ea
h bin. Figure 1, 2 and 3 show examples of n-point 
on�gurations in the planetogether with a histogram of their distan
es.
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a bFigure 1: a) A 100-point 
on�guration, b) Histogram of distan
es with bin size 0.1470
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a bFigure 2: a) A 100-point 
on�guration, b) Histogram of distan
es with bin size 0.1993
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a bFigure 3: a) An 80-point 
on�guration, b) Histogram of distan
es with bin size 0.1947Clearly the distribution of distan
es is invariant under permutations of the points and underthe (simultaneous) a
tion of the Eu
lidean group. The question is whether an n-point 
on�guration
an be re
onstru
ted from its distribution of distan
es.De�nition 1.1. An n-point 
on�guration P1; : : : ; Pn 2 Rm is 
alled re
onstru
tible from dis-tan
es if the following holds. If Q1; : : : ; Qn is another n-point 
on�guration with FP1;:::;Pn(X) =FQ1;:::;Qn(X), then there exists a permutation � 2 Sn and a Eu
lidean transformation g 2 AOm(R)su
h that g(P�(i)) = Qi holds for all i.The notion of re
onstru
tibility from distan
es generalizes naturally to any ve
tor spa
e with anon-degenerate quadrati
 form over a �eld of 
hara
teristi
 not equal to 2.



Re
onstru
ting Point Con�gurations 51.1 Non-re
onstru
tible 
on�gurationsIt is 
lear that in two-dimensional Eu
lidean spa
e all triangles are re
onstru
tible from distan
es,and the same is true for all 2-point 
on�gurations. So the quest for examples of non-re
onstru
tiblen-point 
on�gurations be
omes interesting for n � 4. Figure 4 shows su
h an example. We haveput the (non-squared) distan
es along the lines 
onne
ting pairs of points. Note that the upperpoint in the �rst 
on�guration is moved diagonally downward to obtain the se
ond 
on�guration,while the other three points remain inert.
4 p10p10 p2p22 4p10p2 p10 p22Figure 4: Two 4-point 
on�gurations with the same distribution of distan
esFurther examples 
an be 
onstru
ted by adding an arbitrary number of additional points on thedotted line and at the same position in both 
on�gurations (su
h as the slightly thi
ker dot in ea
hpi
ture). Thus we get examples of non-re
onstru
tible n-point 
on�gurations for any n � 4. Byembedding these into a spa
e of higher dimension, we also get examples in any dimension m � 2.The fa
t that we 
an add points at arbitrary positions on the dotted line shows that the symmetryof the 
on�guration is not responsible for the fa
t that it is not re
onstru
tible.1.2 Relation-preserving permutationsLet K be a �eld of 
hara
teristi
 not equal to 2 (K = C and K = R will be the most importantexamples). Let V be an m-dimensional ve
tor spa
e over K with a non-degenerate symmetri
 bi-linear form h�; �i. With a suitable 
hoi
e of a basis, this form is given by h(x1; : : : ; xm); (y1; : : : ; ym)i =Pmk=1 akxkyk with ak 2 K n f0g. If v1; : : : ; vn are ve
tors in V , then the Gram matrix(hvi; vji)i;j=1;:::;n has rank at most m, hen
e the (m + 1) � (m + 1)-minors are zero. By thefollowing well-known proposition, this gives all relations between the s
alar produ
ts of n ve
tors.Part (b) gives the relations between the distan
es between n points. In fa
t, Proposition 1.2(a) isthe \se
ond fundamental theorem" of invariant theory of orthogonal groups.Proposition 1.2. Let xi;k be indeterminates over K (i = 1; : : : ; n, k = 1; : : : ;m).(a) Let si;j be further indeterminates (1 � i � j � n). Then the kernel of the mapK[s1;1; : : : ; sn;n℄! K[x1;1; : : : ; xn;m℄; si;j 7! mXk=1 akxi;kxj;kis generated (as an ideal) by the (m+1)� (m+1)-minors of the matrix (si;j)i;j=1;:::;n, wherewe set si;j := sj;i for i > j.(b) Let Di;j be indeterminates (1 � i < j � n). Then the kernel of the mapK[D1;2; : : : ; Dn�1;n℄! K[x1;1; : : : ; xn;m℄; Di;j 7! mXk=1 ak (xi;k � xj;k)2



6 Mireille Boutin, Gregor Kemperis generated (as an ideal) by the (m+ 1)� (m+ 1)-minors of the matrixD = (Di;j �Di;n �Dj;n)i;j=1;:::;n�1 ; (1.1)where we set Di;i := 0 and Di;j := Dj;i for i > j.Proof. For part (a), see Weyl [12℄ or de Con
ini and Pro
esi [4, Theorem 5.7℄ (the latter referen
etakes 
are of the positive 
hara
teristi
 
ase). Part (b) follows from (a) sin
e for points P1; : : : ; Pn 2V we havehPi � Pn; Pj � Pni = 12 �hPi � Pn; Pi � Pni+ hPj � Pn; Pj � Pni � hPi � Pj ; Pi � Pji� : (1.2)We will now study monomials o

urring in elements of the ideal given by Proposition 1.2(b).From now on it is useful to use sets fi; jg as indi
es of the d's rather than pairs i; j.Lemma 1.3. Let K be a �eld of 
hara
teristi
 not equal to 2 and let Dfi;jg be indeterminates(i; j = 1; : : : ; n, i 6= j). For an integer r with 1 � r � n � 1 
onsider the ideal I generated by all(r � r)-minors of the matrix D := �Dfi;jg �Dfi;ng �Dfj;ng�i;j=1;:::;n�1, where we set Dfi;ig := 0.Let t =Qr�=1Dfi� ;j�g be a monomial of degree r. Then the following are equivalent:(a) The monomial t o

urs in a polynomial from I.(b) Every index from f1; : : : ; ng o

urs at most twi
e among the i� and j� . More formally, forevery k 2 f1; : : : ; ng we have jf� j i� = kgj+ jf� j j� = kgj � 2.Proof. It follows from Proposition 1.2(b) that the ideal I is stable under the natural a
tion by thesymmetri
 group Sn. Thus t o

urs in a polynomial from I if and only if all images of t o

ur.First assume that there exists a k 2 f1; : : : ; ng whi
h o

urs more than twi
e among the i� andj� . By the previous remark we may assume k = 1. If t o

urs in a polynomial of I it must alsoo

ur in an (r � r)-minor of D (sin
e deg(t) = r). But in order to obtain t as a monomial in an(r � r)-minor, one has to 
hoose the �rst row or the �rst 
olumn of D at least twi
e, sin
e entriesinvolving the index 1 only o

ur in the �rst row and 
olumn. But that is impossible. This provesthat (a) implies (b).Now assume that (b) is satis�ed. Consider the graph G with verti
es indexed 1; : : : ; r, where thenumber of edges between vertex � and � is jfi� ; j�g\fi�; j�gj, i.e., the number of indi
es shared bythe �-th and �-th indeterminate in t. By the hypothesis (b) every vertex is 
onne
ted to at mosttwo others, hen
e every 
onne
ted 
omponent of G is a line (in
luding the 
ase of an un
onne
tedvertex) or a loop (in
luding the 
ase of a loop of two verti
es 
orresponding to indeterminatesDfi� ;j�g and Dfi�;j�g whi
h are equal). By renumbering, we may assume that the �rst 
onne
ted
omponent is given by the �rst m verti
es. By the remark at the beginning of the proof, we mayfurther assume that the �rst m indeterminates in t are Df1;2g; Df2;3g; : : : ; Dfm;m+1g (forming a linein G) or Df1;2g; Df2;3g; : : : ; Dfm�1;mg; Df1;mg (a loop). Sin
e m � r � n � 1, it 
an only happenin the �rst 
ase that the index n is involved in these indeterminates. Thus if n is involved, thenm = n � 1 and t = Qn�1�=1 Df�;�+1g. It is easily seen that in this 
ase t o

urs in det(D) with
oeÆ
ient 2 � (�1)n�1. Having settled this 
ase, we may assume that m < n � 1. We pro
eed byindu
tion on the number of 
onne
ted 
omponents of G.First assume that the �rst 
omponent is a loop. We wish to build an (r � r)-submatrix of Dwhose determinant 
ontains t as a monomial. To this end, we start by 
hoosing the �rst m rowsand the �rst m 
olumns from D. Temporarily setting all Dfi;ng := 0, we obtain a matrix D0 withD0jDfi;ng=0 = 0BBBBB� 0 Df1;2g � � � Df1;m�1g Df1;mgDf1;2g 0 � � � Df2;m�1g Df2;mg... . . . ...Df1;m�1g Df2;m�1g � � � 0 Dfm�1;mgDf1;mg Df2;mg � � � Dfm�1;mg 0
1CCCCCA :



Re
onstru
ting Point Con�gurations 7Clearly the produ
t t0 := Df1;2gDf2;3g � � �Dfm�1;mgDf1;mg o

urs with 
oeÆ
ient 2 � (�1)m�1 (or�1 if m = 2) in det(D0). Sin
e the �rst m indeterminates in t form a 
onne
ted 
omponent in G, theindeterminates in t00 := t=t0 involve none of the indi
es 1; : : : ;m. Thus by indu
tion we 
an 
hooser�m rows, all below the m-th row, and r�m 
olumns, all right of the m-th 
olumn, su
h that t00o

urs as a monomial of the determinant of the 
orresponding submatrix D00. Finally, in order toget all of t = t0 � t00 as a monomial in a minor, 
hoose the rows and 
olumns as in D00 together withthe �rst m rows and 
olumns. This yields a submatrix of D of blo
k stru
ture�D0 �� D00� ;where indeterminates Dfi;jg with both indi
es � m only o

ur in D0. Now 
learly t o

urs withnon-zero 
oeÆ
ient in the determinant of this matrix.Let us treat the se
ond 
ase, so assume that the �rst 
omponent of G is a line Df1;2g; Df2;3g; : : : ; Dfm;m+1g. Taking rows 1; : : : ;m and 
olumns 2; : : : ;m+ 1 yields a matrix D0 withD0jDfi;ng=0 = 0BBBBB�Df1;2g Df1;3g � � � Df1;mg Df1;m+1g0 Df2;3g � � � Df2;mg Df2;m+1gDf2;3g 0 � � � Df3;mg Df3;m+1g... . . . ...Df2;mg Df3;mg � � � 0 Dfm;m+1g
1CCCCCA :The produ
t t0 := Df1;2gDf2;3g � � �Dfm;m+1g o

urs with 
oeÆ
ient 1 in det(D0). As above, themonomials in the remaining part t00 := t=t0 of t only involve indi
es stri
tly bigger than m+1. Thuswe may 
hoose r�m rows and 
olumns whi
h are all below and right of the (m+1)-st, respe
tively,to form a submatrix D00 whi
h has t00 in its determinant. Again, putting together the rows and
olumns that we 
hose yields a submatrix with blo
k stru
ture as above. We see that also in this
ase t o

urs as a monomial in an (r � r)-minor of D.If two n-point 
on�gurations have the same distribution of distan
es, this means that the dis-tan
es of both 
on�gurations 
oin
ide up to some permutation. But the permuted distan
es mustagain satisfy the relations given by the ideal from Proposition 1.2. Therefore it is 
ru
ial to de-termine how this ideal behaves under permutations of the Dfi;jg. We show that all permutationswhi
h preserve this ideal are in fa
t indu
ed from permutations of the n points. This provides the
ore of our argument.Lemma 1.4. Let K be a �eld of 
hara
teristi
 not equal to 2 and let Dfi;jg be indeterminates(i; j = 1; : : : ; n, i 6= j). For an integer r with 3 � r � n � 1 
onsider the ideal I generated by all(r � r)-minors of the matrix D := �Dfi;jg �Dfi;ng �Dfj;ng�i;j=1;:::;n�1, where we set Dfi;ig := 0.Let ' be a permutation of the Dfi;jg whi
h maps I to itself. Then there exists a permutation � 2 Snsu
h that '(Dfi;jg) = Df�(i);�(j)gfor all i; j.Proof. We write '(Df1;2g) = Dfi;jg and '(Df1;3g) = Dfk;lg. Assume that fi; jg \ fk; lg = ;.Then by Lemma 1.3 a monomial t of degree r o

urs in an element of I su
h that t is divisible byD2fi;jgDfk;lg. By the hypothesis, '�1(t) also o

urs in an element of I . But '�1(t) is divisible byD2f1;2gDf1;3g, 
ontradi
ting Lemma 1.3. This argument shows that if the index sets of two Df�;�g'sinterse
t, then the same is true for their images under '. This will be used several times duringthe proof. Here, after possibly reordering the index sets (re
all that we do not assume i < j ork < l) we obtain i = l. Thus '(Df1;3g) = Dfi;kg. Now we write '(Df1;4g) = Dfm;pg and 
on
lude,as above, that fm; pg \ fi; jg 6= ; and fm; pg \ fi; kg 6= ;. Assume, by way of 
ontradi
tion, thati =2 fm; pg. Then fm; pg = fj; kg, so '(Df1;4g) = Dfj;kg. By Lemma 1.3 a monomial t of degree r
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urs in an element of I su
h that t is divisible by Dfi;jgDfi;kgDfj;kg. Then '�1(t) also o

urs ina polynomial from I , but '�1(t) is divisible by Df1;2gDf1;3gDf1;4g. This 
ontradi
ts Lemma 1.3.Hen
e our assumption was false and we 
on
lude that i 2 fm; pg, so with suitable renumbering'(Df1;4g) = Dfi;mg.Repla
ing 4 by any other index between 4 and n, we 
on
lude that '(Df1;�g) = Dfi;�(�)g with� a permutation from Sn (where we may assign �(1) = i). Now take �; � 2 f2; : : : ; ng with � 6= �.Writing '(Df�;�g) = Dfx;yg, we 
on
lude that fx; yg \ fi; �(�)g 6= ; and fx; yg \ fi; �(�)g 6= ;.But assuming i 2 fx; yg (after renumbering i = x, say) leads to the 
ontradi
tion '(Df�;�g) =Dfi;yg = '(Df1;��1(y)g). Hen
e fx; yg = f�(�); �(�)g and therefore '(Df�;�g) = Df�(�);�(�)g,whi
h 
on
ludes the proof.1.3 Most n-point 
on�gurations are re
onstru
tible from distan
esIn this se
tion K is a �eld of 
hara
teristi
 not equal to 2 (e.g., K = R or K = C ) and V is anm-dimensional ve
tor spa
e over K equipped with a non-degenerate symmetri
 bilinear form h�; �i.Let G = O(V ) � GL(V ) be the orthogonal group given by this form. The following proposition isfolklore.Proposition 1.5. Let v1; : : : ; vn, w1; : : : ; wn 2 V be ve
tors withhvi; vji = hwi; wji for all i; j 2 f1; : : : ; ng:Set r := minfn;mg. If some (r � r)-minor of the Gram matrix (hvi; vji)i;j=1;:::;n 2 Kn�n is non-zero, then there exists a g 2 G su
h that wi = g(vi) for all i.Proof. After renumbering we may assume that A := (hvi; vji)i;j=1;:::;r is invertible. In parti
ular,v1; : : : ; vr are linearly independent. By the hypothesis, the same holds for w1; : : : ; wr, and vi 7!wi gives an isomorphism between Lri=1Kvi and Lri=1Kwi whi
h respe
ts the form. By Witt'sextension theorem there exists a g 2 G with g(vi) = wi for i � r. This 
on
ludes the proof forn � m. Now assume n > m and take an index i > m. There exist �1; : : : ; �m 2 K su
h thatvi =Pmj=1 �jvj . So for 1 � k � m we have hvk; vii =Pmj=1hvk ; vji � �j . It follows that0B��1...�m1CA = A�10B� hv1; vii...hvm; vii1CA :By the hypothesis, it follows that wi 
an be expressed as a linear 
ombination of w1; : : : ; wm withthe same 
oeÆ
ients . Thereforewi = mXj=1 �jwj = mXj=1 �jg(vj) = g(vi):We 
ome to the main theorem of this se
tion. We assume that K, V , and m are as above. Wewrite V n for the dire
t sum of n 
opies of V , so an n-point 
on�guration is an element from V n.K[V n℄ is the ring of polynomials on V n.Theorem 1.6. Let n be a positive integer with n � 3 or n � m+ 2. Then there exists a non-zeropolynomial f 2 K[V n℄ su
h that every n-point 
on�guration (P1; : : : ; Pn) with f(P1; : : : ; Pn) 6= 0 isre
onstru
tible from distan
es.
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ases n = 1 or m = 0 are trivial. The 
ase m = 1 will be proved in Se
tion 2 (seeTheorem 2.7). Therefore we may assume that 2 � n � 3 or 2 � m � n� 2.Take indeterminates Dfi;jg indexed by sets fi; jg � f1; : : : ; ng with i 6= j and form the matrixD := �Dfi;jg �Dfi;ng �Dfj;ng�i;j=1;:::;n�1 ; (1.3)where we set Dfi;ig := 0 as usual. If 2 � m � n�2, let I be the ideal of (m+1)� (m+1)-minors ofD. Ea
h permutation � 2 Sn indu
es a permutation '� of the Dfi;jg by '� �Dfi;jg� = Df�(i);�(j)g.Let H � S(n2) be the subgroup 
ontaining all the '�, and let T be a set of left 
oset representativesof H , so we have a disjoint union S(n2) = :[ 2T  H:We may assume that id 2 T . Lemma 1.4 says that for every  2 T n fidg there exists an F 2 Isu
h that  (F ) =2 I . Set F1 := Q 2T nfidg  (F ). If, on the other hand, 2 � n � 3, set F1 := 1.In either 
ase, set r := minfn� 1;mg and let F2 be a non-zero (r � r)-minor of D (e.g., 
hoose the�rst r rows and 
olumns). Now set F := F1F2.We 
hoose a basis of V �= Km su
h that h�; �i takes diagonal form, so h(�1; : : : ; �m); (�1; : : : ; �m)i =Pmk=1 ak�k�k with ak 2 K n f0g. Let xi;j be further indeterminates (i = 1; : : : ; n, j = 1; : : : ;m), soK[V n℄ 
an be identi�ed with K[x1;1; : : : ; xn;m℄. Let �:K[Df1;2g; : : : ; Dfn�1;ng℄! K[x1;1; : : : ; xn;m℄be the homomorphism of algebras given by Dfi;jg 7!Pmk=1 ak (xi;k � xj;k)2 (see Proposition 1.2(b)).Re
all that I is the kernel of �. Sin
e  (F ) =2 I for all ' 2 T nfidg and F2 =2 I (sin
e ea
h non-zerohomogeneous element in I has degree > m), we obtain that f := �(F ) 6= 0.Let P1; : : : ; Pn 2 V su
h that f(P1; : : : ; Pn) 6= 0, and let dfi;jg = hPi � Pj ; Pi � Pji be thedistan
es. We have F �df1;2g; : : : ; dfn�1;ng� = f(P1; : : : ; Pn) 6= 0: (1.4)We wish to show that P1; : : : ; Pn form a re
onstru
tible n-point 
on�guration. Let Q1; : : : ; Qn 2 Vbe points with distan
es d0f1;2g; : : : ; d0fn�1;ng su
h that the distribution of distan
es 
oin
ides withthat of the Pi. Then there exists a permutation ' of the set J := ffi; jg � f1; : : : ; ng j i 6= jg(the index set of the D's) su
h that d0fi;jg = d'(fi;jg). There exists a permutation � 2 Sn su
h that' =  Æ '� with  2 T . Thus d (fi;jg) = d0f��1(i);��1(j)gfor all fi; jg 2 J . Assume, by way of 
ontradi
tion, that  6= id. Then n � m+ 2, sin
e for n � 3all permutations of J are indu
ed from permutations from Sn. Clearly '��1 preserves the ideal I ,hen
e F 2 I , implies '��1(F ) 2 I . ThereforeF �d0f��1(1);��1(2)g; : : : ; d0f��1(n�1);��1(n)g� = ('��1(F )) (d0f1;2g; : : : ; d0fn�1;ng) = 0;and hen
e ( (F )) (df1;2g; : : : ; dfn�1;ng) = F �d (f1;2g); : : : ; d (fn�1;ng)� = 0;
ontradi
ting (1.4). It follows that  = id, so d0fi;jg = df�(i);�(j)g for all i; j. We have to showthat there exists g 2 AO(V ) with Qi = g(P�(i)). For this purpose we may assume that � is theidentity. By applying a shift with a ve
tor from V we may further assume Pn = Qn = 0. Itfollows from Equation (1.2) that the Gram matri
es (hPi; Pji)i;j=1;:::;n�1 and (hQi; Qji)i;j=1;:::;n�1
oin
ide. Moreover, (1.4) implies that an (r � r)-minor of the Gram matri
es is non-zero. NowProposition 1.5 yields the desired result.Remark 1.7. For 4 � n � m + 1 (the range not 
overed by Theorem 1.6), no relations existbetween the distan
es dfi;jg of an n-point 
on�guration. If K is algebrai
ally 
losed, it follows fromthe surje
tiveness of the 
ategori
al quotient (see Newstead [8, Theorem 3.5(ii)℄ or Derksen and



10 Mireille Boutin, Gregor KemperKemper [5, Lemma 2.3.2℄) that for any given values for the dfi;jg there exists an n-point 
on�gurationwhi
h has these distan
es. Therefore in this 
ase no n-point 
on�guration is re
onstru
tible fromdistan
es, with the possible ex
eption of 
on�gurations where many of the distan
es are the same.It is not entirely 
lear whether the same holds for K not algebrai
ally 
losed (e.g. K = R), sin
e inthis 
ase the 
ategori
al quotient is no longer surje
tive. As an example, for K = R the distan
esmust satisfy triangle inequalities. Nevertheless, we expe
t that also for K = R and 4 � n � m+1,all n-point 
on�gurations lying in some dense open subset are not re
onstru
tible from distan
es. /1.4 Symmetri
 n-point 
on�gurationsThe re
onstru
tibility test provided by Theorem 1.6 fails for a variety of point 
on�gurations,in
luding all those with repeated distan
es.Lemma 1.8. Let P1; : : : ; Pn 2 V with 2 � m � n � 2 and 
onsider f , the polynomial fun
tion
onstru
ted in the proof of Theorem 1.6. If the pairwise distan
es between the Pi's are not alldistin
t then f(P1; : : : ; Pn) = 0.Proof. Denote by dfi;jg the distan
e between Pi and Pj . Assume that there exists i1; j1; i2; j2 withfi1; j1g 6= fi2; j2g su
h that dfi1;j1g = dfi2;j2g. Consider the permutation ' 2 S(n2) whi
h permutesfi1; j1g and fi2; j2g and leaves all the other pairs fi; jg un
hanged. Observe that there does not exist� 2 Sn su
h that 'fi; jg = f�(i); �(j)g, for all i; j = 1; : : : ; n. Therefore, there exists  2 T n fidgand '� 2 H indu
ed by a permutation � 2 Sn su
h that ' =  Æ '�.Let F be any polynomial with F 2 I su
h that  (F ) =2 I . We have d fi;jg = df��1(i);��1(j)g,for all i; j = 1; : : : ; n. This means that0 = F �df��1(1);��1(2)g; : : : ; df��1(n�1);��1(n)g� ; sin
e F 2 I;= F �d (f1;2g); : : : ; d (fn�1;ng)� ;=  F �df1;2g; : : : ; dfn�1;ng� :So one of the fa
tors of f(P1; : : : ; Pn) is zero and the 
on
lusion follows.Corollary 1.9. If an n-point 
on�guration P1; : : : ; Pn with 2 � m � n� 2 has a non-trivial sym-metry, i.e. if there exists g 2 AO(V ) and � 2 Sn n fidg su
h that(g � P1; : : : ; g � Pn) = (P�(1); : : : ; P�(n));then the polynomial fun
tion f 
onstru
ted in the proof of Theorem 1.6 is su
h that f(P1; : : : ; Pn) =0.Proof. By the previous lemma, it is suÆ
ient to show that there exists fi1; j1g 6= fi2; j2g su
h thatdfi1;j1g = dfi2;j2g. Sin
e � 6= id, there exists i0 su
h that �(i0) 6= i0. We have g � Pi = P�(i), for alli's, so by invarian
e of the distan
e under AO(V ), this means that dfi0;jg = df�(i0);�(j)g for all j's.Therefore i1 = i0, i2 = �(i0) j2 = �(j1) and any j1 6= i0; �(i0) will do the tri
k.This does not mean that no symmetri
 n-point 
on�guration is re
onstru
tible from distan
es.Indeed a square is a 
ounterexample for n = 4 (see Example 1.11 below). We now give a re
on-stru
tibility test whi
h does not ex
lude all point 
on�gurations with repeated distan
es.Proposition 1.10. Let P1; : : : ; Pn 2 V be points in an m-dimensional ve
tor spa
e (2 � m � n�2)over a �eld K of 
hara
teristi
 not 2 equipped with a non-degenerate symmetri
 bilinear form h�; �i.Set dfi;jg := hPi � Pj ; Pi � Pji, and assume that the matrix �dfi;jg � dfi;ng � dfj;ng�i;j=1;:::;n�1 hasrank m (the \generi
" rank). Let G � S(n2) be the subgroup of all permutations ' with d'(fi;jg) =dfi;jg for all i, j. (In fa
t, G may be repla
ed by any smaller subgroup.) Moreover, let H � S(n2) be
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ting Point Con�gurations 11the subgroup of all '� with � 2 Sn, given by '�(fi; jg) = f�(i); �(j)g. Consider a set T � S(n2) ofdouble 
oset representatives with respe
t to G and H, e.i.,S(n2) = :[ 2T G H:Assume that id 2 T , and for ea
h  2 T n fidg 
hoose F 2 I n  �1(I) (where I is the idealo

urring in Lemmas 1.3 and 1.4), whi
h is possible by Lemma 1.4. If( (F )) �df1;2g; : : : ; dfn�1;mg� 6= 0for all  2 T n fidg, then (P1; : : : ; Pn) is re
onstru
tible from distan
es.Proof. Sin
e the proof is almost identi
al to the one of Theorem 1.6, we will be very brief hereto avoid repetitions. Let Q1; : : : ; Qn 2 V be points with (squared) distan
es d0fi;jg su
h thatd0fi;jg = d'(fi;jg) with ' 2 S(n2). Write ' = � Æ  Æ '� with � 2 G,  2 T , and � 2 Sn. Thend (fi;jg) = d(�Æ )(fi;jg) = d('Æ'��1 )(fi;jg) = d'(f��1(i);��1(j)g) = d0f��1(i);��1(j)g;where the �rst equality follows from the de�nition of G. As in the proof of Theorem 1.6, we
on
lude from this that  = id, so d0fi;jg = d(�Æ'�)(fi;jg) = df�(i);�(j)g for all i, j. The rest of theproof pro
eeds as for Theorem 1.6.Example 1.11. In this example we show that all rhombi are re
onstru
tible from distan
es. Considera rhombus in K2 with sides of length a and diagonals of length b and 
 (see Figure 5), so
P1 P2

P4 P3aa b 
 aaFigure 5: A rhombusdf1;2g = df2;3g = df3;4g = df1;4g = a; df1;3g = b; and df2;4g = 
:We assume that a, b, and 
 are all non-zero. If we order the 2-sets in f1; : : : ; 4g as f1; 2g, f1; 3g,f1; 4g, f2; 3g, f2; 4g, f3; 4g, then the \symmetry group" G from Proposition 1.10 is generated bythe permutations (1; 3) and (1; 3; 4; 6), and G is isomorphi
 to S4. The image H of the embeddingof S4 into S6 is generated by (2; 4)(3; 5) and (1; 4; 6; 3)(2; 5). It turns out that there are two double
osets in this 
ase: S6 = GH :[ G H;where  
an be 
hosen as  = (1; 2). Sin
e m = 2 and n = 4, we have only one generatingrelation, whi
h is the determinant of the matrix D de�ned in (1.3). Choose this determinant as thepolynomial F . Assume that the rhombus is not re
onstru
tible. By Proposition 1.10 this implies( (F ) �df1;2g; : : : ; df3;4g� = 0. We obtaina �(a� b)2 + 
(
� b� 2a)� = 0:
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 = 4a. (This is Pythagoras' theorem, and it also follows from F (df1;2g; : : : ; df3;4g) =b
(b+ 
� 4a).) Substituting this into the above relation yields3a(a� b)(
� a) = 0:Sin
e a 6= 0, this implies a = b or a = 
 (here we need to assume that 
har(K) 6= 3), and byinter
hanging the roles of b and 
 we may assume a = b. But this means that our rhombus has infa
t a bigger symmetry group eG generated by the permutations (1; 2) and (1; 2; 3; 4; 6). But now wesee that S6 = eGH , so there is only the trivial double 
oset. It follows from Proposition 1.10 thatthe rhombus is in fa
t re
onstru
tible from distan
es.The 
omputations for this example were done using the 
omputer algebra system Magma [2℄. /1.5 Lo
ally re
onstru
tible n-point 
on�gurationsIn this se
tion, V is anm-dimensional ve
tor spa
e overK equipped with a non-degenerate symmet-ri
 bilinear form h�; �i. We now 
on
entrate on the lo
al 
hara
terization of n-point 
on�gurations.So we assume that V n is equipped with a norm k � k and that the �eld K is either R or C . This�rst proposition addresses the problem of lo
al re
onstru
tibility for 
on�gurations of points whosemutual distan
es are all distin
t.Proposition 1.12. Let r = min(n � 1;m). Suppose that an n-point 
on�guration P1; : : : ; Pn 2 Vis su
h that its distan
es are all distin
t and its Gram matrix (de�ned as in (1.3)) has rank r. Thenthere exists a neighborhood N of (P1; : : : ; Pn) 2 V n su
h that any two n-point 
on�gurations in Nare in the same orbit under the a
tion of AO(V ) if and only if their distribution of distan
es is thesame.Proof. The distribution of distan
es is invariant under AO(V ) so one dire
tion of the statement istrivial. To prove the other dire
tion, observe that a minor is a determinant, whi
h is a polynomialfun
tion, and therefore 
ontinuous. So there exists a neighborhood U of (P1; : : : ; Pn) 2 V n su
hthat the Gram matrix of any (Q1; : : : ; Qn) 2 U has a non-zero r-by-r minor.Let us assume the 
ontrary, so there exist two sequen
es of n-point 
on�gurations fQk1 ;: : : ; Qkng1k=1 and fRk1 ; : : : ; Rkng1k=1 in U , both 
onverging to P1; : : : ; Pn, and a sequen
e of per-mutations f'kg1k=1, su
h that for every k, Qk1 ; : : : ; Qkn and Rk1 ; : : : ; Rkn are not in the same orbitunder the a
tion of AO(V ) but the distan
es dQkfi;jg = hQki �Qkj ; Qki �Qkj i are mapped to the dis-tan
es dRkfi;jg = hRki � Rkj ; Rki � Rkj i by 'k so dRkfi;jg = dQk'kfi;jg for all distin
t i; j = 1; : : : ; n. Sin
eS(n2) is �nite, we may assume that 'k = ' is the same for every k. Taking the limit, we havelimk!1 dRkfi;jg = limk!1 dQk'fi;jg; for all distin
t i; j = 1; : : : ; n:By 
ontinuity of the distan
e, this implies that for any distin
t i; j = 1; : : : ; n the distan
e dfi;jg =hPi � Pj ; Pi � Pji is equal to the distan
e df�i;�jg = hP�i � P�j ; P�i � P�ji where f�i; �jg = 'fi; jg. Sin
eall the dfi;jg are distin
t, then ' = id and thus dRkfi;jg = dQkfi;jg for every distin
t i; j = 1; : : : ; n andevery k. By Proposition 1.5, this implies that Qk1 ; : : : ; Qkn and Rk1 ; : : : ; Rkn are in the same orbitrelative to AO(V ), for every k whi
h 
ontradi
ts our hypothesis, and the 
on
lusion follows.The following proposition addresses the problem of lo
al re
onstru
tibility for n-point 
on�gu-rations in general.Proposition 1.13. Let r = min(n � 1;m). Suppose that an n-point 
on�guration P1; : : : ; Pn 2 Vis su
h that its Gram matrix (de�ned as in (1.3)) has rank r. Then there exists an � > 0 su
h thatif the norm k(Q1; : : : ; Qn)� (P1; : : : ; Pn)k < � for some n-point 
on�guration Q1; : : : ; Qn 2 V withthe same distribution of distan
es as that of P1; : : : ; Pn, then Q1; : : : ; Qn and P1; : : : ; Pn are in thesame orbit relative to AO(V ).
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onstru
ting Point Con�gurations 13Proof. Again, by 
ontinuity, there exists a neighborhood U of (P1; : : : ; Pn) 2 V n su
h that theGram matrix of any (Q1; : : : ; Qn) 2 U has a non-zero r-by-r minor. Let us assume the 
ontrary sothere exists a sequen
e of n-point 
on�gurations fQk1 ; : : : ; Qkng1k=1 � U 
onverging to P1; : : : ; Pn,and a sequen
e of permutations f'kg1k=1, su
h that none of the Qk1 ; : : : ; Qkn are in the same orbitas P1; : : : ; Pn under the a
tion of AO(V ) but the distan
es dfi;jg = hPi � Pj ; Pi � Pji are mappedto the distan
es dQkfi;jg = hQki �Qkj ; Qki �Qkj i by 'k so d'kfi;jg = dQkfi;jg for all i; j = 1; : : : ; n i 6= j.Again we may assume that 'k = ' is the same for every k. Taking the limit, we obtain thatd'fi;jg = limk!1 dQkfi;jg, for all distin
t i; j = 1; : : : ; n. By 
ontinuity of the distan
e, this impliesthat d'fi;jg = dfi;jg. Therefore, dfi;jg = dQkfi;jg for every k and every distin
t i; j = 1; : : : ; n. ByProposition 1.5, this implies that Qk1 ; : : : ; Qkn and P1; : : : ; Pn are in the same orbit relative to AO(V )for every k, whi
h 
ontradi
ts our hypothesis, and the 
on
lusion follows.When V = Rm , (the 
ase that interests us the most for appli
ations) we 
an a
tually drop therequirement on the Gram matrix based on the following re�nement of Proposition 1.5.Lemma 1.14. Let G = O(V ) � GL(V ) be the orthogonal group given by the form h�; �i. Letv1; : : : ; vn, w1; : : : ; wn 2 Rm be ve
tors withhvi; vji = hwi; wji for all i; j 2 f1; : : : ; ng:Then there exists a g 2 G su
h that wi = g(vi) for all i.Proof. Observe that sin
e V = R, the rank of the Gram matrix (hvi; vji)i;j=1;:::;n is equal to thedimension of the ve
tor spa
e spanned by v1; : : : ; vn. (This is not true over the 
omplex �eld.) So wemay assume, after relabeling, that v1; : : : ; v� with � � 1, are linearly independent. By hypothesis,the same is true for w1; : : : ; w�. By Proposition 1.5, there exists g 2 G su
h that g(vi) = wi, for alli = 1; : : : ; �.For any k su
h that n � k > �, there exists �1; : : : ; �� su
h that vk = P�j=1 �jvj . So for1 � k � � we have hvk; vii =P�j=1hvi; vji � �j . It follows that0B��1...��1CA = �(hvi; vji)i;j=1;:::;���10B�hv1; vii...hv�; vii1CA :By the hypothesis, wi 
an be expressed as a linear 
ombination of w1; : : : ; wm with the same 
oeÆ-
ients . Therefore wi = mXj=1 �jwj = mXj=1 �jg(vj) = g(vi):Corollary 1.15. For any n-point 
on�guration P1; : : : ; Pn 2 Rm whose distan
es are all distin
t,there exists a neighborhood N of (P1; : : : ; Pn) 2 (Rm )n su
h that any two n-point 
on�gurations inN are in the same orbit under the a
tion of AO(V ) if and only if their distribution of distan
es isthe same.Corollary 1.16. For any n-point 
on�guration P1; : : : ; Pn 2 Rm there exists an � > 0 su
h that ifthe norm k(Q1; : : : ; Qn) � (P1; : : : ; Pn)k < � for some n-point 
on�guration Q1; : : : ; Qn 2 V withthe same distribution of distan
es as that of P1; : : : ; Pn, then Q1; : : : ; Qn and P1; : : : ; Pn are in thesame orbit relative to AO(V ).
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onstru
tion from volumesGiven n points P1; : : : ; Pn 2 R2 in a plane, we may 
onsider all areas Ai;j;k of triangles spannedby three of these points Pi, Pj , and Pk . Clearly these areas are preserved by the a
tion of alltranslations and all linear maps with determinant �1. As in the pre
eding se
tion, we 
an 
onsiderthe distribution of areas, and ask whether an n-point 
on�guration is re
onstru
tible from thisdistribution up to the above a
tion and permutations of the points. Again we will generalize thisto 
on�gurations of points Pi lying in Km, with K a �eld and m any dimension. Sin
e we areinterested in invariants whi
h are preserved by all linear maps with determinant �1, it makessense to 
onsider volumes of m-simpli
es spanned by m+1 points Pi0 ; : : : ; Pim . These volumes are
onveniently expressed by the determinantsai0;:::;im := det (Pi1 � Pi0 ; : : : ; Pim � Pi0 ) (2.1)(where the Pi are takes to be 
olumn ve
tors). The determinants are really the \signed volumes",so we need to 
onsider them up to signs, whi
h is equivalent to taking squares. This dis
ussionleads to the following de�nition.De�nition 2.1. Let K be a �eld and n > m positive integers. For an n-point 
on�gurationP1; : : : ; Pn 2 Km form the \volumes" ai0;:::;im as in (2.1) and the polynomialVP1;:::;Pn(X) = Y1�i0<���<im�n �X � a2i0;:::;im� :(VP1;:::;Pn(X) en
odes the distribution of volumes.) An n-point 
on�guration P1; : : : ; Pn 2 Km is
alled re
onstru
tible from volumes if the following holds: If Q1; : : : ; Qn is another n-point
on�guration with VQ1;:::;Qn(X) = VP1;:::;Pn(X), then there exist a permutation � 2 Sn, a linearmap ' 2 GLm(K) with det(') = �1, and a ve
tor v 2 Km su
h thatQi = ' �P�(i) + v�for all i = 1; : : : ; n.Remark 2.2. (a) If we are working in the plane, i.e., m = 2, we will of 
ourse speak of re
on-stru
tibility from areas instead of volumes.(b) Form = 1, the above 
on
ept of re
onstru
tibility from volumes 
oin
ides with re
onstru
tibil-ity from distan
es introdu
ed in De�nition 1.1. /2.1 Non-re
onstru
tible 
on�gurationsAgain the �rst issue is to �nd 
on�gurations whi
h are not re
onstru
tible from volumes. Ourmain interest will be two-dimensional real spa
e. A 
omputation in Magma [2℄ yields that in R2all 4-point 
on�gurations are re
onstru
tible from volumes. For n = 5 we obtain 
ounterexamples(whose 
onstru
tion also involved Magma 
omputations). One of the simplest of these is given inFigure 6.We put the points on a grid of length 1. The two 
on�gurations in Figure 6 lie in di�erent orbitsof S5�AGL2(R), sin
e in the �rst 
on�guration all points lie on two parallel lines, whi
h is not the
ase in the se
ond 
on�guration. But the signed areas ai;j;k are as follows:a1;2;3 a1;2;4 a1;2;5 a1;3;4 a1;3;5 a1;4;5 a2;3;4 a2;3;5 a2;4;5 a3;4;5P 1 1 1 -2 -4 -2 -2 -4 -2 0Q 1 2 2 1 -1 -4 0 -2 -4 -2
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P1 P2P3 P4 P5 Q1 Q2Q3Q4 Q5

Figure 6: Two 5-point 
on�gurations with the same distribution of areas
Figure 7: Two 6-point 
on�gurations with the same distribution of areasSo the distributions of areas 
oin
ide.For n = 6 we get an even simpler example whi
h is given in Figure 7.The 
on�gurations in Figure 7 lie in di�erent orbits of S6�AGL2(R) sin
e the �rst 
on�gurationhas three 
onne
ting ve
tors between points whi
h are equal and the se
ond one has not. But itis easy to see that the 
on�gurations have the same distribution of areas. Moreover, we 
an addan arbitrary number of points on the upper dotted line in both 
on�gurations to obtain pairs ofn-point 
on�gurations with equal distributions of areas for n � 6.To get examples in dimension m � 3, one 
an embed the two-dimensional examples given hereinto m-spa
e and then add the m� 2 points with 
oordinates (0; 0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1).2.2 Relation-preserving permutationsIn this se
tion K is a �eld, n and m are positive integers with n > m, and xi;j are indeterminates(1 � i � n, 1 � j � m). For 1 � i0 < � � � < im � n we take further indeterminates Ai0 ;:::;im . WriteK[A℄ for the polynomial ring in the Ai0;:::;im and let I � K[A℄ be the kernel of the map�: K[A℄! K[x℄; Ai0;:::;im 7! det �xij ;k � xi0 ;k�j;k=1;:::;m :For i0; : : : ; im 2 f1; : : : ; ng pairwise distin
t, sele
t the permutation � of the set f0; : : : ;mg su
hthat i�(0) < i�(1) < � � � < i�(m) and setAi0 ;:::;im := sgn(�) � Ai�(0) ;:::;i�(m) : (2.2)Lemma 2.3. (a) If i0; : : : ; im+1 2 f1; : : : ; ng are pairwise distin
t, thenm+1Xk=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 2 I:



16 Mireille Boutin, Gregor Kemper(b) I is generated by the polynomialsPm+1k=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 with 1 � i0 < � � � < im+1 �n and by homogeneous polynomial of degree > 1 whi
h only involve the An;i1;:::;im with 1 �i1 < � � � < im < n.1(
) For j 2 f1; : : : ; ng the Aj;i1;:::;im with 1 � i1 < � � � < im � n, ik 6= j, are linearly independentmodulo I.Proof. It is 
onvenient to write Pi for the (
olumn) ve
tor (xi;1; : : : ; xi;m)T, so for i0; : : : ; im 2f1; : : : ; ng in in
reasing order we have� (Ai0;:::;im) = det (Pi1 � Pi0 ; : : : ; Pim � Pi0) ; (2.3)whi
h is equal toPmk=0(�1)k det �Pi0 ; : : : ; Pik�1 ; Pik+1 ; : : : ; Pim�. This shows that (2.3) is also validif the ij are not in
reasing.(a) By (2.3) we have� (Ai0;:::;im) =det� �Pi1 � Pim+1�� �Pi0 � Pim+1� ; : : : ; �Pim � Pim+1�� �Pi0 � Pim+1�� =� �Aim+1;i1;:::;im��� �Aim+1;i0;i2;:::;im�+� � � �+ (�1)m� �Aim+1;i0;:::;im�1� =� �Ai0;:::;im�1;im+1��+ � � �+ (�1)m� �Ai1;:::;im;im+1� :This yields (a).(b) The relations between the � (An;i1;:::;im) are known from 
lassi
al invariant theory (seeWeyl [12℄ or de Con
ini and Pro
esi [4℄) to be the Pl�u
ker relations, whi
h are homogeneousand non-linear. Let J � K[A℄ be the ideal generated by the linear relations given in (b) andthe Pl�u
ker relations. By (a) we have J � I . Conversely, take f 2 I . Using the linear relationsfrom (b), we 
an substitute every Ai0;:::;im appearing in f byPmk=0(�1)kAn;i0;:::;ik�1;ik+1;:::;im .In this way we obtain g 2 K[A℄ with f � g mod J , and g only involves indeterminatesAi0 ;:::;im with i0 = n. But f 2 I implies g 2 I , so g lies in the ideal generated by the Pl�u
kerrelations. Thus f 2 J .(
) It follows from (b) that the � (An;i1;:::;im) with 1 � i1 < � � � < im < n are linearly independent.But the same argument 
an be made with any other index j instead of n. This implies (
).The next lemma shows that the linear relations given in Lemma 2.3 are the only ones of theirkind.Lemma 2.4. Let l 2 K[A℄ be a non-zero linear 
ombination of at most m+2 of the indeterminatesAi0;:::;im . Assume that all the 
oeÆ
ients in l are 1 or -1, and l 2 I. Thenl = m+1Xk=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 (2.4)with i1; : : : ; im+2 2 f1; : : : ; ng pairwise distin
t.Proof. Take any Ai0;:::;im whi
h o

urs in l. De�ne a homomorphism ': K[A℄ ! K[A℄ by sendingea
h Aj0;:::;jm with i0 2 fj0; : : : ; jmg to itself and by sending ea
h Aj0;:::;jm with i0 =2 fj0; : : : ; jmgto Pmk=0(�1)kAi0;j0;:::;jk�1;jk+1;:::;jm . Lemma 2.3(a) implies that '(f) � f mod I holds for allf 2 K[A℄. Thus '(l) 2 I . But by Lemma 2.3(
) this implies '(l) = 0. But Ai0;:::;im o

urs as asummand in '(l) and must therefore be 
an
elled out by something. Hen
e a summand of the form1The non-linear polynomials are the well-known Pl�u
ker relations, whi
h we do not need to present here expli
itly.
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ting Point Con�gurations 17�Aj0;i1;:::;im with j0 =2 fi0; : : : ; img must o

ur in l. The same argument 
an be applied to the otherindi
es of Ai0;:::;im , and we �nd summands �Ai0;:::;ik�1;jk ;ik+1;:::;im with jk =2 fi0; : : : ; img in l. Wehave already found m+ 2 summands in l, hen
e these are all summands.Now we apply the same argument to Aj0;i1;:::;im . Doing so we �nd that for ea
h k 2 f1; : : : ;mgthere must o

ur an indeterminate in l whose indi
es in
lude all of j0; i1; : : : ; ik�1; ik+1; : : : ; im.Ruling out all other possibilities, we see that this indeterminate must be Ai0;:::;ik�1;jk;ik+1;:::;im , sojk = j0. Setting im+1 := j0, we �nd that up to the signs the summands of l are as 
laimed in thelemma.If K has 
hara
teristi
 2 then nothing has to be shown about signs and we are done. So assume
har(K) 6= 2 and write l0 :=Pm+1k=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 . Assume that l is neither l0 nor �l0.Sin
e l0 lies in I by Lemma 2.3(a), the same is true for (l + l0)=2. But (l + l0)=2 is non-zero, has
oeÆ
ients �1, and has fewer than m+ 2 summands. By the above dis
ussion, this is impossible.Hen
e we 
on
lude that l = �l0. Performing a permutation with sign �1 on the indi
es transformsl0 into �l0, so the 
ase l = �l0 is also dealt with.The following proposition is analogous to Lemma 1.4.Proposition 2.5. Let ': K[A℄ ! K[A℄ be an algebra-automorphism sending ea
h Ai0;:::;im to�Aj0;:::;jm for some j0; : : : ; jm 2 f1; : : : ; ng (where the signs may be 
hosen independently). If'(I) � I, then there exists � 2 Sn and " 2 f�1g su
h that for 1 � i0 < � � � < im � n we have' (Ai0 ;:::;im) = " � A�(i0);:::;�(im):Proof. If n = m+ 1, there is only one indeterminate Ai0;:::;im , so there is nothing to show. Hen
ewe may assume that n � m + 2. Set M := fS � f1; : : : ; ng j jSj = m+ 1g. We have a bije
tion :M!M indu
ed from ' by de�ning  (fi0; : : : ; img) = fj0; : : : ; jmg if ' (Ai0 ;:::;im) = �Aj0;:::;jm .For S = fi0; : : : ; img 2 M with i0 < � � � < im we write AS := Ai0;:::;im , so '(AS) = �A (S). Thebulk of the proof 
onsists of 
onstru
ting a permutation � 2 Sn su
h that (S) = �(S) (2.5)for all S 2M, where the right-hand side means element-wise appli
ation of �.Take a subset T � f1; : : : ; ng with m+2 elements and write T = fi0; : : : ; im+1g with i0 < � � � <im+1. By Lemma 2.3(a) the polynomial l = Pm+1k=0 (�1)kATnfikg lies in I , hen
e also '(l) 2 I .But '(l) = Pm+1k=0 �A (Tnfikg). From Lemma 2.4 we see that eT := Sm+1k=0  (T n fikg) must havepre
isely m+ 2 elements. Sin
e ea
h  (T n fikg) has m+ 1 elements, there exists a map �T : T !eT � f1; : : : ; ng with  (T n fikg) = eT n f�T (ik)g. Sin
e  is inje
tive this also holds for �T , so�T (T ) = eT . Thus for all S 2 M with S � T we have (S) = �T (S) (2.6)(where the right-hand side means element-wise appli
ation of �T ).In the sequel we will make frequent use of the following rule: If two sets S; S0 2 M have melements in 
ommon, then also  (S) and  (S0) share m elements. Indeed, there is a linear polyno-mial l of the type (2.4) in whi
h both AS and AS0 o

ur. By Lemma 2.3(a), l lies in I , hen
e also'(l) 2 I . But A (S) and A (S0) o

ur in '(l), hen
e j (S) \  (S0)j = m by Lemma 2.4.Now take two subsets T , T 0 � f1; : : : ; ng with jT j = jT 0j = m + 2 su
h that S := T \ T 0 hasm+ 1 elements. We will show that �T and �T 0 
oin
ide on S. WriteT = S [ fjg and T 0 = S [ fkgwith j; k 2 f1; : : : ; ng. For l 2 S set Sl := T 0 n flg, so Sl 2 M. Then jSl \ (T n flg) j = m andjSl \ Sj = m, so  (Sl) shares m elements with  (T n flg) = �T (T ) n f�T (l)g and with  (S) =�T (S) = �T (T ) n f�T (j)g. But  (Sl) 
annot be a subset of �T (T ) sin
e this would imply (Sl) = �T ���1T ( (Sl))� =  ���1T ( (Sl))� ;
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ontradi
ting the inje
tiveness of  , sin
e Sl 6� T . It follows that  (Sl) = �T (T n fj; lg)[frlg withrl 2 f1; : : : ; ng n �T (T ). We 
an write this slightly simpler as  (Sl) = �T (S n flg) [ frlg. On theother hand, we have Sl � T 0, so (Sl) = �T 0(Sl) = �T 0 (S n flg) [ f�T 0(k)g:Interse
ting the resulting equality �T (S n flg)[ frlg = �T 0 (S n flg)[ f�T 0(k)g over all l 2 S yieldsTl2Sfrlg = f�T 0(k)g. Thus rl = �T 0(k) independently of l, and �T (S n flg) = �T 0 (S n flg) for alll 2 S. This shows that �T (l) = �T 0(l) for all l 2 S, as 
laimed.We pro
eed by taking any two subsets T , T 0 � f1; : : : ; ng with jT j = jT 0j = m + 2. We 
anmove from T to T 0 by su

essively ex
hanging elements. Using the above result, we see that �T and�T 0 
oin
ide on T \ T 0. Thus we 
an de�ne �: f1; : : : ; ng ! f1; : : : ; ng su
h that for every subsetT � f1; : : : ; ng with jT j = m+2 the restri
tion �jT 
oin
ides with �T . Now (2.5) follows from (2.6),and it also follows that � 2 Sn.Take S 2M and write S = fi0; : : : ; img with i0 < � � � < im. The de�nition of  and (2.5) implythat ' (Ai0;:::;im) = "S �A�(i0);:::;�(im)with "S 2 f�1g. We wish to show that "S does not depend on S. To this end, take T � f1; : : : ; ngwith jT j = m + 2 and write T = fi0; : : : ; im+1g with i0 < � � � < im+1. By Lemma 2.3(a), l :=Pm+1k=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 lies in I , hen
e '(l) 2 I . But'(l) = m+1Xk=0 (�1)k"Tnfikg �A�(i0);:::;�(ik�1);�(ik+1);:::;�(im+1):Lemma 2.4 implies that all "Tnfikg 
oin
ide. This shows that if two sets S, S0 2 M sharem elements,then "S = "S0 . But sin
e we 
an move from any S 2 M to any other S0 2 M by su

essivelyex
hanging elements, it follows that indeed all "S 
oin
ide. This 
ompletes the proof.2.3 Most n-point 
on�gurations are re
onstru
tible from volumesIn this se
tionK is a �eld and V is anm-dimensional ve
tor spa
e overK. The following propositionis well known.Proposition 2.6. Let v1; : : : ; vn, w1; : : : ; wn 2 V be ve
tors with n � m, su
h that for all 1 � i1 <� � � < im � n di1;:::;im := det (vi1 : : : vim) = det (wi1 : : : wim) :If at least one of the di1;:::;im is non-zero, then there exists a ' 2 SL(V ) su
h that wi = '(vi) forall i.Proof. After renumbering we may assume that d1;2;:::;m is non-zero. Hen
e v1; : : : ; vm andw1; : : : ; wm are linearly independent, and there exists a (unique) ' 2 SL(V ) su
h that wi = '(vi)for all i � m. Assume n > m and take an index i > m. There exist �1; : : : ; �m 2 K su
h thatvi =Pmj=1 �jvj . Indeed, by Cramer's rule we have �j = (�1)n�jd1;:::;j�1;j+1;:::;m;i=d1;:::;m. By thehypothesis, it follows that wi 
an be expressed as a linear 
ombination of w1; : : : ; wm with the same
oeÆ
ients . Therefore wi = mXj=1 �jwj = mXj=1 �j'(vj) = '(vi):We 
ome to the main theorem of this se
tion. We assume thatK is a �eld, V is anm-dimensionalve
tor spa
e over K, and n > m is an integer. We write V n for the dire
t sum of n 
opies of V , soan n-point 
on�guration is an element from V n. K[V n℄ is the ring of polynomials on V n.
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ting Point Con�gurations 19Theorem 2.7. There exists a non-zero polynomial f 2 K[V n℄ su
h that every n-point 
on�guration(P1; : : : ; Pn) with f(P1; : : : ; Pn) 6= 0 is re
onstru
tible from volumes.Proof. Clearly we may assume m > 0. For indi
es 1 � i0 < � � � < im � n, let Ai0;:::;im be anindeterminate, and for i0; : : : ; im 2 f1; : : : ; ng pairwise distin
t de�ne Ai0;:::;im as in (2.2). Let I �K[A℄ be the kernel of the map �: K[A℄ ! K[V n℄ sending Ai0;:::;im to the polynomial � (Ai0;:::;im)with � (Ai0;:::;im) (P1; : : : ; Pn) = det (Pi1 � Pi0 ; : : : ; Pim � Pi0) for P1; : : : ; Pn 2 V . Note that I ispre
isely the ideal introdu
ed at the beginning of Se
tion 2.2.Let G � AutK (K[A℄) be the group of all automorphisms ' of K[A℄ sending ea
h Ai0;:::;imto �Aj0;:::;jm with 1 � j0 < � � � < jm � n. For ea
h permutation � 2 Sn and ea
h " 2 f�1gthere is an automorphism '�;" 2 G with '�;" (Ai0;:::;im) = " � A�(i0);:::;�(im). Let H � G be thesubgroup of all these '�;", and 
hoose a set T of left 
oset representatives of H in G with id 2 T .Proposition 2.5 says that for every  2 T n fidg there exists an F 2 I su
h that  (F ) =2 I . SetF := An;1;2;:::;m �Q 2T nfidg  (F ) and f := �(F ) 2 K[V n℄. F =2 I implies that f 6= 0.Let P1; : : : ; Pn 2 V su
h that f(P1; : : : ; Pn) 6= 0, and for 1 � i0 < � � � < im � n let ai0;:::;im =det (Pi1 � Pi0 ; : : : ; Pim � Pi0 ) be the \signed volume". We haveF (a) = f(P1; : : : ; Pn) 6= 0: (2.7)We wish to show that P1; : : : ; Pn form a re
onstru
tible n-point 
on�guration. Let Q1; : : : ; Qn 2 Vbe points and set a0i0;:::;im := det (Qi1 �Qi0 ; : : : ; Qim �Qi0). Assume that the distribution ofvolumes of Q1; : : : ; Qn 
oin
ides with that of P1; : : : ; Pn, i.e., VQ1;:::;Qn(X) = VP1;:::;Pn(X). Thismeans that up to signs the a0i0;:::;im are a permutation of the ai0;:::;im , so there exists a ' 2 G su
hthat for all H 2 K[A℄ we have ('(H)) (a) = H (a0) : (2.8)There exist � 2 Sn and " 2 f�1g su
h that ' =  Æ '�;" with  2 T . By way of 
ontradi
tion,assume that  6= id. Clearly '��1;" preserves the ideal I , hen
e F 2 I impliesH := '��1;"(F ) 2 I .Therefore H (a0) = (�(H)) (Q1; : : : ; Qn) = 0, so (2.8) yields( (F )) (a) = ('(H)) (a) = H (a0) = 0;
ontradi
ting (2.7). It follows that  = id, so ' = '�;". We have to show that there exist v 2 Vand  2 GL(V ) with det( ) 2 f�1g su
h that Qi =  �P�(i) + v� for all i. For this purpose we mayassume that � is the identity. If " = �1, we apply an (arbitrary) linear map with determinant -1to Q1; : : : ; Qn. This will 
hange all the signs of the a0i0;:::;im . Hen
e we may assume that " = 1, so' = id, and (2.8) implies a0i0;:::;im = ai0;:::;im for all index ve
tors i0; : : : ; im. Sin
e an;1;2;:::;m 6= 0(this was the purpose of introdu
ing An;1;2;:::;m as a fa
tor into F ), Proposition 2.6 yields that thereexists � 2 SL(V ) su
h that �(Pi�Pn) = Qi�Qn for all i 2 f1; : : : ; n�1g. Setting v := ��1(Qn)�Pngives the desired result Qi = �(Pi + v) for i 2 f1; : : : ; ng.Remark 2.8. Everything that was said in Se
tion 1.4 about re
onstru
tibility of 
on�gurationswith symmetries 
arries over to re
onstru
tibility from volumes. In parti
ular, the analogue ofProposition 1.10 holds. Similarly, the analogues of Propositions 1.12 and 1.13 
on
erning lo
alre
onstru
tibility are also true. /2.4 Combining distan
es and volumesTaking another look at Figure 4, one noti
es that although the two 
on�guration have the samedistribution of distan
es, their distributions of areas are di�erent. This brings up the idea to try todistinguish n-point 
on�gurations (up to the a
tion of Sn�AOm(K)) by 
onsidering the distributionof distan
es and the distribution of volumes. Could it be that by 
ombining these data we might



20 Mireille Boutin, Gregor Kemperbe able to separate all orbits? The following example shows that on
e again this is not the 
ase.We take the following 4-point 
on�gurations in R2 (see Figure 8):P1 = (0; 0); P2 = (0; 6); P3 = (6p2; 0); P4 = (2p2;�1);Q1 = (0; 0); Q2 = (0; 6); Q3 = (6p2; 0); Q4 = (2p2; 5):
P1
P2

P3P4 Q1
Q2

Q3
Q4

Figure 8: Two 4-point 
on�gurations with the same distribution of distan
es and the same distri-bution of areasIt is easy to see that the two 
on�gurations lie in di�erent orbits of S4�AO2(R) (although theylie in the same orbit of S4 � AGL2(R)). We obtain the following distan
es pdi;j and signed areasai;j;k: pd1;2 pd1;3 pd1;4 pd2;3 pd2;4 pd3;4 a1;2;3 a1;2;4 a1;3;4 a2;3;4P 6 6 p2 3 6 p3 p57 p33 �36p2 �12p2 �6p2 �30p2Q 6 6 p2 p33 6 p3 3 p57 �36p2 �12p2 30p2 6p2A
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