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Abstract

In a previous paper we showed that, for ang> m + 2, most sets of: points inR™ are determined
(up to rotations, reflections, translations and relabetihthe points) by the distribution of their pairwise
distances. But there are some exceptional point configurativhich are not reconstructible from the
distribution of distances in the above sense. In this paperconcentrate on the planar case= 2
and present a reconstructibility test with running tidén'!). The cases of orientation preserving rigid
motions (rotations and translations) and scalings aredidsmissed.

Introduction

In this paper, we present a quick and easy (but slightly ifiggérsolution to the problem of characterizing
the shape of sets af points in Euclidean space, so-callegboint configurations, for any positive integer
More precisely, am-point configurations a collection of: points inR™. Point configurations often arise in
biological and medical imagery, as well as in the fields ohaemlogy, astronomy and cartography, to name
just a few. For example, stellar constellations, minutif@ngerprints, and distinguished points (landmarks)
on medical images represent point configurations.

An important problem of computer vision is that of recognizpoint configurations. In other words,
the problem is to determine whether two point configuratioaee the same shape, that is to say, whether
there exists a rotation and a translation (sometimes a tiefieand/or a scaling are allowed as well) which
maps the first point configuration onto the second. Let usdwsicentrate on the case of rigid motions,
i.e. rotations, translations and reflection&ift. Note that any rigid motion can be written @&/, T'), where
M is an orthogonain-by-m matrix and?” is anm-dimensional (column) vector.

One of the biggest difficulties in trying to identify pointmfigurations up to rigid motions is the absence
of labels for the points: one does not know, a priori, whichnpis going to be mapped to which. If the points
were already labeled in correspondence, then, followiagthicalled Procrustes approach (Gower [10]), one
could analytically determine a rigid motion which maps thstfstring as close as possible (in thésense,
for example) to the second. The statistical analysis of snethods is presented in Goodall [9]. Another
way to proceed would be to compare the pairwise (labeledanliges between the points of each point
configurations (Blumenthal [3]). Indeed, the following Wehown fact holds. See, for example, Boutin and
Kemper [5] for a simple proof.

Proposition 0.1. Letps, ... ,p, andq, . .., ¢, be points inR™. If |p; — p;|| = ||¢: — g;|| for everyi, j =
1,...,n, then there exists a rigid motigid/, T') such thatMp; + T' = q;, foreveryi = 1,...,n.

A variety of methods have been developed for labeling thatpaif twon-point configuration in corre-
spondence. See, for example, Hartley and Zisserman [123] fmscription of some of these methods. But
labeling the points is a complex task which we would mucheatto without. A natural tool for dealing
with this problem is invariant theonyH{lbert 1993, 0lver 1999, Derksen & Kempe2002), which is the
study of algebraic forms that remain unchanged under cettansformations such as the ones defined by
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Value # of Occurrences
1 4

V2 2

Table 1: Distribution of distances of a unit square.

group actions. For example, the sum of two pojmtsp, in R? is invariant under a permutation of the la-
belings of the two pointép,, p2) — (p2,p1). Invariant theory suggests a possible approach for rezogni
unlabeled points. The idea is to compare certain functibtiegpairwise distances between the points of the
configuration which have the property that they are unchabgea relabeling of the points. These are often
calledgraph invariantsand have been computed in the case 6f 4 by Aslaksen et al. [1], and = 5 by

the second author [7, page 220]. Unfortunately, the ease6 or larger still stands as a computational chal-
lenge. Moreover, the invariants used are polynomial fumstiof the distances whose number and degrees
increase dramatically with. They are thus very sensitive to round off errors and noise.

In the following, we study an alternative approach basecheruse of a very simple object: tliéstri-
bution of the pairwise distance¥he distribution of the pairwise distances ofraqpoint configuration is an
array which lists all the different values of the pairwisstdnces between the points in increasing order and
the number of times each value occurs. For example, thétistm of distances of four points situated at
the corners of a unit square is given in Table 1.

Obviously, such a distribution remains unchanged underiginy motion of the point configuration as
well as any relabeling of the points. Far= 1,2 or 3, it is easy to see that the distribution of distances
completely characterizes thepoint configuration up to a rigid motion. The case= 1 was studied by
Piccard (Piccard 1939)). She claimed that twe-point configurations iR whose pairwise distances are
all distinct are the same up to a rigid motion if and only ifithdistributions of distances are the same.
Unfortunately, this claim was disproved by Bloom who pradda counterexample with = 6 (Bloom
1977). For anyn > m + 2, we proved thatmost of the timethis distribution of the pairwise distances
completelycharacterizes the shape of the point configuration (seehl@em 2.6]).

To simplify our discussion, we introduce the concept of retauctibility from distances.

Definition 0.2. We say that the,-point configuration represented by, ..., p, € R™ is reconstructible
from distancesf, for everyqs, ..., q, € R™ having the same distribution of distances, there existgial ri
motion (M, T) and a permutationr of the labels{1,...,n} such thatMp; + T = q.(;), for everyi =
1,...,n.

In the following, we shall often identify a point configurati and one of its representatipn ..., p, €
R™. This is done for simplicity and we hope it will not create amonfusion.

The actual reconstruction of a point configuration witlt be addressed in this paper. However, to put
this research in context, we would like to make a few remarkke problem of reconstructing a point
configuration from its distribution of distances is encauset in X-ray crystallographyattersonl935,Pat-
terson1944) and in the mapping of restriction sites of DNBt¢fik1978,Dix & Kieronska1988,Gwang-
s001988). Form = 1, it is known as theurnpike problenor, in the context of molecular biology, as
the partial digest problem An algebraic solution based on polynomial factorizatidrick runs in pseudo-
polynomial time was given by Rosenblatt and Seym®&odgenblatt & Seymour982). Lemke and Werman
showed that, in the case where the distances are integersothtion runs in polynomial time_émke &
Wermanl988). For the general case = 1, Skiena et al.$kiena, Smith & Lemk#003) used a backtracking
procedure that runs i@ (2"n logn), while Daki¢ Oakic 2000) showed that in certain instances the recon-
struction problem can be written s- 1 quadratic program and solved in polynomial time. Thesaimsts
include the case where the solution to the reconstructiohlem is unique. In general, the complexity of
an algorithm to generate all the pairwise configurationk wigiven distribution of distances depends on the
number of different solutions.

Theorem 2.6 of Boutin and Kemper [5] actually implies thagrthexists an open and dense subset
Q c (R™)™ of reconstructible point configurations. In Section 1, waaentrate on the planar case= 2
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and give an algorithm i (n'!) steps to determine whether a point lies{in A generalization to other
dimensionsn is also mentioned. Section 3 describes how an addition#iilliion can be used in the
planar case in order to compare the orientation of two painfigurations. In Section 4, we show that a
slightly modified distribution can be used to completelyreltéerize most point configurations up to rigid
motions and scalings.

1 Reconstructible configurations

Denote byP the set of pairs
Consider the group of permutatioﬁ%l) of the elements oP. For anyy € S(n) and any{i, j} € P, we

denote byy - {1, j} the image of4, j} underp. For two point configurations to have the same distribution
of distances means that there exists a permut@ti@nS(n) which maps the labeled pairwise distances of
2
the first configuration onto the labeled pairwise distandeth® second configuration. More precisely, if
p1,-..,pn € R™andgq,...,q, € R™ have the same distribution of distances,dgt = ||p; — p;|*> and
d; ; = lla: — g;|1?, for all {1, j} € P. Then there existp € S(n) such that
? 2

dg.(ijy = dy; jy, forall {i, j} € P.

For close enough point configurations, we have proved in&] one does not need to keep track of the
labeling of the points. The proof is very short and we repoedtihere for completeness.

Proposition 1.1. For any n-point configurationp,,...,p, € R™, there exists a neighborhood of
(p1,.--,pn) € (R™)™ such that if(¢1,...,q,) € U is ann-point configuration with the same distribu-
tion of distances as that ¢p,, . . ., p,,), then the two point configurations are the same up to a rigitiono
and a relabeling of the points.

Proof. Let us assume the contrary. Then there exists a sequemepaifit configurationgq?, ..., ¢~}
converging ts, . . ., pn, and a sequence of permutatidns;, 13, C S(g) such that none of thef, . .., ¢*
can be mapped tpy, ..., p, by a rotation and a translation and a relabeling, but theadégtsd; ;, =
lpi — py||* are mapped to the distance§, ;, = lla} — ¢}|*> by ¢i so thatd,, (i ;3 = df, ;, for all
{i,j} € P. By taking a subsequence, we may assumeg¢hat ¢ is the same for every sinceS(g) is
a finite group. Taking the limit, we obtain thdy,.(; ;3 = lim; . d’{“i7j}, for {i,j} € P. By continuity
of the distance, this implies that,.;; ;1 = dy; j;, forall {4,j} € P. Thereforedy; ;; = d"fi,j} for every
{i,j} € P. By Proposition 0.1, this implies thaf, . . ., ¢* andpy, . .., p, are the same up to a rigid motion,
for everyk, which contradicts our hypothesis, and the conclusiom¥esl O

Unfortunately, the size of the neighborhood is unknown aadeg with the point®, ..., p,, so this
local result is not very practical. We now consider the glalage. Observe that some of the permutations in
S(Z) correspond to a relabeling of the points. More precisglgprresponds to a relabeling of the points if
there exists a permutation: {1,...,n} — {1,...,n} ofthe indices such that- {i, j} = {n(¢), 7 (j)}, for
every{i,j} € P. Relabelings are thgood permutations: if the permutation mapping the labeled pagw
distances of a point configuration onto the labeled pairdiseances of another configuration is a relabeling,
then the two configurations are the same up to a rigid motiangéd to know what distinguishes the good
permutations from the bad permutations. The following leanmhich is central to our argument, says that,
informally speaking, a permutation is a relabeling if it ggeves adjacency.

Lemma 1.2. Suppose: # 4. A permutationy € S(n) is a relabeling if and only if for all pairwise distinct
2
indicesi, j, k € {1,...,n} we have

o -{i, 5} Ne-{i,k} #0. (1.1)



4 Mireille Boutin and Gregor Kemper

Proof. Forn < 3, everyp € S(Z) is a relabeling, and the condition (1.1) is always satisfidtlus we may

assumer > 5. Itis also clear that every relabeling satisfies (1.1).

Suppose thap € S(Z) is a permutation of? which satisfies (1.1). Take anyj, k,l € {1,...,n}
pairwise distinct and assume, by way of contradiction, thafi, j} N ¢ - {i,k} N - {i,1} = 0. Then the
injectivity of ¢ and the condition (1.1) imply that we can write {i,;} = {a,b}, ¢ - {i,k} = {a,c}, and
o - {i,l} = {b,c} with a,b,c € {1,...,n} pairwise distinct. Now choose: € {1,...,n}\ {i,4,k,(}.
Theny - {i,m} must meet each of the sefs, b}, {a,c}, and{b, c}. Being itself a set of two elements,
¢ - {i,m} must be one of the sefs:, b}, {a,c}, or {b,c}, contradicting the injectivity ofp. Therefore
(p-{i,j}ﬂ(p-{i,k}ﬂgo- {ial} # 0.

Fix anindexi € {1,...,n} and choosg, k € {1,...,n}\ {i}. Theny - {i,j} Ny {i, k} is a set with
one element, and by the above this one element must alsoéieenyp - {i,1} with € {1,...,n}\ {i}.
Hence(,; ¢ - {i, 1} # (. This allows us to define amap {1,...,n} — {1,...,n} with

e {iit ={o(}. (1.2)

j=1

J#i
Fori € {1,...,n} defineM; := {{i,j} | j € {1,...,n} \ {i}}. Then (1.2) tells us thap - M; C M.
Since|M;| = |M,;| and sincep is injective, this impliesp - M; = M,;. Takei,i’ € {1,...,n} with
o(i) = o(i'). Theny - M; = ¢ - M/, which impliesM; = M, and thereforé = i’. Thuso is injective.

Equation (1.2) implies that for, j € {1,...,n} distinct we can writep - {3, j} = {o(4),~vi(j)} with

~vi:{L,...,n}\ {i} — {1,...,n}. Butapplying (1.2) with the roles afand; interchanged yields

(o} = o+ i3} = o)}

i#] i#]
By the injectivity of o this implieso(j) = 7;(j) for all ¢ # j. We conclude thap - {i,j} = {c(i),0(j)}
forall¢,j € {1,...,n} distinct. But this means thatis a relabeling, as claimed. O

Remark. Forn = 4, Lemma 1.2 becomes false. An example is giverphy 8(4) defined as
2

@'{172}:{172}3 90'{153}:{153}7 @'{174}:{273}3
@'{273}:{174}3 90'{254}:{254}7 @'{374}:{374}'

This permutation satisfies (1.1), but it is not a relabelingmma 1.2 becomes true far= 4 if we add the
additional condition
<

Do non-reconstructible point configurations exist? Thenaass yes. Some examples can be found
in Boutin and Kemper [5]. Fortunately, non-reconstru@ibbnfigurations are rare. The key to this fact
is contained in the functional relationships between theapse distances of a point configuration. These
relationships are well-known from classical invariantadhe For example, a planar configuration of four
pointsp;, p;, px, andp, satisfies

—2dyi 1y digy —dggy —dggay  digry — dgigy — digy
det | dyijy —dpigy —dign —2dg;1 dijry —dgiay —dpgy | =0.
diiey = dgiay — diegy  digey — dggay — dirgy —2d k1

We can also express this relationship as follows. Define dhygnpmial

gU, VW, X,Y,Z) :=2U%Z +2UVX —2UVY —2UVZ —2UXW —2UXZ + 2UYW —
QWY Z —-2UWZ+2UZ%+2V2Y —2VXY —2VXW +2VY?2 —2VY W —
WY Z+2VWZ +2X°W —2XYW +2XYZ +2XW?2 —2XW Z.
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Then
9 (dgigys diikys dgigys dgry> Ay diray) = 0. (1.4)

For simplicity, we continue to concentrate on the planaeecas= 2 although other dimensions can be
treated similarly. Recall tha® denotes the set of paif® = {{i,j}|i # j,¢,j = 1,...,n}. The following
theorem gives a practical test for reconstructibility adrmr point configurations.

Theorem 1.3. Letn > 5, letpy,...,p, € R? andletdy; ;; = |[p;—p;||* be the square of the Euclidean dis-
tance betweenp; and p;, for every {i,j} € P. Suppose that for each choice of indices
iOa ila i27j17j21 kla k27 lla 121 my, My € {17 ceey TL} SUCh that the pairina Z'1}1 {i07 iQ}r {jlaj?}y {kla k?}y
{l1,12}, {m1, ma} € P are distinct, we have

9 (dgioiny> v o> Ak kot At o} Ay imays g in}) 7 0- (1.5)
Thenps, ..., p, is reconstructible from distances.

Proof. Let ¢y, ...,q, € R? be a point configuration with the same distribution of dis@nag, ..., p,.
Write d’{i = lla: — ;|- Then there exists a permutatipne S(n) of the setP such that
9 2

d{{i,j} = dsa'{i,j}'

We wish to use Lemma 1.2 for showing that! is a relabeling, which will imply thap is also a relabeling.
Take any pairwise distinct indicésj, k,1 € {1,...,n}. Then the above equation and (1.4) imply

9 (dofig} Ao ik D (i1 Do e} Dope 5,01 Ao {1} ) =
/ ’ ’ / / / o
9 (d{i,j}vd{zk}v diiays digys gy d{k,z}) =0.

It follows from the hypothesis (1.5) that- {7, j} andy - {k, [} are disjoint (otherwise they would have an
indexio in common). So for disjoint set&, j} and{k, [} we have thaty - {i,j} andy - {k,(} are also
disjoint. This is equivalent to saying thatgf- {i, j} andy - {k,{} have non-empty intersection, then the
same is true fofi, j} and{k,}. Takea,b,c € {1,...,n} pairwise distinct and selti,j} := »=1 - {a, b}
and{k,l} :== ¢~ - {a,c}. Theny - {i,j} Ny - {k,1} = {a,b} N {a,c} = {a}, hence, as seen above,
{i, 7} and{k, 1} have non-empty intersection. Thus the condition (1.1) ehtrea 1.2 is satisfied fap~!. It
follows thaty—!, and hence alsp, is a relabelingip - {i, j} = {n(i),n(j)} with = € S,,. Now it follows
from Proposition 0.1 that there exists a rigid mot{@d, T") such that

Gr(iy = Mp; +T
foralli € {1,...,n}. This completes the proof. O

Remark. Take indicesiy, i1, i2, j1, j2, k1, k2, 11,12, m1,ma € {1,...,n} as in the hypothesis of Theo-
rem 1.3. Explicit computation shows that

9 (dgig.int Ay ats Aikr kb At tat> Ay mat> Wi in}) »

viewed as a polynomial in variablds; ;, contains the termdfm,il}d{ioh}. Notice that the index, occurs
three times in this term (when writing it out as a product eatfihan squaring the first variable). It follows
from Boutin and Kemper [5, Proposition 2.2(b) and Lemma £haj this term does not occur in any relation-
ship of degree 3 between thlg; ;,. In particularg (d{ioyil},d{jhh}, Ay kot Aty 0o} > Ay mads d{i07i2})

is not a relationship between tiig; ;. It follows that there exists a dense, open sulsset (R?)" such

that for all point configurationgps, ..., p,) € € the hypotheses of Theorem 1.3 are met. This provides a
new proof for the fact that “most” point configurations areamstructible from distances, which appearedin
greater generality in [5, Theorem 2.6]. <
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n  #combinations CPU time in secongs
5 100,800 72
6 2,059,200 1,17(
7 19,535,040 9,92(

8 120,556,800 58,375

Table 2: Time required to check for the reconstructibilityaa n-point configuration.

How many tests do we have to conduct for checking that theittond in (1.5) are satisfied? There are
choices foriy, the index that is repeated. For each choicé pthere argn — 1)(n — 2) choices fori; and
iz (since these three indices must be distinct). Having chgsén, andis, there are(g) — 2 choices for the
set{j1, a2}, (g) — 4 choices for the seftky, k2 } and so on. Altogether, we obtain

o ()6 () -9(6) 9 -

1 5
6 (n'' = 7n'" — 8n? 4+ 138n® — 83n" — 983n° + 1074n° + 2996n" — 3672n° — 3296n> + 3840n)

choices.

Corollary 1.4. There exists an open and dense@et (R?)" of reconstructible:-point configurations and
an algorithm inO(n'!) steps to determine whether afy, . . ., p,) € (R?)" lies in.

Remark 1.5. The algorithm given by Theorem 1.3 can be generalizé®itdf n > m + 2. For each choice
of m + 2 indicesiy, . . ., i,,+1 We have the relationship

.....

which can be expressed as (d{io,il}, cee d{im,imﬂ}) = 0 with g,,, an appropriate polynomial ik :=
(mf) variables. Now we obtain a generalization of Theorem 1.3twkays that if for all pairwise distinct

choicesSy, ..., Sy € P with S; N Sy, # () we have

gm (dsl77dsk) 7507 (1'6)
then the configuratiopy, . . . , p,, is reconstructible from distances. We see that there are

k—1

n(n—1)(n - 2) ];[2 ((;‘) _j) — 0 (wrome)

steps for checking the reconstructibility pf, . . . , p,,. It also follows from Boutin and Kemper [5, Propo-
sition 2.2(b) and Lemma 2.3] that there exists a dense odesetd C (R™)" where the inequalities (1.6)
are all satisfied.

2 Numerical Experiments

A simple Matlab code (available upon request) was used tokctoe the reconstructibility of some-point
configurations. We were able to show that sotagoint configurations were reconstructible, with= 5,6, 7
and ever8 in a reasonable time. Corresponding CPU times and numbeamobinations to be checked are
given in Table 2. The computations were done using Matlabionr6.1 on a Sun (4ultraSPARC-II, 480
MHZ).

An important point to observe is that if a point configuratfars to satisfy one of the conditions in
(1.5), it does not mean that it is not reconstructible. Fa@meple, it is not hard to show that every square is
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reconstructible (see Boutin and Kemper [5, Example 2.1R{)X, as one can check, squares satisfy neither
(1.5) nor (1.3). This is due to the fact that squares haveategedistances. Indeed, any plamapoint
configuration with repeated distances will fail the recamstibility test. (See Boutin and Kemper [5] for a
proof of this fact and ideas on how to modify the algorithmeaket care of point configurations with repeated
distances.) Also, the point configuration given by

b1 = (010)7]92 = (770)1p3 = (51 _1)1p4 = (31 _3)ap5 = (1112)

does not satisfy (1.5), even though its pairwise distanceslhdistinct. However, one can show that it is
actually reconstructible. (It suffices to show that the pgations of the distances which makexqual to
zero all violate one of the relationships that exist betwiberpairwise distances of five points. We checked
this numerically.) Our test is thus not perfect.

Observe that, when using points with small integer cootéahe polynomiaj can be evaluated exactly
on a computer. We can thus determine precisely whether spomaconfiguration satisfies the conditions
of (1.5). An interesting question is: given a plamapoint configuration with integer coordinates and lying
inside the boX0, N] x [0, N], what are the chances that it will fail the reconstructipitest? Numerical
experiments showed that it is quite likely, even when coméians with repeated distances are excluded.
For N = 3, we found that about 61% of configurations of four points whdgstances are not repeated
fail the test. (More precisely, we generated all possfle= (x1,41), p2 = (22,92), p3 = (23,93),
pa = (x4,y4) With coordinatesif0, 1, 2, 3} and such that either; < z;1 orz; = x;41 andy; < y;+1, for
alli =1,2,3,4. Of those 1820 four-point configurations, we found that 16868 repeated distances while a
total of 1748 failed the test.) F@Y¥ = 4, this percentage went down to about 30%, which is still qhigg.

It would be interesting to determine whether such high rafdailure are also observed when the coor-
dinates of the points are not necessarily integers. Buteiregal, floating-point arithmetic prevents us for
determining whether a polynomial function is exactly zevidée must thus replace the= 0 in conditions
1 and 2 by|g| < ¢, for somee determined by the machine precision and possible noiseeimtbasure-
ments. However, numerical tests have shown that if the @oates of four points are chosen randomly in
(0,1) (using the Matlabrand function), then the polynomial in (1.5) rarely takes very small values. For
example, after generating 5000 different random four-poamfigurations, we found that only 22 of those
generated @ with a value less tham0~". In another set of 5000 four-point configurations, we fountyo
6 which generated a with a value less tham0—%. In a final set of 10,000 four-point configurations, we
found none which generatedgawith a value less tham0—°. As these values are well above the maximal
error expected with such data when evaluagngsing Matlab, this implies that none of the 20,000 random
four-point configurations we generated could possiblytfel test.

3 The Case of Orientation Preserving Rigid Motions in the Plae

In the previous two sections, we considered the case wheghtipe of an-point configurations is defined
by pi,...,p, € R™ up to rigid motions. Recall that the group of rigid motion&ift, sometimes called the
Euclidean group and denoted BYm), is generated by rotations, translations and reflectiof®’in How-
ever, in certain circumstances, it may be desirable to betabdetermine whether two point configurations
are equivalent up to strictly orientation preserving rigidtions. The group of orientation preserving rigid
motions, sometimes called tkpecial Euclidean groupnd denoted by E(m), is the one that is generated
by rotations and translations Ri™.

For simplicity, we again restrict ourselves to the planaega = 2. Given a planar point configuration
p1,...,pn € RZ, we would like to be able to determine whether any other planpoint configuration
qi,---,qn 1S the same ap,...,p, up to a rotation and a translation? Given apyg;, ¢i in the plane,
denote by, 4. 4. the signed area of the parallelogram spanned; by ¢; andgy — ¢;, SO

Aqi,q5,ar = det(Qi —d4k,4q5 — Qk)-

Since signed areas are unchanged under rotations anditians) the functiod : R x R2 x R? x R? — R
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defined by

_ 2 2 2 2
I(ql’ 492, 93; Q4) - (aquqz-,tm - aql-,qsy%)(aquqz-,qs - aq1,q37q4)
2 2
(aquqz,qa - aq],qz,qzx)(aqlqu»qs — gy 42,01 T 2q1,45,4)

(Agy.g2.05 = 20g1,42,01 T Uq1.,05,04) (2041 05,05 — Qg1 02,00 + Qagrgs.05)  (3:1)

is invariant under the action &fF£(2). Moreover, one can check that it is also invariant under abeding
of the four pointsqy, ¢2, g3, g4. However, it isnot invariant under rigid motions in general. Indeed, any
transformation which is a rigid motion but doest preserve the orientation will transforfrinto —1I.

Given ann-point configurationyy, . . . , ¢, with n > 4, we can evaluaté on all possible subsets of four
points of{qx, ..., ¢, }. We consider the distribution of the value of thé&® i.e. the distribution of the

Liy g igin = 1(Qiy Qs Gis» €iy), Toralliy <ip <iz <ig€{l,...,n}.

Proposition 3.1. Letn > 4 and letpy, ..., p, € R? be ann-point configuration which is reconstructible
from distances. Assume that the distribution of ftseof this point configuration is not a symmetric function
(i.e. that the distribution of thé’s is not the same as the distribution of thd’s.) Letq,...,q, € R? be
anothern-point configuration. Then both the distribution of the distes and the distribution of thiés of
the two point configurations are the same if and only if thetiste a rotation and a translation which maps
one point configuration onto the other.

Proof. Observe that, in addition to being invariant under rotatiand translations of the points, the dis-
tribution of the value of thd'’s is also independent of the labeling of the points. The shoids for the
distribution of pairwise distances. So if twepoint configurations are the same up to a rotation, a transla
tion and a relabeling, then the distribution of the and the distribution of the distances are the same for
both. Thus théf is clear.

Now assume that the distribution of the distances and thefison of thel’s are the same for both point
configuration. Sincey, .. ., p, is, by hypothesis, reconstructible, this implies thatéexists a rigid motion
(M,T) and a relabelingr : {1,...,n} — {1,...,n} such thatMp; + T = g, foralli = 1,...,n.

If (M,T) is notinSE(2), then it maps eacli(p;,, pi,, Pis, Pi,) 10 —I(Diy, Pis, Pig,Diy)). But this is a
contradiction, since the distribution of ttiés is not symmetric. ThusM, T) is in SE(2). This shows the

only if. O
Remark 3.2. One can actually show that if,...,ps is equivalent tog,...,qs up to a rigid motion,
thenpy,...,p4 is equivalent tay, . . ., g4 Up to a rotation and a translation if and onlylifp;,...,ps) =
I(q1,--.,q4). (Indeed/[ is one of the two fundamental invariants of the actios@f(2) x S; onRR? x R? x

R? x R? which we obtained using the invariant theory package in Mag#h By construction, these two
invariants thus distinguish the orbits §#(2) x Ss;. The other invariant is actually unchanged under the
action of the full Euclidean group(2) and sol alone distinguishes the orbits 8f(2) within the orbits of
E(2).

4 The Case of Rotations, Translations and Scalings

In certain circumstances, it may also be desirable to betaldetermine whether two point configurations
are the same up to a rigid motion and a scaling. This can be aing a simple variation of the previous
approach. Given a distribution of distande; ;1 = ||p; — p;|*}, letd.... be the largest distance

dma;ﬂ = max{d{”}|{z,]} S P},

which can be assumed to be non-zero since otherwise allspoairicide. We can consider the distribution

of the rescaled distancééjiﬂ}{iﬁj}ep. In addition to being invariant under rigid motions and beléng,
the distribution of the rescaled distances is also invatiader a scaling of the points

p; — A\p;, foreveryi =1,...,n.



Reconstructible Point Configurations 9

for any A € Ry.

Proposition 4.1. Letn > m+2. There exists an open, dense sulfsef (R™)™ such that if am-point con-
figurationp, ..., p, is such thaipi,...,p,) € Q, thenpy, ..., p, is uniquely determined, up to rotations,
translations, reflections, scalings and relabeling of ttengs, by the distribution of its rescaled pairwise

;g . . . m2 m .
distances{ ’fi{n:m} }i,j1er- Moreover, there is an algorithm Iﬁ)(n#) steps to determine whether

0

(p1,---,0n) €EQ

Proof. Letpy,...,p, € R™ be amn-point configuration which is reconstructible from distae@and whose
pairwise distances are not all zero. Observe that,if. ., ¢, € R™ is anothem-point configuration, then
the distributions of the rescaled distances of both poinfigarations are the same if and only if there exists
a rigid motion followed by a scaling which maps one point cgmfation onto the other. The claim is thus a
direct corollary of Theorem 2.6 from Boutin and Kemper [5flaxf Remark 1.5. O
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