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Abstract

There is a growing need to be able to accurately and efficiently
search visual data sets, and in particular, 3D shape data sets. This
paper proposes a novel technique, calledTopology Matching, in
which similarity between polyhedral models is quickly, accurately,
and automatically calculated by comparing Multiresolutional Reeb
Graphs (MRGs). The MRG thus operates well as a search key for
3D shape data sets. In particular, the MRG represents the skeletal
and topological structure of a 3D shape at various levels of resolu-
tion. The MRG is constructed using a continuous function on the
3D shape, which may preferably be a function of geodesic distance
because this function is invariant to translation and rotation and is
also robust against changes in connectivities caused by a mesh sim-
plification or subdivision. The similarity calculation between 3D
shapes is processed using a coarse-to-fine strategy while preserving
the consistency of the graph structures, which results in establish-
ing a correspondence between the parts of objects. The similarity
calculation is fast and efficient because it is not necessary to de-
termine the particular pose of a 3D shape, such as a rotation, in
advance. Topology Matching is particularly useful for interactively
searching for a 3D object because the results of the search fit human
intuition well.
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1 Introduction and Related Work

Recent developments in modeling and digitizing techniques have
made the construction of 3D computer models much easier. This
has led to an increasing accumulation of 3D models, both on the In-
ternet and otherwise, and has highlighted the need for development
of an efficient technique for searching for a particular 3D object in
a data set. This paper proposes a search method calledTopology
Matchingthat efficiently, accurately, and automatically estimates a
measure of similarity and correspondence between 3D shapes.

When dealing with 2D images, techniques have been proposed
for recognizing a silhouette or contour curve using properties of
shape, such as curvature [10, 15, 19, 24, 27, 34] or using properties
of image, such as color, texture or wavelet coefficient [12, 17, 20].
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These techniques have been used to conduct searches on 2D multi-
media image databases.

When dealing with 3D shapes, there are a number of techniques
for shape matching and feature extraction, for example, extract-
ing features for a design in feature-based CAD/CAM applications
[14, 16, 35, 38], computing a feature from images and matching
3D models in a database for posture estimation or object search in
model-based vision [5, 40], and optimizing some measures for reg-
istration of 3D shapes [2, 7]. However, these techniques are gen-
erally restricted to their specific applications, and inadequate for a
general 3D shape search.

In order to contruct a 3D shape database, it is first necessary to
define a search key on the shapes. Curvature is a possible candidate
for this search key, and methods using curvature distribution have
provided some good results for uses such as 3D shape pose esti-
mation [11, 18, 22, 35, 39]. However, since curvature is associated
with second order derivatives, these techniques are inadequate as a
general search key because they are sensitive to noise and small un-
dulations on the object surface, even if a multiresolutional structure
is introduced.

Other studies have used a global histogram as a search key for
a database of 3D shapes [3, 29]. This type of search key is com-
putationally stable and suitable for representing rough features of
shapes but cannot, however, estimate local features.

In order to handle global and local properties simultaneously,
the selected search key must include a concise representation of the
shape, must catch the features of the shape well, and must be com-
puted automatically and robustly for a general 3D shape database.
In order to satisfy such conditions, we propose using a skeletal
structure of a 3D shape as a search key. There have been many stud-
ies on the extraction of a skeleton from a 3D shape [8, 9, 32, 41]
for use in various applications such as shape deformation, modeling
and path planning.

One well-known skeletal structure is the medial axis model
[4, 8, 9, 32, 34]. However, this model is inappropriate as a search
key for 3D shapes because calculating the 3D version of a medial
axis has a high computational cost and is sensitive to noise and
small undulations. After examining various options, we have cho-
sen a skeleton structure called the Reeb graph as the basis for our
search key. The Reeb graph, defined by Reeb [30], is a skeleton
determined using a continuous scalar function defined on an ob-
ject. Reeb graphs have been used for both modeling 3D shapes
[33, 36, 26] and visualization [13], and certain particular cases are
used in terrain applications [1, 23, 37].

The Reeb graph has a number of characteristics that make it use-
ful as a search key for 3D objects. First, a Reeb graph defined
appropriately always consists of a one-dimensional graph structure
and does not have any higher dimension components such as the de-
generate surface that can occur in a medial axis. Second, by defin-
ing the continuous function appropriately, it is possible to construct
a Reeb graph that is invariant to translation and rotation, robust
against connectivity changes caused by simplification, subdivision
and remesh, and resistant against noise and certain changes due to
deformation. In particular, we have found that such properties can
be provided by using a continuous function based on the distribu-
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Figure 1: Torus and its Reeb graph using a height function

tion of geodesic distance. Finally, since a Reeb graph is associated
with the value of a continuous function, it is possible to introduce a
multiresolutional structure.

In Topology Matching, we propose a Multiresolutional Reeb
Graph (MRG), which is constructed based on geodesic distance, as
a search key. Our use of geodesic distance has been aided by the fact
that the computation of geodesic distance between two points has
been well studied [6, 21, 25, 28, 31]. The geodesic-based MRG al-
lows a similarity between 3D shapes to be calculated using a coarse-
to-fine strategy while preserving the topological consistency of the
graph structures to provide a fast and efficient estimation of simi-
larity and correspondence between shapes.

In section 2, the Reeb graph is described and its extension to a
Multiresolutional Reeb Graph (MRG) is proposed. The continu-
ous function used for Topology Matching is defined in section 3.
Section 4 explains the implementation and the construction of the
MRG. Similarity estimation and its implementation are described
in section 5. Section 6 describes the results of an experiment using
Topology Matching to search for a 3D object. The paper concludes
in section 7 with a discussion of the results and future work.

2 Reeb Graph and Its Multiresolutional
Extension

2.1 Reeb Graph

A Reeb graph is a topological and skeletal structure for an object
of arbitrary dimensions. In Topology Matching, the Reeb graph is
used as a search key that represents the features of a 3D shape. The
definition of a Reeb graph is as follows:

Definition: Reeb graph Let µ : C → R be a continuous
function defined on an objectC. The Reeb graph is the
quotient space of the graph ofµ in C×R by the equiva-
lent relation(X1, µ(X1)) ∼ (X2, µ(X2)) which holds
if and only if

• µ(X1) = µ(X2), and

• X1 andX2 are in the same connected component
of µ−1(µ(X1)).

When the functionµ is defined on a manifold and critical points
are not degenerate, the functionµ is referred to as a Morse function,
as defined by Morse theory e.g., [33], however, Topology Matching
is not subject to this restriction.

It is clear that, if the functionµ changes, the corresponding Reeb
graph also changes. Among the various types ofµ and related
Reeb graphs, one of the simplest examples is a height function on
a 2D manifold. That is, the functionµ returns the value of the z-
coordinate (height) of the pointv on a 2D manifold:

µ(v(x, y, z)) = z.

Most existing studies have used the height function as the function
µ for generating the Reeb graph [33, 1, 23, 36, 37].

Figure 1 shows the distribution of the height function on the sur-
face of a torus and the corresponding Reeb graph. In the left figure,
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Figure 2: Multiresolutional Reeb graph using a height function

the red and blue coloring represents minimum and maximum val-
ues, respectively, and the black lines represent the isovalued con-
tours. The Reeb graph in the right figure corresponds to connectiv-
ity information for these isovalued contours.

2.2 Multiresolutional Reeb Graph

This subsection proposes a new Multiresolutional Reeb Graph
(MRG). The basic idea of the MRG is to develop a series of Reeb
graphs for an object at various levels of detail. To construct a Reeb
graph for a certain level, the object is partitioned into regions based
on the functionµ. A node of the Reeb graph represents a con-
nected component in a particular region, and adjacent nodes are
linked by an edge if the corresponding connected components of
the object contact each other. The Reeb graph for a finer level is
constructed by re-partitioning each region. In Topology Matching,
the re-partitioning is done in a binary manner for simplicity. Fig-
ure 2 shows an example where a height function is employed as the
functionµ for convenience of explanation. In Figure 2(a), there is
only one regionr0 and one connected components0. Therefore,
the Reeb graph consists of one noden0 which corresponds tos0.
In Figure 2(b), the regionr0 is re-partitioned tor1 andr2, giving
connected componentss1 ands2 in r1, ands3 in r2. The corre-
sponding nodes aren1, n2 andn3 respectively. According to the
connectivities ofs1, s2 ands3, edges are generated betweenn1 and
n3, and betweenn2 andn3. Finer levels of the Reeb graph are con-
structed in the same way as shown in Figure 2(c). The MRG has
the following properties:
Property 1: There are parent-child relationships between nodes of

adjacent levels. In Figure 2, the noden0 is the parent ofn1,
n2 andn3, and the noden1 is the parent ofn4 andn6, etc.

Property 2: By repeating the re-partitioning, the MRG converges
to the original Reeb graph as defined by Reeb. That is, finer
levels approximate the original object more exactly.

Property 3: A Reeb graph of a certain level implicitly contains all
of the information of the coarser levels. Once a Reeb graph
is generated at a certain resolution level, a coarser Reeb graph
can be constructed by unifying adjacent nodes. Consider the
construction of the Reeb graph shown in Figure 2 (b) from that
shown in 2 (c) as an example. The nodes{n4, n6} are unified
to n1, {n5, n7, n8} to n2, and{n9, n10, n11} to n3. Note
that the unified nodes satisfy the parent-child relationship.

Using these properties, MRGs are easily constructed and a simi-
larity between objects can then be calculated using a coarse-to-fine
strategy of different resolution levels as described below.

3 Definition of the Continuous Function µ
for Topology Matching

A Reeb graph is always generated by a continuous functionµ. If a
different function is used asµ, the Reeb graph will change. It is im-
portant that the functionµ be carefully defined for the application
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Figure 3: Examples of the distribution of the functionµ and its
isovalued contours for Topology Matching: (a) sphere, (b) cube,
(c) torus and (d) cylinder.

Figure 4: Example of a deformed shape showing distribution of the
functionµ

in question. For example, in terrain modeling applications or when
modeling a 3D shape based on cross sections such as CT images,
the height function has been a useful functionµ because these appli-
cations are strictly bound by height. However, the height function is
not appropriate as a search key for identifying a 3D shape because it
is not invariant to transformations such as object rotation. Though
the use of curvature as the functionµ may provide invariance in a
rotation, it is also not appropriate for our purposes, because a stable
calculation of curvature is difficult on a noisy surface, and small
undulations may result in a large change of curvature, causing sen-
sitivity in the structure of the Reeb graph.

In order to define a functionµ that overcomes such problems, we
use geodesic distance, that is, the distance from point to point on a
surface. Using geodesic distance provides rotation invariance and
resistance against problems caused by noise or small undulations.
In one case, Lazaruset al. proposed a level set diagram (LSD)
structure [26] in which geodesic distance from a source point is
used as the functionµ. However, in this case, the functionµ is
only suitable for constructing a reasonable set of cross sections of
a 3D shape. To make a search key for 3D shapes, the source point
must be determined automatically and in a stable way, which is a
difficult problem. For example, a small change in the shape may
result in an entirely different source point, creating an obstacle for
the construction of a stable Reeb graph.

In order to avoid these difficulties, we construct the functionµ at
a pointv on a surfaceS as follows:

µ(v) =

∫
p∈S

g(v, p)dS (1)

Figure 5: Resampling and subdivision of a mesh

where the functiong(v, p) returns the geodesic distance between
v andp on S. This functionµ(v) has no source point and hence
stable, and it represents the degree of center or edge on a surface.
Sinceµ(v) is defined as a sum of geodesic distance fromv to all
points onS, a small value means that a distance fromv to arbitrary
points on the surface is relatively small, that is, the pointv is nearer
the center of the object.

Here, note that the functionµ(v) is not invariant to scaling of the
object. To handle this issue, a normalized version ofµ(v) is used:

µn(v) =
µ(v)−minp∈S µ(p)

maxp∈S µ(p)

In this normalization,range(S) = maxp∈S µ(p) −minp∈S µ(p)
may also be a candidate for the denominator, however it is not em-
ployed because it amplifies errors whenrange(S) is small, partic-
ularly in the case of a sphere, whererange(S) = 0. The value
minp∈S µ(p) corresponds to a most central part of the object, and
a shift can be introduced to initially match the centers of different
objects when estimating similarity between them, as described be-
low.

Examples of the functionµn(v) defined on several primitive ob-
jects are shown in Figure 3 where the coloring has the same mean-
ing as Figure 1. Notice that the sphere has a constant value of
µn(v) = 0, and more asymmetric shapes have a wider range of
values forµn(v).

The functionµn(v) is particularly useful because it is resistant
to the type of deformation shown in Figure 4. This is because the
deformation does not drastically change the geodesic distance on
the surface.

Thus, the normalized integral of geodesic distance is suitable as
the continuous function for Topology Matching.

4 Construction of the Multiresolutional
Reeb Graph

This section describes how to calculate the functionµn(v) and con-
struct the MRG in practice. Here, we focus on constructing the
MRG from a triangle mesh (or polyhedron mesh) because meshes
are the most common method for representing 3D shapes. Further, a
mesh can generally be easily converted to and from other represen-
tations such as NURBS surfaces, meta-balls(blobby), subdivision
surfaces, etc.

4.1 Calculating the Integral of Geodesic Distance

Methods for calculating an accurate geodesic distance have been
well studied [6, 21, 25, 28, 31], however, when calculating the in-
tegral of geodesic distance using these methods, the computational
cost is quite high. Considering the trade off between computational
cost and accuracy, we employ a relatively simple method in which
geodesic distance is approximated by Dijkstra’s algorithm based on
edge length (described below). However, before using our proce-
dure, the mesh needs to be prepared.

In Topology Matching, because a value of the functionµn is
assigned to each vertex of the mesh, the algorithm will only work
well if the distribution of the vertices is fine enough to represent
the distribution of the functionµn well. It is therefore sometimes
necessary to resample the vertices until all edge lengths are less
than a thresholdp as shown in Figure 5.
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Figure 6: Generation of short-cut edges

Figure 7: Example of bases of geodesic distance and the area of the
bases

Further, special edges called “short-cut edges” may need to be
added to the mesh. If edges of a mesh are uniform in a certain
direction, the accuracy of the calculation ofµ(v) is biased, and re-
sults in an inaccurate calculation ofµn(v). Therefore, short-cut
edges are introduced to modify the uniformity by making the di-
rections of edges isotropic. Figure 6 illustrates the algorithm for
adding a short-cut edge. First, the trianglest1, t2 andt3 which are
adjacent to the triangletc are unfolded on the plane oftc. New
edges are then generated between each of the vertex pairs but only
if an edge is inside the unfolded polygon (< u1 − v1 − u2 −
v2 − u3 − v3 >) and has not been previously generated. In Fig-
ure 6, the new edges are shown by green and red lines and include
(v1, v2), (v2, v3), (v1, u3), (v2, u1) and(v3, u2). In this example,
an edge is not added between(v3, v1) since it would be outside
the unfolded polygon. The length of a generated edge is the Eu-
clidian distance between the corresponding vertices in the unfolded
domain.

After the vertex resampling and short-cut edge generation, the
geodesic distance of each vertex from a base vertex is calculated
using Dijkstra’s algorithm and a binary treeV LIST where the ver-
tices are sorted in ascendant order ofg(v).

Dijkstra’s Algorithm for Geodesic Distance:

Step 1: Initialize g(v) = ∞ about all vertices.

Step 2: Select a base vertexb, setg(b) = 0, and insertb to V LIST .

Step 3: Take the vertexv which has smallestg(v) in V LIST and
remove it fromV LIST .

Step 4: For each vertexva adjacent tov, if g(v) + length(v, va) <
g(va), updateg(va) = g(v) + length(v, va) and insert (or
reinsert)va to V LIST . Notice that the adjacency of vertices is
determined by edges, including short-cut ones.

Step 5: Repeat Step 3 and 4 untilV LIST is empty.

Equation (1) is then discretely approximated by

µ(v) =
∑

i

g(v, bi) · area(bi)

where{bi} = {b0, b1, ...} are the base vertices for Dijkstra’s algo-
rithm which are scattered almost equally on the surfaceS. area(bi)
is the area thatbi occupies, and

∑
i
area(bi) equalsarea(S), the

whole area of the surfaceS. In our procedure,{bi} are selected
using the above Dijkstra’s algorithm with two small modifications:
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Figure 8: Construction of a Multiresolutional Reeb Graph

va is only inserted (or reinserted) intoV LIST at Step 4 ifg(va)
is less than a thresholdr and, if V LIST is empty at Step 5, an
arbitrary unvisited vertex is selected as a newbi, and the proce-
dure is repeated by inserting it intoV LIST . Here,area(bi) is
calculated based on the area of faces composed of vertices whose
distance frombi is less thanr. If the thresholdr is smaller, more
vertices are selected as{bi}. An increase in the number of base
vertices allows a more exact calculation ofµ(v) but requires much
more computation time. In our implementation, we found that an
r =

√
0.005 · area(S) generates about 150 base vertices and

achieves sufficient accuracy. An example of{bi} and area(bi)
is shown in Figure 7 where the black points on the surface are
{bi} and the colored areas correspond to the occupied domains of
area(bi).

Finally, the functionµn(v) is calculated by normalizingµ(v) as
described in section 3 above.

4.2 Construction of the Multiresolutional Reeb
Graph

After the calculation ofµn(v), the Multiresolutional Reeb Graph
(MRG) is constructed. The construction of an MRG is illustrated
in Figure 8. In this case, a height function is used as the functionµ
on a 2D triangle mesh for convenience of explanation. The process
is similar when using geodesic distance as the functionµ on a 3D
shape. We first define the following notation:

R-node: A node in an MRG. The red, green and blue circles in
Figure 8 are R-nodes, with different colors representing dif-
ferent resolution levels.

R-edge: An edge connecting R-nodes in an MRG. The thick black
lines in Figure 8 are R-edges. An R-edge can also connect
R-nodes of different resolutions.

T-set: A connected component of triangles in a region. One T-set
corresponds to one R-node (see subsection 2.2).

µn-range: A range of the functionµn concerning an R-node or a
T-set. For example, theµn-range ofn2 is [0.5, 0.75) in Figure
8.

The construction of the MRG begins with the construction of a
Reeb graph having the finest resolution desired. This Reeb graph
is constructed by first dividing the domain of the functionµn into
K µn-ranges, that is,r0 = [0, 1

K
), r1 = [ 1

K
, 2

K
), ..., rK−1 =

[K−1
K

, 1). The fineness of the resolution is determined by the
number ofµn-rangesK. In Figure 8 (a), the domain is divided
into 4 µn-ranges, that is,r0 = [0, 0.25), r1 = [0.25, 0.5),
r2 = [0.5, 0.75) andr3 = [0.75, 1).
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Second, any triangles lying over the boundaries of theµn-ranges
are subdivided so that every triangle belongs to only oneµn-range
as shown in Figure 8 (b). The position of an inserted vertex is cal-
culated by interpolating the positions of the relevant two vertices in
the same proportion as their value ofµn(v). For example, as shown
in Figure 8 (c), when the triangle composed ofv1, v2 andv3 is di-
vided by the boundaryµn(v) = 0.75, a new vertexvx is inserted
as follows:

vx =
v1(µn(vx)− µn(v2)) + v2(µn(v1)− µn(vx))

µn(v1)− µn(v2)

whereµn(vx) = 0.75.
Thirdly, the T-sets (connected components of triangles) are cal-

culated in eachµn-range, and an R-node is created for each T-set
as shown in Figure 8 (d).

Fourthly, if two T-sets between adjacentµn-ranges are con-
nected, corresponding R-nodes are connected by an R-edge as
shown in Figure 8 (e). This completes the construction of the finest
resolution Reeb graph.

Next, the Multiresolutional Reeb Graph (MRG) is constructed
from the finest resolution Reeb graph by using Property 3 of the
MRG as described in subsection 2.2. That is, the MRG is con-
structed in fine-to-coarse order by unifying adjacent R-nodes while
maintaining their parent-child relationships as shown in Figures 8
(e)→ (f) → (g), wheren5 is the parent of{n0, n1}, n6 is the par-
ent of{n2} etc. While Figure 8 shows only the R-edges connecting
R-nodes of the same resolution, there are also R-edges connecting
R-nodes of different resolutions that are also calculated at this time.
Specifically, the R-edges(n1, n6), (n1, n7), (n2, n5) and(n3, n5)
are generated by the connectivities at the boundaryµn(v) = 0.5.

4.3 Computational Cost for Constructing the Mul-
tiresolutional Reeb Graph

When constructing the MRG, Dijkstra’s algorithm takes
O(V log V ) cost whereV is the vertex count in the mesh
because the size of the binary treeV LIST is O(V ), each insertion
to (or removal from)V LIST takesO(log V ) cost, and there are
O(V ) iterations. Constructing the T-sets (R-nodes) and connectiv-
ities (R-edges) takesO(V ) cost because it is achieved by simply
calculating the connected component of the triangles. Therefore,
Dijkstra’s algorithm is predominant in the overall computational
time. In practice, it occupies approximately 90% of the whole.

According to our experiments, using 150 base vertices for Dijk-
stra’s algorithm gives a sufficient approximation. In this case, an
MRG for a mesh of 10,000 vertices can be calculated in approxi-
mately 15 seconds with a Pentium II 400MHz processor.

5 Matching Algorithm

5.1 Overview

This subsection gives an overview of how similarity is calculated
using MRGs.

First, for each R-nodem, we compute its attribute, called̄m.
The attributem̄ is initially calculated at the finest resolution using
the area and the length of the T-set corresponding to the given R-
node as defined below in subsection 5.4, however, more generally,
we compute

m̄ =
∑

c

c̄ (2)

wherec is the child R-node of the R-nodem. Thus, the attribute of
m is the sum of the attributes of the children ofm.
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Figure 9: Overview of the matching algorithm

The similarity between two R-nodesm andn is defined as the
similarity between their attributes:sim(m̄, n̄). The similarity is
defined such that it satisfies the following conditions:

0 ≤ sim(m̄, n̄) ≤ sim(m̄, m̄) (3)∑
m∈R

sim(m̄, m̄) = 1. (4)

i.e., sim(m̄, n̄) is largest when an R-node is matched with itself
and the sum of similarities is 1 if all R-nodes in an MRGR match
themselves.

Then, the similaritySIM(R, S) between MRGsR andS can
be defined as follows:

SIM(R, S) =
∑

m∈R,n∈S

sim(m̄, n̄),

that is,SIM(R, S) is the similarity for a given set of R-node pairs
{(m0, n0), (m1, n1), ...}, and it takes a value between[0, 1] with a
larger value indicating that the MRGs are more similar. The def-
inition of sim is described in more detail below in section 5.4.
Further, because each MRG forms a graph structure, the R-node
pairs must also preserve the topological consistency of these graph
structures. Therefore, the problem is reduced to finding the R-node
pairs that provide the largest value ofSIM(R, S) while maintain-
ing topological consistency. To avoid a combinatorial explosion of
NP-complexity, in Topology Matching we calculate the similarity
using a coarse-to-fine strategy and maintain a list of the R-nodes,
NLIST , and a list of matching R-node pairs,MPAIR.

Matching Algorithm:

Step 1:(Initialization) Insert the coarsest R-nodes of two MRGsR
andS to NLIST .

Step 2:(Matching) In NLIST , find a matching R-node pair(m ∈
R, n ∈ S) which preserves the topological consistency of the
MRG. At the coarsest level, this matching is trivial. The detailed
process is described in subsection 5.3.

Step 3:(Unpacking) Remove m and n from NLIST and insert
(m, n) to MPAIR. Then, if not at the finest resolution, insert
the child R-nodes ofm andn to NLIST .

Step 4:(Loop) If NLIST is not empty, repeat Step 2 and Step 3. Oth-
erwise, calculateSIM(R, S) usingsim(m̄, n̄) for each element
in MPAIR. The calculation ofsim(m̄, n̄) is described in sub-
section 5.4.

Figure 9 shows an example of the matching algorithm. In Figure
9 (a), the two R-nodesm0 andn0 are inserted toNLIST (i.e. the
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Figure 10: Propagation of a matching label

R-nodes at the coarsest level in the MRGR andS respectively).
In Figure 9 (b),(m0, n0) are matched and are thus unpacked to
their child R-nodes (m1, m2, n1 andn2) which are inserted into
NLIST . In the next iteration,(m2, n2) are matched and then un-
packed as shown in Figure 9 (c), and then in a following iteration
(m4, n5) are matched and unpacked as shown in Figure 9 (d). Note
that while theNLIST is simply the list of the R-nodes, Figure 9
also shows the associated R-edges for convenience of explanation.

5.2 Topological Consistency of the Multiresolu-
tional Reeb Graph

It is clear that nodes in different ‘branches’ of the Reeb graph
should not be matched in order to preserve the topological con-
sistency of the MRGs. The following two rules are introduced to
ensure that topological consistency is preserved.

The first rule is that the R-nodes can be matched only if they
are in the sameµn-range and their parents are matched. The latter
condition is, however, not applied to the coarsest R-nodes because
they do not have a parent. This rule is based on the fact that theµn-
ranges of two R-nodes are generally the same if they correspond to
the same parts of an object. Figure 9 (d) shows an example in which
the R-nodes are displayed with theirµn-range.m5 can match only
with n6 becausem5 andn6 have the sameµn-range[0.75, 0.875),
and their parentsm4 andn5 are matched. Notice thatm5 would
not match any child ofn4 becausem4 (the parent ofm5) did not
matchn4.

The second rule is that R-nodes can only be matched if their
MLISTs are the same, whereMLIST is a list of the matching
labels propagated to that R-node. This rule avoids the matching
of nodes in different branches. For example, consider a case of a
matching between MRGR andS as shown in Figure 10(a) where
the nodes(m0, n0) are matched and we label the matchingX.

After the matchingX, m1 can be matched with eithern1 or n2

if the first rule is satisfied although the latter is incorrect. In order
to avoid this inconsistency, the matching labelX is propagated as
shown by the dotted arrows in Figure 10(b), so thatm1, m2, n1 and
n2 are distinguished. That is,m1 can matchn1, but cannot match
n2 becauseX is propagated tom1 andn1, but is not propagated to
n2. The second rule is implemented by providing each R-node with
the matching list,MLIST . In every matching, the matching label
is propagated in the direction of a monotonic increase or decrease
about theµn-range (i.e.,X is not propagated tom2 andn2 in Fig-
ure 10(b)), and is appended to the appropriateMLISTs. Thus,
R-nodes can only be matched if theirMLISTs are the same.

Note that theMLIST only needs to be maintained for the R-

nodes that are not matched yet. Once the R-node is matched, the
MLIST is unnecessary because it is not used again.

5.3 Finding the Matching of R-node Pairs

This subsection describes how to find the R-node pairs to be
matched, which is the core procedure in the matching algorithm.

First, inNLIST , the R-nodem whosesim(m̄, m̄) is the max-
imum in NLIST is selected as the one side of the matching pair.
Thus, the R-node that affects the final result the most is selected.

Second, using the two rules of topological consistency, the can-
didate R-nodes which could matchm are selected. That is, a candi-
date has the sameµn-range asm, its parent must matchm’s parent,
and itsMLIST must be equal to that ofm. Of course, the candi-
date must also belong to a different MRG thanm.

If there is no candidate which can matchm, m is removed from
NLIST , but nothing is inserted toMPAIR or NLIST , and a
matching label is not propagated becausem is not matched. The
process then returns and repeats the matching steps from the begin-
ning.

If there are candidates that can matchm, one R-noden is se-
lected from among the candidates using the matching function
mat(m̄, n̄) (described below) which takes a larger value when
there is a better match(m, n). Finally, the matching R-node pair
(m, n) (or (n, m)) is returned as the result.

Definition of Matching Function mat(m̄, n̄)

The matching functionmat(m̄, n̄) is defined by considering two
aspects of similarity. We first introduce the functionloss(m̄, n̄)
which represents a measure of how the final similarity is decreased
by the matching(m, n).

loss(m̄, n̄) =
1

2
{sim(m̄, m̄) + sim(n̄, n̄)} − sim(m̄, n̄)

A largerloss(m̄, n̄) means a smaller similarity.
We must also definemat(m̄, n̄) taking adjacent R-nodes (i.e.

the graph structure) into account. Letadj([s, t), m) be the set of
R-nodes adjacent tom whoseµn-ranges are[s, t). The attribute
adj([s, t), m) is then defined as follows:

adj([s, t), m) =
∑

a∈adj([s,t),m)

ā.

Thus, we may definemat(m̄, n̄) as follows:

mat(m̄, n̄) = −loss(m̄, n̄)

−
∑
[s,t)

loss(adj([s, t), m), adj([s, t), n))

Here, we limit theadj([s, t), m) to the R-nodes inNLIST in order
to reduce the computational cost.

5.4 R-node Attribute and Similarity

In Topology Matching, the attributēm of the R-nodem consists of
two parameters; i.e.,̄m = (a(m), l(m)). These parametersa(m)
andl(m) are the ratios of the area and the length of the R-nodem
in the whole object, respectively. While other parameters such as
color can also be considered, we introducea(m) andl(m) as major
parameters because they can be easily and stably calculated for any
mesh. Their definitions are as follows:

a(m): Let area(m) be the area of the T-set corresponding tom,
area(S) be the whole area of the objectS, andrnum be the
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resolution number in the MRG. Then,a(m) is defined as

a(m) =
1

rnum
· area(m)

area(S)
,

where 1
rnum

is introduced because the relevant part of the
object is held by (or incorporated in)rnum R-nodes, each at
different resolution levels.

l(m): Let len(m) be the “length” of the R-nodem:

len(m) = max(m)−min(m)

wheremin(m) andmax(m) are the minimum and maximum
of µn(v) in m. Note thatmin(m) andmax(m) are not al-
ways equal to theµn-range; i.e.,,s ≤ min(m) ≤ max(m) ≤
t when theµn-range is[s, t). The l(m) is defined using
len(m):

l(m) =
1

rnum
· len(m)∑

n
len(n)

wheren are the R-nodes of the finest resolution.

As described in subsection 5.1, the parametersa(m) and l(m)
are first calculated as above at the finest resolution and used to cal-
culate the attributes of the R-nodes at the finest resolution. The
attributes for R-nodes at coarser levels are then calculated using
equation (2) above. For this purpose, the addition of attributes is
defined by

m̄ + n̄ = (a(m) + a(n), l(m) + l(n)).

Notably,l(m) at a coarse resolution can be regarded as a parameter
representing the complexity of the graph occupied bym because a
larger l(m) means thatm is responsible for more R-nodes at the
finest resolution.

We define the similarity between two attributes as a linear com-
bination ofa(m) andl(m).

sim(m̄, n̄) = w ·min(a(m), a(n))

+(1− w) ·min(l(m), l(n))

wherew (0 ≤ w ≤ 1) controls the weighting of the area and length
parameters, andmin(x, y) returns the smaller value. Notice that
sim(m̄, n̄) defined in this way satisfies equations (3) and (4) above.

5.5 Matching at a µn-Region Boundary

One remaining issue is that the structure of an MRG is sensitive
to the placement of the region boundaries of the functionµn. Fig-
ure 11 shows an example in which almost the same objects results
in different MRGs due to slight differences in the locations of the
region boundaries.

Figure 12: Correspondence between two frogs

One way that has been considered to avoid this problem is to
adaptively partition theµn-region based on the positions of crit-
ical points, however, this may cause an unexpected partitioning.
We propose another strategy in which an R-nodem is allowed to
match a set of R-nodes{n0, n1, ...} simultaneously if all the R-
nodes∈ {n0, n1, ...} are adjacent to the same R-node. For exam-
ple, in Figure 11,m1 can match{n1, n2} simultaneously because
n1 andn2 are adjacent to the same R-noden0. In this case, there
are three candidates which can matchm1; i.e.,n1, n2 and{n1, n2}.
The attribute of{n1, n2} is calculated by

{n1, n2} = n̄1 + n̄2.

6 Experiments of Similarity Estimation

In order to test the Topology Matching method, experiments were
conducted to test the efficiency and accuracy of this new search
key. The experiments made use of 230 different polyhedral meshes
selected from the Viewpoint models1, the 3DCAFE free stuff2,
Stanford University dataset3 and our original data. The computer
used was an Intel Pentium II 400 MHz processor with the Linux op-
erating system. Throughout the experiments, the resolution of the
Multiresolutional Reeb Graph (MRG) was 7; i.e., an object (region)
is divided into 64µn-ranges at the finest resolution. The weight pa-
rameter used wasw = 0.5 to control the weight of thea(m) and
l(m) parameters in thesim(m̄, n̄) calculation.

6.1 Correspondence between Two Models

In the procedure of similarity estimation, there is an automatic cal-
culation of which parts in a model correspond with parts in the other
model. Figure 12 shows some corresponding parts in models of a
frog. The red parts represent T-sets whose R-nodes are matched. It
can be seen that they are matched despite the deformation. Notice
that legs on opposite sides may also be matched because whether a

1http://www.viewpoint.com
2http://www.3dcafe.com
3http://www-graphics.stanford.edu/data/3Dscanrep
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Figure 13: Objects used in the matching experiment

Table 1: Results of the matching experiment

#(vertex) (a) (b) (c) (d) (e) (f)
(a) 22998 1.00 0.98 0.73 0.73 0.68 0.66
(b) 22998 0.98 1.00 0.71 0.72 0.67 0.65
(c) 32328 0.73 0.71 1.00 0.94 0.74 0.75
(d) 4041 0.73 0.72 0.94 1.00 0.76 0.76
(e) 34835 0.68 0.67 0.74 0.76 1.00 0.95
(f) 8709 0.66 0.65 0.75 0.76 0.95 1.00

T-set is on the left or right cannot be distinguished by the MRG at
this time.

6.2 Matching Experiment

A matching experiment was conducted using the six models shown
in Figure 13. The mesh pairs{(a),(b)}, {(c),(d)} and{(e),(f)} rep-
resent the same objects, but mesh (b) was generated by rotating,
translating and scaling (Euclidean transformations) mesh (a), mesh
(d) is a simplified model of mesh (c), and mesh (f) is a simpli-
fied model of mesh (e) with added noise and subject to a Euclidean
transformation. The numbers of vertices in each mesh and the re-
sults of the calculated similarities are listed in Table 1. The results
show that Topology Matching can accurately identify objects even
when the connectivities have been changed (simplification), noise
has been added, or there have been Euclidean transformations.

6.3 Search Experiment

Lastly, we also performed a more general experiment to search for
an object from among all 230 mesh models. In this case, the MRGs
for each of the 230 meshes were constructed in advance. In con-
ducting the search, one model is selected from the 230 models, the
similarities between it and the other models are calculated, and the
models are sorted according to the resulting similarity. Some exam-
ple results of the experiment are shown in Figure 14. The selected
model is shown as the key and the models returned with the high-
est similarities are shown under searched objects. All the objects
in Figure 14 are different models; i.e., they are not the result of a
rotation, translation or scaling as in subsection 6.2 above. Figure

key searched objects

(a)
1.00 0.84 0.84 0.81 0.78

(b)
1.00 0.95 0.91 0.90 0.89

(c)
1.00 0.90 0.85 0.81 0.81

(d)
1.00 0.90 0.88 0.85 0.85

(e)
1.00 0.97 0.91 0.90 0.89

(f)
1.00 0.78 0.76 0.58 0.56

Figure 14: Results of the search experiment

15 shows a similarity matrix for all 230 models, with the horizon-
tal and vertical lines showing division into 32 categories. A higher
similarity is displayed as a blacker dot, and a similarity of less than
0.75 is displayed as entirely white. We believe that the results agree
well with general human intuition.

The time required for the calculation of similarity between a
model and the other 230 models varied from1sec. to 37sec., with
an average of about12sec., i.e., on average, it took only0.05sec. to
calculate one similarity. The computation time depends on the R-
node count in the MRG. When calculating the similarity between
MRGsR andS whose R-node counts areM andN , respectively,
the computation cost isO(M · (M + N)) whenM ≤ N , because
each matching propagates its matching label toM + N R-nodes,
and there are at mostM matchings. In our experiments, a sphere
has the minimum R-node count7 (equal to the resolution number)
and provides the fastest search time of1sec. The object with the
maximum R-node count is shown in Figure 14 (f). There are ap-
proximately2, 000 R-nodes, providing the slowest search time of
37sec. The average R-node count is approximately300, providing
the average search time of12sec.

7 Conclusions

In this paper, we presented a new technique called Topology Match-
ing for the accurate, efficient, and automatic calculation of similar-
ity and correspondence between 3D shapes.

A Multiresolutional Reeb Graph (MRG) constructed based on
geodesic distance is used as a key to measuring similarity. The
MRG can be constructed for any type of polyhedral mesh, includ-
ing non-orientable (such as Klein’s bottle), non-closed and non-
manifold surfaces. The similarity is calculated with a coarse-to-fine
strategy using the attributes of R-nodes in the MRG and preserving
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Figure 15: Similarity matrix

topological consistency. Our experiments indicate that Topology
Matching provides a fast and efficient computation of the similarity
and correspondence between shapes and provides results that agree
well with human intuition.

Topology Matching can be used in various applications in which
efficient estimation of similarity is important. For example, 3D
shape search for modeling, automatic searches for 3D shapes
through the Internet, 3D shape catalogs in electronic commerce,
searching surfaces generated from medical images and may even
be used as one of the descriptors for a search key in MPEG7.

Currently, the MRG does not cover full geometric information
for an object, as seen in Figure 12. This aspect was intentionally left
out in order to avoid the troublesome processing required for pose
estimation. In the future, Topology Matching may be expanded for
applications such as morphing or pose estimation by adding addi-
tional geometric information or a means for user intervention to
clarify the correspondence information between shapes.

Topology Matching currently uses R-node attributes related to
area and length in calculating similarity. However, additional at-
tributes, such as the color, texture, curvature etc. can be introduced
if necessary, to provide a more accurate match. Further, if neces-
sary, the weighting of the attributes can be controlled during the
similarity estimation to allow a flexible search according to a user’s
requirements.

In Topology Matching, similarity is estimated based on geodesic
distance. If a deformation does not overly change the geodesic dis-
tance, the deformed object is regarded as same one as the original.
However, it may sometimes be necessary to discriminate between
a deformation such as between Figure 4 (a) and (b). In order to
solve this problem, we are currently working on introducing the
Euclidean distance as the R-node attribute. This will allow the user
to control whether or not the deformation should be detected during
the similarity estimation.

The Topology Matching search method proposed in this paper
is particularly flexible because it can be applied to any objects on

which a functionµ can be defined and the functionµ can be chosen
for the particular object involved. For example, the height func-
tion may be appropriate asµ for terrain data or objects constructed
from cross sections, or density may be appropriate asµ for volu-
metric data. We envision and encourage the extension of Topology
Maching to various areas.
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