
On Reonstruting n-Point Con�gurations from theDistribution of Distanes or AreasMireille Boutin and Gregor KemperFebruary 25, 2003AbstratOne way to haraterize on�gurations of points up to ongruene is by onsidering thedistribution of all mutual distanes between points. This paper deals with the question if pointon�gurations are uniquely determined by this distribution. After giving some ounterexamples,we prove that this is the ase for the vast majority of on�gurations.In the seond part of the paper, the distribution of areas of sub-triangles is used for har-aterizing point on�gurations. Again it turns out that most on�gurations are reonstrutiblefrom the distribution of areas, though there are ounterexamples.IntrodutionIn this paper, we study a type of shape representation whih attempts to ombine both the ap-proahes of invariant theory and statistis. We onsider the problem of haraterizing the shapeor, more generally, the geometry of a on�guration of points. More preisely, we are interested in�nding a good representation for on�gurations of points in a vetor spae modulo the ation of aLie group G. The solution we investigate onsists in using distributions of invariants of the ationof G.Our main motivation omes from appliations in omputer vision. A entral problem in imageunderstanding is that of identifying objets from a piture. In that problem, one must take intoaount that variations in the position of the objet or in the parameters of the amera induevariations in the image whih orrespond to group transformations that need to be moded out inorder to establish the orrespondene between two pitures of the same objet.The obvious way to obtain image features whih are not a�eted by the ation of the group isto use invariants of the group ation. However, in order to be able to positively identify any objet,we need to �nd a set of invariants whose values ompletely haraterize the image of the objet upto the ation of the group. In other words, we need to �nd a set of invariants suh that two imagesare in the same orbit if and only if the values of these invariants evaluated on the two images arethe same. Suh invariants are alled separating beause they an be used to separate the orbits.In traditional approahes to objet reognition (see for example Mundy and Zisserman [7℄), thismethod is ommonly used.In the following, we address the ase of shapes de�ned by a �nite set of points. This is atually animportant ase for appliations. Indeed for many reasons (e.g. the amount of noise or the nature ofthe data) it is ommon to represent an objet of interest by a �nite set of points alled landmarks.For example, landmarks an be de�ned by salient features on the boundary of the image of theobjet. Spei�ally, one might think of minutiae in �ngerprints, orners on edges of arhaeologialsherds, or stellar onstellations. In order to reognize the objet, one thus needs to haraterize thepoint on�guration given by the landmarks up to the ation of the group.Given a Lie group G ating on a vetor spae V and two sets of n points P1; : : : ; Pn and�P1; : : : ; �Pn 2 V , we want to be able to determine whether there exists g 2 G and a permutation1



2 Mireille Boutin, Gregor Kemper� 2 Sn (sine, a priori, we don't know whether the points are labeled in orrespondene) suh thatg(Pi) = �P�(i); for all i = 1; : : : ; n:In appliations, we are often interested in pitures, so V is usually R2 or R3 and the Lie groupG is typially a subgroup of the projetive group and depends on how the piture of the objetwas taken. Examples of important groups inlude AO(2), the group of rigid motions in the plane(rotations, reetions and translations, sometime also denoted by E(2)), and A(2), the group ofaÆne transformations in the plane, i.e. all translations and linear maps with determinant �1.In priniple, this problem an indeed be solved using invariants. If we assume that the pointsare distinguishable so we know how to orretly label them, then all we need to do is to �nd a setof separating invariants of the diagonal ation of G on V n,g � (Q1; : : : ; Qn) = (g(Q1); : : : ; g(Qn)) for all g 2 G; and all Q1; : : : ; Qn 2 V:For example, if G = AO(2) the group of Eulidean transformations in the plane then two sets oflandmarks P1; : : : ; Pn and �P1; : : : ; �Pn (labeled in orrespondene) belong to the same orbit under theation of AO(2) if and only if all their pairwise distanes d(Pi; Pj) = d( �Pi; �Pj) are the same for alli; j = 1; : : : ; n. So the shape of the set of labeled landmarks P1; : : : ; Pn is ompletely haraterizedby the value of the pairwise (labeled) distanes between the landmarks.However, in most appliations the point orrespondene is unknown so things are more ompli-ated, espeially when the number of points n is big. Indeed, labeling the points is a non-trivialtask whih, although feasible, takes time. (See for example Hartley and Zisserman [6℄ for an easyexposition of some existing methods.) And the bigger the number of points, the longer it takes. Wewould thus prefer to simply skip the labeling step. So, an we, instead, �nd separating invariantsof the ation of AO(2)� Sn?The answer to this question is, of ourse, yes. For example, in the ase n = 3, instead of distanesone an use the following symmetri funtions of the distanes,f1(P1; P2; P3) = d(P1; P2) + d(P1; P3) + d(P2; P3);f2(P1; P2; P3) = d(P1; P2)d(P2; P3) + d(P1; P2)d(P1; P3) + d(P1; P3)d(P2; P3);f3(P1; P2; P3) = d(P1; P2)d(P1; P3)d(P2; P3):These are separating invariants of the ation of AO(2) � S3 on �R2�3. Continuing in this way,we an try to �nd expressions in the distanes d(P1; P2), d(P1; P3), d(P1; P4), d(P2; P3) d(P2; P4),and d(P3; P4), whih are invariant under the ation of S4 by permuting the Pi, and whih form agenerating (or at least separating) subset of all suh invariants. But notie that the elementarysymmetri funtions in the distanes will not qualify anymore, sine these are the invariants underthe ation of S6 instead of S4. Thus this approah requires a fresh omputation of invariants foreah value of n.The Sn-invariants needed here are often alled graph invariants, and have been studied in agraph theoretial ontext by various authors, e.g. Thi�ery [11℄, Pouzet [9℄, and Aslaksen et al. [1℄.Aslaksen et al. [1℄ alulated a generating set of graph invariants for n = 4, obtaining a minimal setof 9 invariants. But for n = 5 the omputation of graph invariants is already very hard and stood asa hallenge problem for a while (see [1, 11℄) until the omputation was done by the seond author(see Derksen and Kemper [5, p. 221℄). The minimal generating set for n = 5 ontains 56 invariants,and storing them takes several MBytes of memory. For n � 6 the omputation is presently notfeasible. This learly shows that the approah of using graph invariants is far from pratial. Apartfrom their number and the diÆulties of omputing them, they annot be used in pratie forquestions of robustness, sine high degree polynomials vary immensely when small variations in thepoints P1; : : : ; Pn are introdued. We thus need to �nd better invariants than graph invariants; weneed invariants that not only separate the orbits of the ation of G � Sn but that are also robustand simple to ompute.



Reonstruting Point Con�gurations 3We were inspired by looking at what engineers do in pratie. In order to identify images ofthe same objet, they often drop the separation requirement and simply look for invariant featuresof the image of whih they ompare the distribution. The distribution of the pairwise distanes ofa set of points is obviously invariant under a relabeling of the point. It is also muh more robustthan a set of polynomial funtions of the pairwise distanes. In addition, it is not too ompliatedto ompute and very easy to manipulate.So we asked ourselves if the distribution of distanes of a set of points is atually also a separatinginvariant and thus ompletely haraterizes point on�gurations up to rigid motions. In other words,an an n-point on�guration be reonstruted uniquely (up to the labeling of the points and upto rigid motions) from the distribution of distanes? It turns out that this is false in general, aswe demonstrate with ounterexamples. But fortunately, ounterexamples are rare, in a sense tobe explained shortly. This is the ontents of our �rst main result (Theorem 1.6). Moreover, it istrue loally, i.e. the shape of n-point on�gurations that are lose enough an be ompared usingtheir distribution of invariants. We also explore methods to verify reonstrutibility for partiularon�gurations. Most of the results for the ase of distanes in the real plane naturally extend toany vetor spae with a non-degenerate quadrati form over a �eld of harateristi not equal to 2.We shall thus simply treat this general ase in the �rst part of this paper.In the seond part, we attempt to haraterize point on�gurations up to the ation of the equi-aÆne group A(2) and, again, the symmetri group Sn. This ation is relevant in omputer visionsine, up to a sale fator, it adequately approximates what happens to the amera image of a verydistant planar objet as it is rotated and translated in three-dimensional spae. As above, thereare obvious invariants for separating orbits under A(2). These are the areas of triangles spannedby a seletion of three of the n points. As before, we attempt to separate Sn-orbits by onsideringthe distribution of all these areas. We obtain results whih are ompletely analogous to those inthe �rst setion: There are examples of on�gurations whih annot be reonstruted (up to theation of A(2) � Sn) from the distribution of areas; but a dense open subset of on�gurations arereonstrutible in this sense (see Theorem 2.7). We believe that for most purposes in omputervision, this is a satisfatory result. Again our results generalize to on�gurations in any dimensionand to any ground �eld.Let us emphasize here that the use of omputer algebra systems played a vital role in thepreparation of this paper. In partiular, Magma [2℄ was an indispensable tool. For example, the�rst example of an n-point on�guration whih is not reonstrutible from distanes was the upshotof a prolonged Magma session. The examples in Setions 2.1 and 2.4 were onstruted with the helpof Magma and Maple [3℄. But also the proof of Theorem 1.6 was inspired by sample omputationsin Magma.1 Reonstrution from distanesAn n-point on�guration is a tuple of points P1; : : : ; Pn 2 Rm . To an n-point on�guration weassoiate the squared (Eulidean) distanes di;j between eah pair of points Pi and Pj , and thenonsider the distribution of distanes, i.e. the relative frequenies of the value of the distanes.In other words, the distribution of distanes of an n-point on�guration tells us how many timeseah distane ours relative to the total number of distanes. This means that, for n �xed, thedistribution of distanes is given by the set of the numbers di;j possibly with multipliities if somedistanes our several times. So onsidering the distribution of distanes of an n-point on�gurationis equivalent to onsidering the polynomialFP1;:::;Pn(X) := Y1�i<j�n(X � di;j):In order to better visualize the information ontained in a distribution of distanes, one an plot ahistogram of the distanes, i.e. one an group the data into bins of a �xed size and ount how many



4 Mireille Boutin, Gregor Kemperdistanes lie in eah bin. Figure 1, 2 and 3 show examples of n-point on�gurations in the planetogether with a histogram of their distanes.
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a bFigure 1: a) A 100-point on�guration, b) Histogram of distanes with bin size 0.1470
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a bFigure 2: a) A 100-point on�guration, b) Histogram of distanes with bin size 0.1993
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a bFigure 3: a) An 80-point on�guration, b) Histogram of distanes with bin size 0.1947Clearly the distribution of distanes is invariant under permutations of the points and underthe (simultaneous) ation of the Eulidean group. The question is whether an n-point on�gurationan be reonstruted from its distribution of distanes.De�nition 1.1. An n-point on�guration P1; : : : ; Pn 2 Rm is alled reonstrutible from dis-tanes if the following holds. If Q1; : : : ; Qn is another n-point on�guration with FP1;:::;Pn(X) =FQ1;:::;Qn(X), then there exists a permutation � 2 Sn and a Eulidean transformation g 2 AOm(R)suh that g(P�(i)) = Qi holds for all i.The notion of reonstrutibility from distanes generalizes naturally to any vetor spae with anon-degenerate quadrati form over a �eld of harateristi not equal to 2.



Reonstruting Point Con�gurations 51.1 Non-reonstrutible on�gurationsIt is lear that in two-dimensional Eulidean spae all triangles are reonstrutible from distanes,and the same is true for all 2-point on�gurations. So the quest for examples of non-reonstrutiblen-point on�gurations beomes interesting for n � 4. Figure 4 shows suh an example. We haveput the (non-squared) distanes along the lines onneting pairs of points. Note that the upperpoint in the �rst on�guration is moved diagonally downward to obtain the seond on�guration,while the other three points remain inert.
4 p10p10 p2p22 4p10p2 p10 p22Figure 4: Two 4-point on�gurations with the same distribution of distanesFurther examples an be onstruted by adding an arbitrary number of additional points on thedotted line and at the same position in both on�gurations (suh as the slightly thiker dot in eahpiture). Thus we get examples of non-reonstrutible n-point on�gurations for any n � 4. Byembedding these into a spae of higher dimension, we also get examples in any dimension m � 2.The fat that we an add points at arbitrary positions on the dotted line shows that the symmetryof the on�guration is not responsible for the fat that it is not reonstrutible.1.2 Relation-preserving permutationsLet K be a �eld of harateristi not equal to 2 (K = C and K = R will be the most importantexamples). Let V be an m-dimensional vetor spae over K with a non-degenerate symmetri bi-linear form h�; �i. With a suitable hoie of a basis, this form is given by h(x1; : : : ; xm); (y1; : : : ; ym)i =Pmk=1 akxkyk with ak 2 K n f0g. If v1; : : : ; vn are vetors in V , then the Gram matrix(hvi; vji)i;j=1;:::;n has rank at most m, hene the (m + 1) � (m + 1)-minors are zero. By thefollowing well-known proposition, this gives all relations between the salar produts of n vetors.Part (b) gives the relations between the distanes between n points. In fat, Proposition 1.2(a) isthe \seond fundamental theorem" of invariant theory of orthogonal groups.Proposition 1.2. Let xi;k be indeterminates over K (i = 1; : : : ; n, k = 1; : : : ;m).(a) Let si;j be further indeterminates (1 � i � j � n). Then the kernel of the mapK[s1;1; : : : ; sn;n℄! K[x1;1; : : : ; xn;m℄; si;j 7! mXk=1 akxi;kxj;kis generated (as an ideal) by the (m+1)� (m+1)-minors of the matrix (si;j)i;j=1;:::;n, wherewe set si;j := sj;i for i > j.(b) Let Di;j be indeterminates (1 � i < j � n). Then the kernel of the mapK[D1;2; : : : ; Dn�1;n℄! K[x1;1; : : : ; xn;m℄; Di;j 7! mXk=1 ak (xi;k � xj;k)2



6 Mireille Boutin, Gregor Kemperis generated (as an ideal) by the (m+ 1)� (m+ 1)-minors of the matrixD = (Di;j �Di;n �Dj;n)i;j=1;:::;n�1 ; (1.1)where we set Di;i := 0 and Di;j := Dj;i for i > j.Proof. For part (a), see Weyl [12℄ or de Conini and Proesi [4, Theorem 5.7℄ (the latter referenetakes are of the positive harateristi ase). Part (b) follows from (a) sine for points P1; : : : ; Pn 2V we havehPi � Pn; Pj � Pni = 12 �hPi � Pn; Pi � Pni+ hPj � Pn; Pj � Pni � hPi � Pj ; Pi � Pji� : (1.2)We will now study monomials ourring in elements of the ideal given by Proposition 1.2(b).From now on it is useful to use sets fi; jg as indies of the d's rather than pairs i; j.Lemma 1.3. Let K be a �eld of harateristi not equal to 2 and let Dfi;jg be indeterminates(i; j = 1; : : : ; n, i 6= j). For an integer r with 1 � r � n � 1 onsider the ideal I generated by all(r � r)-minors of the matrix D := �Dfi;jg �Dfi;ng �Dfj;ng�i;j=1;:::;n�1, where we set Dfi;ig := 0.Let t =Qr�=1Dfi� ;j�g be a monomial of degree r. Then the following are equivalent:(a) The monomial t ours in a polynomial from I.(b) Every index from f1; : : : ; ng ours at most twie among the i� and j� . More formally, forevery k 2 f1; : : : ; ng we have jf� j i� = kgj+ jf� j j� = kgj � 2.Proof. It follows from Proposition 1.2(b) that the ideal I is stable under the natural ation by thesymmetri group Sn. Thus t ours in a polynomial from I if and only if all images of t our.First assume that there exists a k 2 f1; : : : ; ng whih ours more than twie among the i� andj� . By the previous remark we may assume k = 1. If t ours in a polynomial of I it must alsoour in an (r � r)-minor of D (sine deg(t) = r). But in order to obtain t as a monomial in an(r � r)-minor, one has to hoose the �rst row or the �rst olumn of D at least twie, sine entriesinvolving the index 1 only our in the �rst row and olumn. But that is impossible. This provesthat (a) implies (b).Now assume that (b) is satis�ed. Consider the graph G with verties indexed 1; : : : ; r, where thenumber of edges between vertex � and � is jfi� ; j�g\fi�; j�gj, i.e., the number of indies shared bythe �-th and �-th indeterminate in t. By the hypothesis (b) every vertex is onneted to at mosttwo others, hene every onneted omponent of G is a line (inluding the ase of an unonnetedvertex) or a loop (inluding the ase of a loop of two verties orresponding to indeterminatesDfi� ;j�g and Dfi�;j�g whih are equal). By renumbering, we may assume that the �rst onnetedomponent is given by the �rst m verties. By the remark at the beginning of the proof, we mayfurther assume that the �rst m indeterminates in t are Df1;2g; Df2;3g; : : : ; Dfm;m+1g (forming a linein G) or Df1;2g; Df2;3g; : : : ; Dfm�1;mg; Df1;mg (a loop). Sine m � r � n � 1, it an only happenin the �rst ase that the index n is involved in these indeterminates. Thus if n is involved, thenm = n � 1 and t = Qn�1�=1 Df�;�+1g. It is easily seen that in this ase t ours in det(D) withoeÆient 2 � (�1)n�1. Having settled this ase, we may assume that m < n � 1. We proeed byindution on the number of onneted omponents of G.First assume that the �rst omponent is a loop. We wish to build an (r � r)-submatrix of Dwhose determinant ontains t as a monomial. To this end, we start by hoosing the �rst m rowsand the �rst m olumns from D. Temporarily setting all Dfi;ng := 0, we obtain a matrix D0 withD0jDfi;ng=0 = 0BBBBB� 0 Df1;2g � � � Df1;m�1g Df1;mgDf1;2g 0 � � � Df2;m�1g Df2;mg... . . . ...Df1;m�1g Df2;m�1g � � � 0 Dfm�1;mgDf1;mg Df2;mg � � � Dfm�1;mg 0
1CCCCCA :



Reonstruting Point Con�gurations 7Clearly the produt t0 := Df1;2gDf2;3g � � �Dfm�1;mgDf1;mg ours with oeÆient 2 � (�1)m�1 (or�1 if m = 2) in det(D0). Sine the �rst m indeterminates in t form a onneted omponent in G, theindeterminates in t00 := t=t0 involve none of the indies 1; : : : ;m. Thus by indution we an hooser�m rows, all below the m-th row, and r�m olumns, all right of the m-th olumn, suh that t00ours as a monomial of the determinant of the orresponding submatrix D00. Finally, in order toget all of t = t0 � t00 as a monomial in a minor, hoose the rows and olumns as in D00 together withthe �rst m rows and olumns. This yields a submatrix of D of blok struture�D0 �� D00� ;where indeterminates Dfi;jg with both indies � m only our in D0. Now learly t ours withnon-zero oeÆient in the determinant of this matrix.Let us treat the seond ase, so assume that the �rst omponent of G is a line Df1;2g; Df2;3g; : : : ; Dfm;m+1g. Taking rows 1; : : : ;m and olumns 2; : : : ;m+ 1 yields a matrix D0 withD0jDfi;ng=0 = 0BBBBB�Df1;2g Df1;3g � � � Df1;mg Df1;m+1g0 Df2;3g � � � Df2;mg Df2;m+1gDf2;3g 0 � � � Df3;mg Df3;m+1g... . . . ...Df2;mg Df3;mg � � � 0 Dfm;m+1g
1CCCCCA :The produt t0 := Df1;2gDf2;3g � � �Dfm;m+1g ours with oeÆient 1 in det(D0). As above, themonomials in the remaining part t00 := t=t0 of t only involve indies stritly bigger than m+1. Thuswe may hoose r�m rows and olumns whih are all below and right of the (m+1)-st, respetively,to form a submatrix D00 whih has t00 in its determinant. Again, putting together the rows andolumns that we hose yields a submatrix with blok struture as above. We see that also in thisase t ours as a monomial in an (r � r)-minor of D.If two n-point on�gurations have the same distribution of distanes, this means that the dis-tanes of both on�gurations oinide up to some permutation. But the permuted distanes mustagain satisfy the relations given by the ideal from Proposition 1.2. Therefore it is ruial to de-termine how this ideal behaves under permutations of the Dfi;jg. We show that all permutationswhih preserve this ideal are in fat indued from permutations of the n points. This provides theore of our argument.Lemma 1.4. Let K be a �eld of harateristi not equal to 2 and let Dfi;jg be indeterminates(i; j = 1; : : : ; n, i 6= j). For an integer r with 3 � r � n � 1 onsider the ideal I generated by all(r � r)-minors of the matrix D := �Dfi;jg �Dfi;ng �Dfj;ng�i;j=1;:::;n�1, where we set Dfi;ig := 0.Let ' be a permutation of the Dfi;jg whih maps I to itself. Then there exists a permutation � 2 Snsuh that '(Dfi;jg) = Df�(i);�(j)gfor all i; j.Proof. We write '(Df1;2g) = Dfi;jg and '(Df1;3g) = Dfk;lg. Assume that fi; jg \ fk; lg = ;.Then by Lemma 1.3 a monomial t of degree r ours in an element of I suh that t is divisible byD2fi;jgDfk;lg. By the hypothesis, '�1(t) also ours in an element of I . But '�1(t) is divisible byD2f1;2gDf1;3g, ontraditing Lemma 1.3. This argument shows that if the index sets of two Df�;�g'sinterset, then the same is true for their images under '. This will be used several times duringthe proof. Here, after possibly reordering the index sets (reall that we do not assume i < j ork < l) we obtain i = l. Thus '(Df1;3g) = Dfi;kg. Now we write '(Df1;4g) = Dfm;pg and onlude,as above, that fm; pg \ fi; jg 6= ; and fm; pg \ fi; kg 6= ;. Assume, by way of ontradition, thati =2 fm; pg. Then fm; pg = fj; kg, so '(Df1;4g) = Dfj;kg. By Lemma 1.3 a monomial t of degree r



8 Mireille Boutin, Gregor Kemperours in an element of I suh that t is divisible by Dfi;jgDfi;kgDfj;kg. Then '�1(t) also ours ina polynomial from I , but '�1(t) is divisible by Df1;2gDf1;3gDf1;4g. This ontradits Lemma 1.3.Hene our assumption was false and we onlude that i 2 fm; pg, so with suitable renumbering'(Df1;4g) = Dfi;mg.Replaing 4 by any other index between 4 and n, we onlude that '(Df1;�g) = Dfi;�(�)g with� a permutation from Sn (where we may assign �(1) = i). Now take �; � 2 f2; : : : ; ng with � 6= �.Writing '(Df�;�g) = Dfx;yg, we onlude that fx; yg \ fi; �(�)g 6= ; and fx; yg \ fi; �(�)g 6= ;.But assuming i 2 fx; yg (after renumbering i = x, say) leads to the ontradition '(Df�;�g) =Dfi;yg = '(Df1;��1(y)g). Hene fx; yg = f�(�); �(�)g and therefore '(Df�;�g) = Df�(�);�(�)g,whih onludes the proof.1.3 Most n-point on�gurations are reonstrutible from distanesIn this setion K is a �eld of harateristi not equal to 2 (e.g., K = R or K = C ) and V is anm-dimensional vetor spae over K equipped with a non-degenerate symmetri bilinear form h�; �i.Let G = O(V ) � GL(V ) be the orthogonal group given by this form. The following proposition isfolklore.Proposition 1.5. Let v1; : : : ; vn, w1; : : : ; wn 2 V be vetors withhvi; vji = hwi; wji for all i; j 2 f1; : : : ; ng:Set r := minfn;mg. If some (r � r)-minor of the Gram matrix (hvi; vji)i;j=1;:::;n 2 Kn�n is non-zero, then there exists a g 2 G suh that wi = g(vi) for all i.Proof. After renumbering we may assume that A := (hvi; vji)i;j=1;:::;r is invertible. In partiular,v1; : : : ; vr are linearly independent. By the hypothesis, the same holds for w1; : : : ; wr, and vi 7!wi gives an isomorphism between Lri=1Kvi and Lri=1Kwi whih respets the form. By Witt'sextension theorem there exists a g 2 G with g(vi) = wi for i � r. This onludes the proof forn � m. Now assume n > m and take an index i > m. There exist �1; : : : ; �m 2 K suh thatvi =Pmj=1 �jvj . So for 1 � k � m we have hvk; vii =Pmj=1hvk ; vji � �j . It follows that0B��1...�m1CA = A�10B� hv1; vii...hvm; vii1CA :By the hypothesis, it follows that wi an be expressed as a linear ombination of w1; : : : ; wm withthe same oeÆients . Thereforewi = mXj=1 �jwj = mXj=1 �jg(vj) = g(vi):We ome to the main theorem of this setion. We assume that K, V , and m are as above. Wewrite V n for the diret sum of n opies of V , so an n-point on�guration is an element from V n.K[V n℄ is the ring of polynomials on V n.Theorem 1.6. Let n be a positive integer with n � 3 or n � m+ 2. Then there exists a non-zeropolynomial f 2 K[V n℄ suh that every n-point on�guration (P1; : : : ; Pn) with f(P1; : : : ; Pn) 6= 0 isreonstrutible from distanes.



Reonstruting Point Con�gurations 9Proof. The ases n = 1 or m = 0 are trivial. The ase m = 1 will be proved in Setion 2 (seeTheorem 2.7). Therefore we may assume that 2 � n � 3 or 2 � m � n� 2.Take indeterminates Dfi;jg indexed by sets fi; jg � f1; : : : ; ng with i 6= j and form the matrixD := �Dfi;jg �Dfi;ng �Dfj;ng�i;j=1;:::;n�1 ; (1.3)where we set Dfi;ig := 0 as usual. If 2 � m � n�2, let I be the ideal of (m+1)� (m+1)-minors ofD. Eah permutation � 2 Sn indues a permutation '� of the Dfi;jg by '� �Dfi;jg� = Df�(i);�(j)g.Let H � S(n2) be the subgroup ontaining all the '�, and let T be a set of left oset representativesof H , so we have a disjoint union S(n2) = :[ 2T  H:We may assume that id 2 T . Lemma 1.4 says that for every  2 T n fidg there exists an F 2 Isuh that  (F ) =2 I . Set F1 := Q 2T nfidg  (F ). If, on the other hand, 2 � n � 3, set F1 := 1.In either ase, set r := minfn� 1;mg and let F2 be a non-zero (r � r)-minor of D (e.g., hoose the�rst r rows and olumns). Now set F := F1F2.We hoose a basis of V �= Km suh that h�; �i takes diagonal form, so h(�1; : : : ; �m); (�1; : : : ; �m)i =Pmk=1 ak�k�k with ak 2 K n f0g. Let xi;j be further indeterminates (i = 1; : : : ; n, j = 1; : : : ;m), soK[V n℄ an be identi�ed with K[x1;1; : : : ; xn;m℄. Let �:K[Df1;2g; : : : ; Dfn�1;ng℄! K[x1;1; : : : ; xn;m℄be the homomorphism of algebras given by Dfi;jg 7!Pmk=1 ak (xi;k � xj;k)2 (see Proposition 1.2(b)).Reall that I is the kernel of �. Sine  (F ) =2 I for all ' 2 T nfidg and F2 =2 I (sine eah non-zerohomogeneous element in I has degree > m), we obtain that f := �(F ) 6= 0.Let P1; : : : ; Pn 2 V suh that f(P1; : : : ; Pn) 6= 0, and let dfi;jg = hPi � Pj ; Pi � Pji be thedistanes. We have F �df1;2g; : : : ; dfn�1;ng� = f(P1; : : : ; Pn) 6= 0: (1.4)We wish to show that P1; : : : ; Pn form a reonstrutible n-point on�guration. Let Q1; : : : ; Qn 2 Vbe points with distanes d0f1;2g; : : : ; d0fn�1;ng suh that the distribution of distanes oinides withthat of the Pi. Then there exists a permutation ' of the set J := ffi; jg � f1; : : : ; ng j i 6= jg(the index set of the D's) suh that d0fi;jg = d'(fi;jg). There exists a permutation � 2 Sn suh that' =  Æ '� with  2 T . Thus d (fi;jg) = d0f��1(i);��1(j)gfor all fi; jg 2 J . Assume, by way of ontradition, that  6= id. Then n � m+ 2, sine for n � 3all permutations of J are indued from permutations from Sn. Clearly '��1 preserves the ideal I ,hene F 2 I , implies '��1(F ) 2 I . ThereforeF �d0f��1(1);��1(2)g; : : : ; d0f��1(n�1);��1(n)g� = ('��1(F )) (d0f1;2g; : : : ; d0fn�1;ng) = 0;and hene ( (F )) (df1;2g; : : : ; dfn�1;ng) = F �d (f1;2g); : : : ; d (fn�1;ng)� = 0;ontraditing (1.4). It follows that  = id, so d0fi;jg = df�(i);�(j)g for all i; j. We have to showthat there exists g 2 AO(V ) with Qi = g(P�(i)). For this purpose we may assume that � is theidentity. By applying a shift with a vetor from V we may further assume Pn = Qn = 0. Itfollows from Equation (1.2) that the Gram matries (hPi; Pji)i;j=1;:::;n�1 and (hQi; Qji)i;j=1;:::;n�1oinide. Moreover, (1.4) implies that an (r � r)-minor of the Gram matries is non-zero. NowProposition 1.5 yields the desired result.Remark 1.7. For 4 � n � m + 1 (the range not overed by Theorem 1.6), no relations existbetween the distanes dfi;jg of an n-point on�guration. If K is algebraially losed, it follows fromthe surjetiveness of the ategorial quotient (see Newstead [8, Theorem 3.5(ii)℄ or Derksen and



10 Mireille Boutin, Gregor KemperKemper [5, Lemma 2.3.2℄) that for any given values for the dfi;jg there exists an n-point on�gurationwhih has these distanes. Therefore in this ase no n-point on�guration is reonstrutible fromdistanes, with the possible exeption of on�gurations where many of the distanes are the same.It is not entirely lear whether the same holds for K not algebraially losed (e.g. K = R), sine inthis ase the ategorial quotient is no longer surjetive. As an example, for K = R the distanesmust satisfy triangle inequalities. Nevertheless, we expet that also for K = R and 4 � n � m+1,all n-point on�gurations lying in some dense open subset are not reonstrutible from distanes. /1.4 Symmetri n-point on�gurationsThe reonstrutibility test provided by Theorem 1.6 fails for a variety of point on�gurations,inluding all those with repeated distanes.Lemma 1.8. Let P1; : : : ; Pn 2 V with 2 � m � n � 2 and onsider f , the polynomial funtiononstruted in the proof of Theorem 1.6. If the pairwise distanes between the Pi's are not alldistint then f(P1; : : : ; Pn) = 0.Proof. Denote by dfi;jg the distane between Pi and Pj . Assume that there exists i1; j1; i2; j2 withfi1; j1g 6= fi2; j2g suh that dfi1;j1g = dfi2;j2g. Consider the permutation ' 2 S(n2) whih permutesfi1; j1g and fi2; j2g and leaves all the other pairs fi; jg unhanged. Observe that there does not exist� 2 Sn suh that 'fi; jg = f�(i); �(j)g, for all i; j = 1; : : : ; n. Therefore, there exists  2 T n fidgand '� 2 H indued by a permutation � 2 Sn suh that ' =  Æ '�.Let F be any polynomial with F 2 I suh that  (F ) =2 I . We have d fi;jg = df��1(i);��1(j)g,for all i; j = 1; : : : ; n. This means that0 = F �df��1(1);��1(2)g; : : : ; df��1(n�1);��1(n)g� ; sine F 2 I;= F �d (f1;2g); : : : ; d (fn�1;ng)� ;=  F �df1;2g; : : : ; dfn�1;ng� :So one of the fators of f(P1; : : : ; Pn) is zero and the onlusion follows.Corollary 1.9. If an n-point on�guration P1; : : : ; Pn with 2 � m � n� 2 has a non-trivial sym-metry, i.e. if there exists g 2 AO(V ) and � 2 Sn n fidg suh that(g � P1; : : : ; g � Pn) = (P�(1); : : : ; P�(n));then the polynomial funtion f onstruted in the proof of Theorem 1.6 is suh that f(P1; : : : ; Pn) =0.Proof. By the previous lemma, it is suÆient to show that there exists fi1; j1g 6= fi2; j2g suh thatdfi1;j1g = dfi2;j2g. Sine � 6= id, there exists i0 suh that �(i0) 6= i0. We have g � Pi = P�(i), for alli's, so by invariane of the distane under AO(V ), this means that dfi0;jg = df�(i0);�(j)g for all j's.Therefore i1 = i0, i2 = �(i0) j2 = �(j1) and any j1 6= i0; �(i0) will do the trik.This does not mean that no symmetri n-point on�guration is reonstrutible from distanes.Indeed a square is a ounterexample for n = 4 (see Example 1.11 below). We now give a reon-strutibility test whih does not exlude all point on�gurations with repeated distanes.Proposition 1.10. Let P1; : : : ; Pn 2 V be points in an m-dimensional vetor spae (2 � m � n�2)over a �eld K of harateristi not 2 equipped with a non-degenerate symmetri bilinear form h�; �i.Set dfi;jg := hPi � Pj ; Pi � Pji, and assume that the matrix �dfi;jg � dfi;ng � dfj;ng�i;j=1;:::;n�1 hasrank m (the \generi" rank). Let G � S(n2) be the subgroup of all permutations ' with d'(fi;jg) =dfi;jg for all i, j. (In fat, G may be replaed by any smaller subgroup.) Moreover, let H � S(n2) be



Reonstruting Point Con�gurations 11the subgroup of all '� with � 2 Sn, given by '�(fi; jg) = f�(i); �(j)g. Consider a set T � S(n2) ofdouble oset representatives with respet to G and H, e.i.,S(n2) = :[ 2T G H:Assume that id 2 T , and for eah  2 T n fidg hoose F 2 I n  �1(I) (where I is the idealourring in Lemmas 1.3 and 1.4), whih is possible by Lemma 1.4. If( (F )) �df1;2g; : : : ; dfn�1;mg� 6= 0for all  2 T n fidg, then (P1; : : : ; Pn) is reonstrutible from distanes.Proof. Sine the proof is almost idential to the one of Theorem 1.6, we will be very brief hereto avoid repetitions. Let Q1; : : : ; Qn 2 V be points with (squared) distanes d0fi;jg suh thatd0fi;jg = d'(fi;jg) with ' 2 S(n2). Write ' = � Æ  Æ '� with � 2 G,  2 T , and � 2 Sn. Thend (fi;jg) = d(�Æ )(fi;jg) = d('Æ'��1 )(fi;jg) = d'(f��1(i);��1(j)g) = d0f��1(i);��1(j)g;where the �rst equality follows from the de�nition of G. As in the proof of Theorem 1.6, weonlude from this that  = id, so d0fi;jg = d(�Æ'�)(fi;jg) = df�(i);�(j)g for all i, j. The rest of theproof proeeds as for Theorem 1.6.Example 1.11. In this example we show that all rhombi are reonstrutible from distanes. Considera rhombus in K2 with sides of length a and diagonals of length b and  (see Figure 5), so
P1 P2

P4 P3aa b  aaFigure 5: A rhombusdf1;2g = df2;3g = df3;4g = df1;4g = a; df1;3g = b; and df2;4g = :We assume that a, b, and  are all non-zero. If we order the 2-sets in f1; : : : ; 4g as f1; 2g, f1; 3g,f1; 4g, f2; 3g, f2; 4g, f3; 4g, then the \symmetry group" G from Proposition 1.10 is generated bythe permutations (1; 3) and (1; 3; 4; 6), and G is isomorphi to S4. The image H of the embeddingof S4 into S6 is generated by (2; 4)(3; 5) and (1; 4; 6; 3)(2; 5). It turns out that there are two doubleosets in this ase: S6 = GH :[ G H;where  an be hosen as  = (1; 2). Sine m = 2 and n = 4, we have only one generatingrelation, whih is the determinant of the matrix D de�ned in (1.3). Choose this determinant as thepolynomial F . Assume that the rhombus is not reonstrutible. By Proposition 1.10 this implies( (F ) �df1;2g; : : : ; df3;4g� = 0. We obtaina �(a� b)2 + (� b� 2a)� = 0:



12 Mireille Boutin, Gregor KemperWe have b+  = 4a. (This is Pythagoras' theorem, and it also follows from F (df1;2g; : : : ; df3;4g) =b(b+ � 4a).) Substituting this into the above relation yields3a(a� b)(� a) = 0:Sine a 6= 0, this implies a = b or a =  (here we need to assume that har(K) 6= 3), and byinterhanging the roles of b and  we may assume a = b. But this means that our rhombus has infat a bigger symmetry group eG generated by the permutations (1; 2) and (1; 2; 3; 4; 6). But now wesee that S6 = eGH , so there is only the trivial double oset. It follows from Proposition 1.10 thatthe rhombus is in fat reonstrutible from distanes.The omputations for this example were done using the omputer algebra system Magma [2℄. /1.5 Loally reonstrutible n-point on�gurationsIn this setion, V is anm-dimensional vetor spae overK equipped with a non-degenerate symmet-ri bilinear form h�; �i. We now onentrate on the loal haraterization of n-point on�gurations.So we assume that V n is equipped with a norm k � k and that the �eld K is either R or C . This�rst proposition addresses the problem of loal reonstrutibility for on�gurations of points whosemutual distanes are all distint.Proposition 1.12. Let r = min(n � 1;m). Suppose that an n-point on�guration P1; : : : ; Pn 2 Vis suh that its distanes are all distint and its Gram matrix (de�ned as in (1.3)) has rank r. Thenthere exists a neighborhood N of (P1; : : : ; Pn) 2 V n suh that any two n-point on�gurations in Nare in the same orbit under the ation of AO(V ) if and only if their distribution of distanes is thesame.Proof. The distribution of distanes is invariant under AO(V ) so one diretion of the statement istrivial. To prove the other diretion, observe that a minor is a determinant, whih is a polynomialfuntion, and therefore ontinuous. So there exists a neighborhood U of (P1; : : : ; Pn) 2 V n suhthat the Gram matrix of any (Q1; : : : ; Qn) 2 U has a non-zero r-by-r minor.Let us assume the ontrary, so there exist two sequenes of n-point on�gurations fQk1 ;: : : ; Qkng1k=1 and fRk1 ; : : : ; Rkng1k=1 in U , both onverging to P1; : : : ; Pn, and a sequene of per-mutations f'kg1k=1, suh that for every k, Qk1 ; : : : ; Qkn and Rk1 ; : : : ; Rkn are not in the same orbitunder the ation of AO(V ) but the distanes dQkfi;jg = hQki �Qkj ; Qki �Qkj i are mapped to the dis-tanes dRkfi;jg = hRki � Rkj ; Rki � Rkj i by 'k so dRkfi;jg = dQk'kfi;jg for all distint i; j = 1; : : : ; n. SineS(n2) is �nite, we may assume that 'k = ' is the same for every k. Taking the limit, we havelimk!1 dRkfi;jg = limk!1 dQk'fi;jg; for all distint i; j = 1; : : : ; n:By ontinuity of the distane, this implies that for any distint i; j = 1; : : : ; n the distane dfi;jg =hPi � Pj ; Pi � Pji is equal to the distane df�i;�jg = hP�i � P�j ; P�i � P�ji where f�i; �jg = 'fi; jg. Sineall the dfi;jg are distint, then ' = id and thus dRkfi;jg = dQkfi;jg for every distint i; j = 1; : : : ; n andevery k. By Proposition 1.5, this implies that Qk1 ; : : : ; Qkn and Rk1 ; : : : ; Rkn are in the same orbitrelative to AO(V ), for every k whih ontradits our hypothesis, and the onlusion follows.The following proposition addresses the problem of loal reonstrutibility for n-point on�gu-rations in general.Proposition 1.13. Let r = min(n � 1;m). Suppose that an n-point on�guration P1; : : : ; Pn 2 Vis suh that its Gram matrix (de�ned as in (1.3)) has rank r. Then there exists an � > 0 suh thatif the norm k(Q1; : : : ; Qn)� (P1; : : : ; Pn)k < � for some n-point on�guration Q1; : : : ; Qn 2 V withthe same distribution of distanes as that of P1; : : : ; Pn, then Q1; : : : ; Qn and P1; : : : ; Pn are in thesame orbit relative to AO(V ).



Reonstruting Point Con�gurations 13Proof. Again, by ontinuity, there exists a neighborhood U of (P1; : : : ; Pn) 2 V n suh that theGram matrix of any (Q1; : : : ; Qn) 2 U has a non-zero r-by-r minor. Let us assume the ontrary sothere exists a sequene of n-point on�gurations fQk1 ; : : : ; Qkng1k=1 � U onverging to P1; : : : ; Pn,and a sequene of permutations f'kg1k=1, suh that none of the Qk1 ; : : : ; Qkn are in the same orbitas P1; : : : ; Pn under the ation of AO(V ) but the distanes dfi;jg = hPi � Pj ; Pi � Pji are mappedto the distanes dQkfi;jg = hQki �Qkj ; Qki �Qkj i by 'k so d'kfi;jg = dQkfi;jg for all i; j = 1; : : : ; n i 6= j.Again we may assume that 'k = ' is the same for every k. Taking the limit, we obtain thatd'fi;jg = limk!1 dQkfi;jg, for all distint i; j = 1; : : : ; n. By ontinuity of the distane, this impliesthat d'fi;jg = dfi;jg. Therefore, dfi;jg = dQkfi;jg for every k and every distint i; j = 1; : : : ; n. ByProposition 1.5, this implies that Qk1 ; : : : ; Qkn and P1; : : : ; Pn are in the same orbit relative to AO(V )for every k, whih ontradits our hypothesis, and the onlusion follows.When V = Rm , (the ase that interests us the most for appliations) we an atually drop therequirement on the Gram matrix based on the following re�nement of Proposition 1.5.Lemma 1.14. Let G = O(V ) � GL(V ) be the orthogonal group given by the form h�; �i. Letv1; : : : ; vn, w1; : : : ; wn 2 Rm be vetors withhvi; vji = hwi; wji for all i; j 2 f1; : : : ; ng:Then there exists a g 2 G suh that wi = g(vi) for all i.Proof. Observe that sine V = R, the rank of the Gram matrix (hvi; vji)i;j=1;:::;n is equal to thedimension of the vetor spae spanned by v1; : : : ; vn. (This is not true over the omplex �eld.) So wemay assume, after relabeling, that v1; : : : ; v� with � � 1, are linearly independent. By hypothesis,the same is true for w1; : : : ; w�. By Proposition 1.5, there exists g 2 G suh that g(vi) = wi, for alli = 1; : : : ; �.For any k suh that n � k > �, there exists �1; : : : ; �� suh that vk = P�j=1 �jvj . So for1 � k � � we have hvk; vii =P�j=1hvi; vji � �j . It follows that0B��1...��1CA = �(hvi; vji)i;j=1;:::;���10B�hv1; vii...hv�; vii1CA :By the hypothesis, wi an be expressed as a linear ombination of w1; : : : ; wm with the same oeÆ-ients . Therefore wi = mXj=1 �jwj = mXj=1 �jg(vj) = g(vi):Corollary 1.15. For any n-point on�guration P1; : : : ; Pn 2 Rm whose distanes are all distint,there exists a neighborhood N of (P1; : : : ; Pn) 2 (Rm )n suh that any two n-point on�gurations inN are in the same orbit under the ation of AO(V ) if and only if their distribution of distanes isthe same.Corollary 1.16. For any n-point on�guration P1; : : : ; Pn 2 Rm there exists an � > 0 suh that ifthe norm k(Q1; : : : ; Qn) � (P1; : : : ; Pn)k < � for some n-point on�guration Q1; : : : ; Qn 2 V withthe same distribution of distanes as that of P1; : : : ; Pn, then Q1; : : : ; Qn and P1; : : : ; Pn are in thesame orbit relative to AO(V ).



14 Mireille Boutin, Gregor Kemper2 Reonstrution from volumesGiven n points P1; : : : ; Pn 2 R2 in a plane, we may onsider all areas Ai;j;k of triangles spannedby three of these points Pi, Pj , and Pk . Clearly these areas are preserved by the ation of alltranslations and all linear maps with determinant �1. As in the preeding setion, we an onsiderthe distribution of areas, and ask whether an n-point on�guration is reonstrutible from thisdistribution up to the above ation and permutations of the points. Again we will generalize thisto on�gurations of points Pi lying in Km, with K a �eld and m any dimension. Sine we areinterested in invariants whih are preserved by all linear maps with determinant �1, it makessense to onsider volumes of m-simplies spanned by m+1 points Pi0 ; : : : ; Pim . These volumes areonveniently expressed by the determinantsai0;:::;im := det (Pi1 � Pi0 ; : : : ; Pim � Pi0 ) (2.1)(where the Pi are takes to be olumn vetors). The determinants are really the \signed volumes",so we need to onsider them up to signs, whih is equivalent to taking squares. This disussionleads to the following de�nition.De�nition 2.1. Let K be a �eld and n > m positive integers. For an n-point on�gurationP1; : : : ; Pn 2 Km form the \volumes" ai0;:::;im as in (2.1) and the polynomialVP1;:::;Pn(X) = Y1�i0<���<im�n �X � a2i0;:::;im� :(VP1;:::;Pn(X) enodes the distribution of volumes.) An n-point on�guration P1; : : : ; Pn 2 Km isalled reonstrutible from volumes if the following holds: If Q1; : : : ; Qn is another n-pointon�guration with VQ1;:::;Qn(X) = VP1;:::;Pn(X), then there exist a permutation � 2 Sn, a linearmap ' 2 GLm(K) with det(') = �1, and a vetor v 2 Km suh thatQi = ' �P�(i) + v�for all i = 1; : : : ; n.Remark 2.2. (a) If we are working in the plane, i.e., m = 2, we will of ourse speak of reon-strutibility from areas instead of volumes.(b) Form = 1, the above onept of reonstrutibility from volumes oinides with reonstrutibil-ity from distanes introdued in De�nition 1.1. /2.1 Non-reonstrutible on�gurationsAgain the �rst issue is to �nd on�gurations whih are not reonstrutible from volumes. Ourmain interest will be two-dimensional real spae. A omputation in Magma [2℄ yields that in R2all 4-point on�gurations are reonstrutible from volumes. For n = 5 we obtain ounterexamples(whose onstrution also involved Magma omputations). One of the simplest of these is given inFigure 6.We put the points on a grid of length 1. The two on�gurations in Figure 6 lie in di�erent orbitsof S5�AGL2(R), sine in the �rst on�guration all points lie on two parallel lines, whih is not thease in the seond on�guration. But the signed areas ai;j;k are as follows:a1;2;3 a1;2;4 a1;2;5 a1;3;4 a1;3;5 a1;4;5 a2;3;4 a2;3;5 a2;4;5 a3;4;5P 1 1 1 -2 -4 -2 -2 -4 -2 0Q 1 2 2 1 -1 -4 0 -2 -4 -2
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P1 P2P3 P4 P5 Q1 Q2Q3Q4 Q5

Figure 6: Two 5-point on�gurations with the same distribution of areas
Figure 7: Two 6-point on�gurations with the same distribution of areasSo the distributions of areas oinide.For n = 6 we get an even simpler example whih is given in Figure 7.The on�gurations in Figure 7 lie in di�erent orbits of S6�AGL2(R) sine the �rst on�gurationhas three onneting vetors between points whih are equal and the seond one has not. But itis easy to see that the on�gurations have the same distribution of areas. Moreover, we an addan arbitrary number of points on the upper dotted line in both on�gurations to obtain pairs ofn-point on�gurations with equal distributions of areas for n � 6.To get examples in dimension m � 3, one an embed the two-dimensional examples given hereinto m-spae and then add the m� 2 points with oordinates (0; 0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1).2.2 Relation-preserving permutationsIn this setion K is a �eld, n and m are positive integers with n > m, and xi;j are indeterminates(1 � i � n, 1 � j � m). For 1 � i0 < � � � < im � n we take further indeterminates Ai0 ;:::;im . WriteK[A℄ for the polynomial ring in the Ai0;:::;im and let I � K[A℄ be the kernel of the map�: K[A℄! K[x℄; Ai0;:::;im 7! det �xij ;k � xi0 ;k�j;k=1;:::;m :For i0; : : : ; im 2 f1; : : : ; ng pairwise distint, selet the permutation � of the set f0; : : : ;mg suhthat i�(0) < i�(1) < � � � < i�(m) and setAi0 ;:::;im := sgn(�) � Ai�(0) ;:::;i�(m) : (2.2)Lemma 2.3. (a) If i0; : : : ; im+1 2 f1; : : : ; ng are pairwise distint, thenm+1Xk=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 2 I:



16 Mireille Boutin, Gregor Kemper(b) I is generated by the polynomialsPm+1k=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 with 1 � i0 < � � � < im+1 �n and by homogeneous polynomial of degree > 1 whih only involve the An;i1;:::;im with 1 �i1 < � � � < im < n.1() For j 2 f1; : : : ; ng the Aj;i1;:::;im with 1 � i1 < � � � < im � n, ik 6= j, are linearly independentmodulo I.Proof. It is onvenient to write Pi for the (olumn) vetor (xi;1; : : : ; xi;m)T, so for i0; : : : ; im 2f1; : : : ; ng in inreasing order we have� (Ai0;:::;im) = det (Pi1 � Pi0 ; : : : ; Pim � Pi0) ; (2.3)whih is equal toPmk=0(�1)k det �Pi0 ; : : : ; Pik�1 ; Pik+1 ; : : : ; Pim�. This shows that (2.3) is also validif the ij are not inreasing.(a) By (2.3) we have� (Ai0;:::;im) =det� �Pi1 � Pim+1�� �Pi0 � Pim+1� ; : : : ; �Pim � Pim+1�� �Pi0 � Pim+1�� =� �Aim+1;i1;:::;im��� �Aim+1;i0;i2;:::;im�+� � � �+ (�1)m� �Aim+1;i0;:::;im�1� =� �Ai0;:::;im�1;im+1��+ � � �+ (�1)m� �Ai1;:::;im;im+1� :This yields (a).(b) The relations between the � (An;i1;:::;im) are known from lassial invariant theory (seeWeyl [12℄ or de Conini and Proesi [4℄) to be the Pl�uker relations, whih are homogeneousand non-linear. Let J � K[A℄ be the ideal generated by the linear relations given in (b) andthe Pl�uker relations. By (a) we have J � I . Conversely, take f 2 I . Using the linear relationsfrom (b), we an substitute every Ai0;:::;im appearing in f byPmk=0(�1)kAn;i0;:::;ik�1;ik+1;:::;im .In this way we obtain g 2 K[A℄ with f � g mod J , and g only involves indeterminatesAi0 ;:::;im with i0 = n. But f 2 I implies g 2 I , so g lies in the ideal generated by the Pl�ukerrelations. Thus f 2 J .() It follows from (b) that the � (An;i1;:::;im) with 1 � i1 < � � � < im < n are linearly independent.But the same argument an be made with any other index j instead of n. This implies ().The next lemma shows that the linear relations given in Lemma 2.3 are the only ones of theirkind.Lemma 2.4. Let l 2 K[A℄ be a non-zero linear ombination of at most m+2 of the indeterminatesAi0;:::;im . Assume that all the oeÆients in l are 1 or -1, and l 2 I. Thenl = m+1Xk=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 (2.4)with i1; : : : ; im+2 2 f1; : : : ; ng pairwise distint.Proof. Take any Ai0;:::;im whih ours in l. De�ne a homomorphism ': K[A℄ ! K[A℄ by sendingeah Aj0;:::;jm with i0 2 fj0; : : : ; jmg to itself and by sending eah Aj0;:::;jm with i0 =2 fj0; : : : ; jmgto Pmk=0(�1)kAi0;j0;:::;jk�1;jk+1;:::;jm . Lemma 2.3(a) implies that '(f) � f mod I holds for allf 2 K[A℄. Thus '(l) 2 I . But by Lemma 2.3() this implies '(l) = 0. But Ai0;:::;im ours as asummand in '(l) and must therefore be anelled out by something. Hene a summand of the form1The non-linear polynomials are the well-known Pl�uker relations, whih we do not need to present here expliitly.



Reonstruting Point Con�gurations 17�Aj0;i1;:::;im with j0 =2 fi0; : : : ; img must our in l. The same argument an be applied to the otherindies of Ai0;:::;im , and we �nd summands �Ai0;:::;ik�1;jk ;ik+1;:::;im with jk =2 fi0; : : : ; img in l. Wehave already found m+ 2 summands in l, hene these are all summands.Now we apply the same argument to Aj0;i1;:::;im . Doing so we �nd that for eah k 2 f1; : : : ;mgthere must our an indeterminate in l whose indies inlude all of j0; i1; : : : ; ik�1; ik+1; : : : ; im.Ruling out all other possibilities, we see that this indeterminate must be Ai0;:::;ik�1;jk;ik+1;:::;im , sojk = j0. Setting im+1 := j0, we �nd that up to the signs the summands of l are as laimed in thelemma.If K has harateristi 2 then nothing has to be shown about signs and we are done. So assumehar(K) 6= 2 and write l0 :=Pm+1k=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 . Assume that l is neither l0 nor �l0.Sine l0 lies in I by Lemma 2.3(a), the same is true for (l + l0)=2. But (l + l0)=2 is non-zero, hasoeÆients �1, and has fewer than m+ 2 summands. By the above disussion, this is impossible.Hene we onlude that l = �l0. Performing a permutation with sign �1 on the indies transformsl0 into �l0, so the ase l = �l0 is also dealt with.The following proposition is analogous to Lemma 1.4.Proposition 2.5. Let ': K[A℄ ! K[A℄ be an algebra-automorphism sending eah Ai0;:::;im to�Aj0;:::;jm for some j0; : : : ; jm 2 f1; : : : ; ng (where the signs may be hosen independently). If'(I) � I, then there exists � 2 Sn and " 2 f�1g suh that for 1 � i0 < � � � < im � n we have' (Ai0 ;:::;im) = " � A�(i0);:::;�(im):Proof. If n = m+ 1, there is only one indeterminate Ai0;:::;im , so there is nothing to show. Henewe may assume that n � m + 2. Set M := fS � f1; : : : ; ng j jSj = m+ 1g. We have a bijetion :M!M indued from ' by de�ning  (fi0; : : : ; img) = fj0; : : : ; jmg if ' (Ai0 ;:::;im) = �Aj0;:::;jm .For S = fi0; : : : ; img 2 M with i0 < � � � < im we write AS := Ai0;:::;im , so '(AS) = �A (S). Thebulk of the proof onsists of onstruting a permutation � 2 Sn suh that (S) = �(S) (2.5)for all S 2M, where the right-hand side means element-wise appliation of �.Take a subset T � f1; : : : ; ng with m+2 elements and write T = fi0; : : : ; im+1g with i0 < � � � <im+1. By Lemma 2.3(a) the polynomial l = Pm+1k=0 (�1)kATnfikg lies in I , hene also '(l) 2 I .But '(l) = Pm+1k=0 �A (Tnfikg). From Lemma 2.4 we see that eT := Sm+1k=0  (T n fikg) must havepreisely m+ 2 elements. Sine eah  (T n fikg) has m+ 1 elements, there exists a map �T : T !eT � f1; : : : ; ng with  (T n fikg) = eT n f�T (ik)g. Sine  is injetive this also holds for �T , so�T (T ) = eT . Thus for all S 2 M with S � T we have (S) = �T (S) (2.6)(where the right-hand side means element-wise appliation of �T ).In the sequel we will make frequent use of the following rule: If two sets S; S0 2 M have melements in ommon, then also  (S) and  (S0) share m elements. Indeed, there is a linear polyno-mial l of the type (2.4) in whih both AS and AS0 our. By Lemma 2.3(a), l lies in I , hene also'(l) 2 I . But A (S) and A (S0) our in '(l), hene j (S) \  (S0)j = m by Lemma 2.4.Now take two subsets T , T 0 � f1; : : : ; ng with jT j = jT 0j = m + 2 suh that S := T \ T 0 hasm+ 1 elements. We will show that �T and �T 0 oinide on S. WriteT = S [ fjg and T 0 = S [ fkgwith j; k 2 f1; : : : ; ng. For l 2 S set Sl := T 0 n flg, so Sl 2 M. Then jSl \ (T n flg) j = m andjSl \ Sj = m, so  (Sl) shares m elements with  (T n flg) = �T (T ) n f�T (l)g and with  (S) =�T (S) = �T (T ) n f�T (j)g. But  (Sl) annot be a subset of �T (T ) sine this would imply (Sl) = �T ���1T ( (Sl))� =  ���1T ( (Sl))� ;



18 Mireille Boutin, Gregor Kemperontraditing the injetiveness of  , sine Sl 6� T . It follows that  (Sl) = �T (T n fj; lg)[frlg withrl 2 f1; : : : ; ng n �T (T ). We an write this slightly simpler as  (Sl) = �T (S n flg) [ frlg. On theother hand, we have Sl � T 0, so (Sl) = �T 0(Sl) = �T 0 (S n flg) [ f�T 0(k)g:Interseting the resulting equality �T (S n flg)[ frlg = �T 0 (S n flg)[ f�T 0(k)g over all l 2 S yieldsTl2Sfrlg = f�T 0(k)g. Thus rl = �T 0(k) independently of l, and �T (S n flg) = �T 0 (S n flg) for alll 2 S. This shows that �T (l) = �T 0(l) for all l 2 S, as laimed.We proeed by taking any two subsets T , T 0 � f1; : : : ; ng with jT j = jT 0j = m + 2. We anmove from T to T 0 by suessively exhanging elements. Using the above result, we see that �T and�T 0 oinide on T \ T 0. Thus we an de�ne �: f1; : : : ; ng ! f1; : : : ; ng suh that for every subsetT � f1; : : : ; ng with jT j = m+2 the restrition �jT oinides with �T . Now (2.5) follows from (2.6),and it also follows that � 2 Sn.Take S 2M and write S = fi0; : : : ; img with i0 < � � � < im. The de�nition of  and (2.5) implythat ' (Ai0;:::;im) = "S �A�(i0);:::;�(im)with "S 2 f�1g. We wish to show that "S does not depend on S. To this end, take T � f1; : : : ; ngwith jT j = m + 2 and write T = fi0; : : : ; im+1g with i0 < � � � < im+1. By Lemma 2.3(a), l :=Pm+1k=0 (�1)kAi0;:::;ik�1;ik+1;:::;im+1 lies in I , hene '(l) 2 I . But'(l) = m+1Xk=0 (�1)k"Tnfikg �A�(i0);:::;�(ik�1);�(ik+1);:::;�(im+1):Lemma 2.4 implies that all "Tnfikg oinide. This shows that if two sets S, S0 2 M sharem elements,then "S = "S0 . But sine we an move from any S 2 M to any other S0 2 M by suessivelyexhanging elements, it follows that indeed all "S oinide. This ompletes the proof.2.3 Most n-point on�gurations are reonstrutible from volumesIn this setionK is a �eld and V is anm-dimensional vetor spae overK. The following propositionis well known.Proposition 2.6. Let v1; : : : ; vn, w1; : : : ; wn 2 V be vetors with n � m, suh that for all 1 � i1 <� � � < im � n di1;:::;im := det (vi1 : : : vim) = det (wi1 : : : wim) :If at least one of the di1;:::;im is non-zero, then there exists a ' 2 SL(V ) suh that wi = '(vi) forall i.Proof. After renumbering we may assume that d1;2;:::;m is non-zero. Hene v1; : : : ; vm andw1; : : : ; wm are linearly independent, and there exists a (unique) ' 2 SL(V ) suh that wi = '(vi)for all i � m. Assume n > m and take an index i > m. There exist �1; : : : ; �m 2 K suh thatvi =Pmj=1 �jvj . Indeed, by Cramer's rule we have �j = (�1)n�jd1;:::;j�1;j+1;:::;m;i=d1;:::;m. By thehypothesis, it follows that wi an be expressed as a linear ombination of w1; : : : ; wm with the sameoeÆients . Therefore wi = mXj=1 �jwj = mXj=1 �j'(vj) = '(vi):We ome to the main theorem of this setion. We assume thatK is a �eld, V is anm-dimensionalvetor spae over K, and n > m is an integer. We write V n for the diret sum of n opies of V , soan n-point on�guration is an element from V n. K[V n℄ is the ring of polynomials on V n.



Reonstruting Point Con�gurations 19Theorem 2.7. There exists a non-zero polynomial f 2 K[V n℄ suh that every n-point on�guration(P1; : : : ; Pn) with f(P1; : : : ; Pn) 6= 0 is reonstrutible from volumes.Proof. Clearly we may assume m > 0. For indies 1 � i0 < � � � < im � n, let Ai0;:::;im be anindeterminate, and for i0; : : : ; im 2 f1; : : : ; ng pairwise distint de�ne Ai0;:::;im as in (2.2). Let I �K[A℄ be the kernel of the map �: K[A℄ ! K[V n℄ sending Ai0;:::;im to the polynomial � (Ai0;:::;im)with � (Ai0;:::;im) (P1; : : : ; Pn) = det (Pi1 � Pi0 ; : : : ; Pim � Pi0) for P1; : : : ; Pn 2 V . Note that I ispreisely the ideal introdued at the beginning of Setion 2.2.Let G � AutK (K[A℄) be the group of all automorphisms ' of K[A℄ sending eah Ai0;:::;imto �Aj0;:::;jm with 1 � j0 < � � � < jm � n. For eah permutation � 2 Sn and eah " 2 f�1gthere is an automorphism '�;" 2 G with '�;" (Ai0;:::;im) = " � A�(i0);:::;�(im). Let H � G be thesubgroup of all these '�;", and hoose a set T of left oset representatives of H in G with id 2 T .Proposition 2.5 says that for every  2 T n fidg there exists an F 2 I suh that  (F ) =2 I . SetF := An;1;2;:::;m �Q 2T nfidg  (F ) and f := �(F ) 2 K[V n℄. F =2 I implies that f 6= 0.Let P1; : : : ; Pn 2 V suh that f(P1; : : : ; Pn) 6= 0, and for 1 � i0 < � � � < im � n let ai0;:::;im =det (Pi1 � Pi0 ; : : : ; Pim � Pi0 ) be the \signed volume". We haveF (a) = f(P1; : : : ; Pn) 6= 0: (2.7)We wish to show that P1; : : : ; Pn form a reonstrutible n-point on�guration. Let Q1; : : : ; Qn 2 Vbe points and set a0i0;:::;im := det (Qi1 �Qi0 ; : : : ; Qim �Qi0). Assume that the distribution ofvolumes of Q1; : : : ; Qn oinides with that of P1; : : : ; Pn, i.e., VQ1;:::;Qn(X) = VP1;:::;Pn(X). Thismeans that up to signs the a0i0;:::;im are a permutation of the ai0;:::;im , so there exists a ' 2 G suhthat for all H 2 K[A℄ we have ('(H)) (a) = H (a0) : (2.8)There exist � 2 Sn and " 2 f�1g suh that ' =  Æ '�;" with  2 T . By way of ontradition,assume that  6= id. Clearly '��1;" preserves the ideal I , hene F 2 I impliesH := '��1;"(F ) 2 I .Therefore H (a0) = (�(H)) (Q1; : : : ; Qn) = 0, so (2.8) yields( (F )) (a) = ('(H)) (a) = H (a0) = 0;ontraditing (2.7). It follows that  = id, so ' = '�;". We have to show that there exist v 2 Vand  2 GL(V ) with det( ) 2 f�1g suh that Qi =  �P�(i) + v� for all i. For this purpose we mayassume that � is the identity. If " = �1, we apply an (arbitrary) linear map with determinant -1to Q1; : : : ; Qn. This will hange all the signs of the a0i0;:::;im . Hene we may assume that " = 1, so' = id, and (2.8) implies a0i0;:::;im = ai0;:::;im for all index vetors i0; : : : ; im. Sine an;1;2;:::;m 6= 0(this was the purpose of introduing An;1;2;:::;m as a fator into F ), Proposition 2.6 yields that thereexists � 2 SL(V ) suh that �(Pi�Pn) = Qi�Qn for all i 2 f1; : : : ; n�1g. Setting v := ��1(Qn)�Pngives the desired result Qi = �(Pi + v) for i 2 f1; : : : ; ng.Remark 2.8. Everything that was said in Setion 1.4 about reonstrutibility of on�gurationswith symmetries arries over to reonstrutibility from volumes. In partiular, the analogue ofProposition 1.10 holds. Similarly, the analogues of Propositions 1.12 and 1.13 onerning loalreonstrutibility are also true. /2.4 Combining distanes and volumesTaking another look at Figure 4, one noties that although the two on�guration have the samedistribution of distanes, their distributions of areas are di�erent. This brings up the idea to try todistinguish n-point on�gurations (up to the ation of Sn�AOm(K)) by onsidering the distributionof distanes and the distribution of volumes. Could it be that by ombining these data we might



20 Mireille Boutin, Gregor Kemperbe able to separate all orbits? The following example shows that one again this is not the ase.We take the following 4-point on�gurations in R2 (see Figure 8):P1 = (0; 0); P2 = (0; 6); P3 = (6p2; 0); P4 = (2p2;�1);Q1 = (0; 0); Q2 = (0; 6); Q3 = (6p2; 0); Q4 = (2p2; 5):
P1
P2

P3P4 Q1
Q2

Q3
Q4

Figure 8: Two 4-point on�gurations with the same distribution of distanes and the same distri-bution of areasIt is easy to see that the two on�gurations lie in di�erent orbits of S4�AO2(R) (although theylie in the same orbit of S4 � AGL2(R)). We obtain the following distanes pdi;j and signed areasai;j;k: pd1;2 pd1;3 pd1;4 pd2;3 pd2;4 pd3;4 a1;2;3 a1;2;4 a1;3;4 a2;3;4P 6 6 p2 3 6 p3 p57 p33 �36p2 �12p2 �6p2 �30p2Q 6 6 p2 p33 6 p3 3 p57 �36p2 �12p2 30p2 6p2AknowledgmentsWe thank Serkan Hosten and Greg Reid for inviting us to the Symboli Computational Algebraonferene held in London, Ontario in 2002. This is where we �rst met and started this projet.The idea of using distributions of invariants in order to separate the orbits was inspired bydisussions of Mireille Boutin with David Cooper and Senem Velipasalar regarding their work onindexation [10℄. This author is grateful to the SHAPE lab of Brown University for providing theenvironment for these disussions and thus the motivation for this paper.Referenes[1℄ Helmer Aslaksen, Shih-Piug Chan, Tor Gulliksen, Invariants of S4 and the Shape of Sets ofVetors, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 53{57.[2℄ Wieb Bosma, John J. Cannon, Catherine Playoust, The Magma Algebra System I: The UserLanguage, J. Symboli Comput. 24 (1997), 235{265.[3℄ B. Char, K. Geddes, G. Gonnet, M. Monagan, S. Watt, Maple Referene Manual, WaterlooMaple Publishing, Waterloo, Ontario 1990.[4℄ C. de Conini, C. Proesi, A Charateristi Free Approah to Invariant Theory, Adv. in Math.21 (1976), 330{354.[5℄ Harm Derksen, Gregor Kemper, Computational Invariant Theory, Enylopaedia of Mathe-matial Sienes 130, Springer-Verlag, Berlin, Heidelberg, New York 2002.
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