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Abstract
Shape deformations preserving the intrinsic properties of a surface are called isometries. An isometry deforms a
surface without tearing or stretching it, and preserves geodesic distances. We present a technique for matching
point set surfaces, which is invariant with respect to isometries. A set ofreference points, evenly distributed on
the point set surface, is sampled by farthest point sampling. The geodesic distance between reference points is
normalized and stored in a geodesic distance matrix. Each row of the matrixyields a histogram of its elements.
The set of histograms of the rows of a distance matrix is taken as a descriptor of the shape of the surface. The
dissimilarity between two point set surfaces is computed by matching the corresponding sets of histograms with
bipartite graph matching. This is an effective method for classifying and recognizing objects deformed with
isometric transformations, e.g., non-rigid and articulated objects in different postures.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Information Systems]: Information Search and
Retrieval I.3.5 [Computing Methodologies]: Computational Geometry and Object Modeling

1. Introduction

Recent developments in 3D modelling and acquisition tech-
niques contributed to the large spread of 3D models in many
fields such as CAD/CAM, architecture, computer entertain-
ment, culture heritage, and medicine. In many contexts 3D
models represent non-rigid or deformable 3D objects, which
may have different postures or deformations. The deforma-
tions that transform a surface without changing its intrin-
sic properties are calledisometries. An isometry preserves
geodesic distances, thus deforms an object without stretch-
ing or tearing its surface (see Figure1). Many surface de-
formations in nature and in industrial applications can be
approximated with isometries, e.g., bending limbs or parts
of living beings’ bodies, natural bending of human organs,
varying facial expressions and moving components of artic-
ulated objects. In an articulated object components are at-
tached through joints and can move about.

Object recognition, retrieval and classification in these

† This research was supported by the DFG Graduiertenkolleg
1042 “Explorative Analysis and Visualization of Large Information
Spaces”.
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Figure 1: A point set surface representing an articulated
object is shown in two different postures after applying an
isometric deformation. The geodesic distance between the
selected points as well as the geodesic path does not change
with the deformation.

contexts require an isometry-invariant comparison of 3D
objects. In industrial part/component inspection and in
CAD/CAM engineering applications 3D models of articu-
lated objects can be scanned, modelled and stored in dif-
ferent postures. Similarly, human organs may be subjected
to different deformations when acquired via medical scan-
ning equipments. Another interesting application is 3D face
recognition, where facial expressions can be approximated
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by isometric deformations of the facial surface [BBK05].
In this case an isometry-invariant comparison would allow
face recognition despite different expressions with which the
faces could be acquired.

In this paper we consider the problem of isometry-
invariant matching of point set surfaces. A point set surface
in R

3 is described by a set of sample points. A point-based
representation of a surface can be enriched with attributes
approximating the properties of geometry and material such
as surface orientation and diffuse/specular color. For exam-
ple, to achieve realistic rendering each sample point is com-
monly taken as a circular (or elliptical) disk of a certain area
to approximate the surface between the sample points. This
rendering primitive is calledsurfel [PZvBG00]. Point set
surfaces received much attention in the last years for their
natural relation to 3D scanning techniques and their flexi-
ble representation, which makes them suitable for particular
tasks such as interactive modelling/rendering, simulation of
physical phenomena, and multi-resolution and out-of-core
methods [GP07]. Since a point set surface is described by
a set of sample points inR3, it can be considered as a dis-
cretization and basic representation of a surface. This has
the advantage that algorithms for point based representations
can also be applied to any other surface representations (e.g.,
triangle meshes, NURBS, etc.) after a suitable sampling.

2. Related work and approach

3D shape descriptors and object matching invariant with re-
spect to isometries were conceived by other authors, who
mostly focussed on triangle mesh representations.

Hilaga et al. [HSKK01] presented a technique to match
the topology of triangulated models, by comparing Multires-
olution Reeb Graphs (MRGs). The MRG was constructed by
considering a suitable discrete approximation of the func-
tion µ(v) =

∫
p∈Sg(v, p)dS defined on the triangulated sur-

face S of the model, whereg(v, p) is the geodesic dis-
tance betweenv, p ∈ S. Their algorithm for matching two
MRGs is a coarse-to-fine strategy, which searches the node
pairs providing the largest value of similarity while main-
taining topological consistency. Similarly to [HSKK01],
Hamza and Krim [HK03] considered a discrete approxima-
tion of the global squared geodesic distance functionµ2(v) =∫

p∈Sg(v, p)2dSdefined on the triangulated surfaceS. µ2(v)
was computed by considering as pointsv, p∈ Sonly the cen-
troidsci of a subsetS′ ⊂ Sof m triangles of the meshS. The
resultsµ2(ci) were then assumed as random variables with a
common probability density function, which was considered
as statistical shape descriptor. The dissimilarity between two
objects was calculated by computing the Jensen-Shannon
divergence between the corresponding statistical shape de-
scriptors.

Elad and Kimmel [EK03] proposed a canonical represen-
tation for triangulated surfaces, which is invariant with re-
spect to isometries. A surface inR3 was transformed into

canonical coordinates in the Euclidean spaceR
m by ap-

plying multi-dimensional scaling (MDS). In this canonical
representation the geodesic distances on the original sur-
face were approximated by the corresponding Euclidean dis-
tances. The matching problem of non-rigid and deformed
objects was then reduced to the problem of matching rigid
objects embedded inRm, which can be approached with well
known algorithms.

Mémoli and Sapiro in [MS05] compared point clouds
(representing dense samplings of manifolds) by computing
an approximation of the Gromov-Hausdorff (GH) distance
between two compact metric spaces. They considered the
geodesic distance as a metric on surfaces. The GH distance
is an extension of the symmetric Hausdorff distance, and in-
tuitively measures how far two compact subsets of a metric
space are from being isometric. They showed that the com-
putation of GH distance leads to a combinatorial problem.
They proposed an heuristic, which progressively constructs
approximations of the GH distance of subsets of the point
clouds by minimizing the approximation error point-wise.

Bronstein et al. [BBK06] approximated the GH distance
between two smooth surfaces using a generalized MDS al-
gorithm to compute the minimum-distortion between those
surfaces. They proposed a multi-resolution minimization al-
gorithm minimizing a cost function approximating the dis-
tortion map between two triangulated surfaces. This ap-
proach was also used to compute an approximation of a non-
symmetric partial embedding distance, which intuitively
measures how similar a patchY′ of the surfaceY is to the
surfaceX.

Mémoli in [Mém07] reformulated the problem of approx-
imating the GH distance between compact metric spaces as
a mass transportation problem, where the mass of each sam-
ple point of the metric spaces is expressed as a probability
measure. This reformulation leads to a quadratic optimiza-
tion problem with linear constraints, which is approached
with a heuristic relying on solving successive linear opti-
mization problems. Moreover, the author provided a theo-
retical framework, which allows to understand the compu-
tational complexity of the Gromov-Hausdorff distance and
its relation to other metrics and matching methods presented
in [HK03,EK03,MS05,BBK06].

Reuter at al. in [RWP06] compared two triangulated sur-
faces by computing the distance between two isometry-
invariant feature vectors given by the firstn eigenvalues of
the Laplace-Beltrami operator. Jain and Zhang in [JZ07]
compared non-rigid objects by matching spectral embed-
dings, which are derived from the eigenvectors of affinity
matrices computed considering geodesic distances.

Interesting methods for comparing point set surfaces
were presented in [CZCG05] and [DGG04]. Carlsson et
al. [CZCG05] compared barcode descriptors of point clouds
computed by using the persistence homology theory. Dey et
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Figure 2: Construction scheme of our isometry-invariant
shape descriptor.

al. [DGG04] compared noisy point clouds, by matching sig-
natures extracted from segmented parts of the point sets by
making use of the Morse theory. Surveys on matching and
retrieving 3D shapes can be found in [TV04] and [BKS∗05].

Similarly to [MS05,Mém07] our method compares point
set surfaces by matching metric spaces described through
geodesic distance matrices. We formulate this problem as
bipartite graph matching, which leads to a more efficient
and effective matching of point set surfaces than [MS05].
As in [EK03,HK03] we extract an isometry-invariant shape
descriptor (SD) from a geodesic distance matrix. Instead of
considering a global histogram roughly describing the entire
surface [HK03], our SD consists of a small set of local his-
tograms each describing the surface as seen from a specific
reference point. This produces a more accurate description
of the intrinsic properties of the surface, which leads to a
better retrieval effectiveness.

The main idea of our method is expressed in the scheme
shown in Figure2. A set of N random reference points,
evenly distributed on a point set surface, is selected (see
Section4). The geodesic distance between every pair of
reference points is then normalized and stored in a matrix
called geodesic distance matrix (GDM) (see Section5). The
geodesic distances are computed by applying the Dijkstra
algorithm on an extended sphere-of-influence graph (eSIG)
constructed from the point set surface (see Section3). The
similarity of two point based models is then computed by
matching the statistical shape descriptors extracted from the
corresponding GDMs. Each row of the GDM is associated to
the histogram of its elements and collected into a set of his-
tograms, which describes the shape of the surface (see Sec-
tion 5). Matching two sets of histograms is achieved by bi-
partite graph matching. Our method is invariant with respect
to isometric and similarity transformations (translation, ro-
tation) and scaling.

3. Computing geodesic distances on point set surfaces

In this section we briefly resume our technique to compute
fast approximations of geodesic distances between points
on a point set surface [DRSK06]. A geodesiccan be intu-
itively defined as the shortest path between two points on a
surface. Its length is the geodesic distance between its end

points. The shortest path is computed by applying Dijkstra’s
algorithm on an graph, which is constructed from the point
set and approximates the surface topology and geometry.
We construct anextended sphere-of-influence graph(eSIG),
which produces a good description of non-smooth surfaces
and better accommodates variations in the point sample den-
sity than other graphs proposed in the literature. The eSIG
is constructed from a point set surfaceS= {v1, ..,vn}. The
sphere centered at the point samplevi with radius given by
the distance to the nearest neighbor is called thesphere of
influenceof vi . The SIG is the graph with verticesvi in
which two verticesvi and v j (i 6= j) are connected by an
edgeei j if the corresponding spheres of influence intersect.
Each edgeei j is weighted by the Euclidean distance between
the connected vertices. We extend the concept of SIG by
considering the surfel-based representation used for render-
ing our point set surfaces. We connect two vertices by an
edge only if the corresponding surfels have approximately
the same orientation. However, in presence of noise or ir-
regular sampling a SIG may produce small clusters of con-
nected points that are inter-cluster disconnected even though
they are part of the same surface component. To overcome
this problem the SIG is extended as in [KZ04] by setting
the radius of the spheres centered at each pointvi to the dis-
tance to itsk-th nearest neighbor withk > 1, a parameter
of the method. The extraneous long edges produced in the
graph using this approach are then pruned with statistical
methods, e.g., discarding outliers based on quartiles. We call
the resulting graph eSIG. The computation of the eSIG takes
O(|S| log|S|) in time.

This approach provides fast approximations of the
geodesic distances on point/surfel-based surfaces. Since the
resulting geodesic paths are constrained to pass through the
sample points (surfel centers), the accuracy of this method
depend on the sampling and is sensitive to noise. In our ap-
plication deficiencies in the sampling are well compensated
by the extended edges of the eSIG. However, when needed
the approximation error can be reduced by using more accu-
rate methods, which are robust with respect to noise at the
cost of higher execution times [RDSK06].

(a) (b)

Figure 3: (a) 2D view of an extended sphere-of-influence
graph (eSIG). (b) Geodesic path computed with Dijkstra’s
algorithm on an eSIG constructed from a surfel-based
model.
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4. Sampling point set surfaces

The first step of our method is to select a set ofN random
points from a point set surface. These random points will
serve asreference pointsto generate anN×N GDM. Since
we aim at capturing the geometrical and topological struc-
tures of a surface, we require the reference points to be prop-
erly distributed over the surface.

The problem of sampling a surface is well studied in com-
puter graphics [GP07, MF92, EK03, MD03, NS04], e.g., in
point based rendering, in painterly rendering systems, and in
mesh optimization and simplification. Surfaces are also sam-
pled in several matching methods [OFCD02, EK03, TV04,
NS04]. In these methods, a surface is approximated by a tri-
angular mesh that is uniformly sampled as a preliminary step
of a shape feature extraction algorithm. This sampling strat-
egy basically consists in picking random triangles with prob-
abilities proportional to their area, and generate random sam-
ple points inside them with equal probability per unit area.
The uniform sampling is widely adopted in many methods,
since it is simple to implement and fast to execute. How-
ever, it is not always the optimal choice for creating shape
descriptors. In fact, uniform sampling methods may gener-
ate samples that are very close to each other and non-evenly
distributed on the surface (see Figure4a). For shape anal-

(a) (b)

Figure 4: Uniform sampling vs. evenly spaced sampling of
a point set surface, rendered using surfels.

ysis and matching it is important that the spacial distribu-
tion of points captures the shape of the object, so that a
shape descriptor does not miss important geometric struc-
tures. Nehab and Shilane in [NS04] showed that the use of a
non-uniformly and evenly distributed sampling can improve
the effectiveness of surface matching methods. Encouraged
by that result we adopt a sampling strategy, which gener-
ates a set of reference points non-uniformly and evenly dis-
tributed over a point set surface. Among the technique pro-
posed in computer graphics to obtain a sampling of surfaces
in R

3 with those features [MF92, ELPZ97, MD03, NS04],
we considered the Farthest Point Sampling (FPS) algo-
rithm [ELPZ97], which was efficiently extended for triangu-
lar meshes and point clouds by Moenning et al. [MD03]. The
FPS is a fast iterative algorithm running inO(N logN) time,

whereN is the number points to be selected. It has the advan-
tage to be efficient, easy to implement with our framework,
and generates sample points whose distances to each other
have suitable lower and upper bounds [ELPZ97]. The main
idea of the FPS is to select, at each iteration, the point of
the surface, which is the farthest from all currently selected
points. In practice, at each iteration the FPS selects the ver-
tex of the Voronoi diagram (induced by the current set of se-
lected points on the surface) having the largest geodesic dis-
tance to the centers of the adjacent Voronoi cells. We run the
FPS on a point set surfaceSby starting from the two points
at maximal geodesic distance tillN sample points have been
selected. We call those sample pointsreference points.

5. Computing and matching geodesic distance matrices

Given a setQ of N reference points sampled on a point set
surfaceS, we compute the associated geodesic distance ma-
trix (GDM) of size N×N. Each elementmi j of the GDM
stores the geodesic distanceg(qi ,q j ) between the sample
pointsqi ,q j ∈ Q, associated to the ith row and the jth col-
umn, respectively. A GDM is symmetric with diagonal el-
ements equal to 0. The GDM is normalized to the sum of
all geodesic distances. Figure2 shows a GDM as an image,
where each element is coded by a gray scale color: the value
0.0 is coded as black and the maximal value as white.

The dissimilarity between two point set surfaces can be
estimated by comparing their corresponding GDMs [MS05].
The indices of the GDMs’ rows and columns indicate the
order in which the reference points are associated to them.
This order is arbitrary. To compare two surfaces sampled by
N points each we match the sample points such that the cor-
responding (reordered) geodesic distances on both surfaces
are as similar as possible.

Formally, letN be the number of rows and columns of a
GDM, andπ : {1, ..,N}→{1, ..,N} a permutation of the set
{1, ..,N} of indices of its rows and columns. The problem of
comparing two GDMsMX andMY can be stated as finding
the permutationπ, which minimizes the distance function
dπ(MX ,MY) betweenMX andMY, where

dπ(MX ,MY) = ∑
1≤i< j≤N

|m(X)
i j −m(Y)

π(i)π( j)|, (1)

and m(X)
i j is the element stored in the ith row and jth col-

umn ofMX , andm(Y)
π(i)π( j) is the element ofMY given byπ(i)

andπ( j), which are associated by the permutationπ to the
indicesi and j, respectively. Thus, the permutationπ estab-
lishes the correspondence between the rows and columns of
MX and the rows and columns ofMY. The dissimilarity value
betweenMX andMY is then given by

δ(MX ,MY) = min
π∈ΠN

dπ(MX ,MY), (2)

whereΠN is the set of all permutations of the set{1, ..,N} of
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row and column indices ofMY. Thus, this approach implies
a search over the setΠN, and needs to be addressed with
combinatorial methods. The computation ofδ(MX ,MY) is
time consuming, since the size ofΠN is |ΠN| = N!.

We reformulate this problem as a bipartite graph match-
ing [KV00] to make it computationally tractable. We asso-
ciate to each row of the GMDsMX andMY a histogram of
its elements. Letqi be the reference point associated to the

row i of the GDMMX , the histogramh(X)
i describes the dis-

tribution of the geodesic distances between the pointqi and
all the reference points associated to the other rows ofMX .

h(X)
i can then be considered as a statistical shape descriptor

of the point set surfaceX as seen fromqi . The generated his-
tograms have a small number of binsB, which depends on
the number of reference points, e.g.,B = 16 for N = 256.
With this approach each GDM (N×N) is described by a set
of N histograms ofB bins, which are stored and used as a
shape descriptor for the point set surface.

The problem of matching two GDMs is then turned into
the problem of finding the best match between two sets of
N histograms, which can be modelled as a bipartite graph
matching problem [KV00]. A complete undirected bipartite
graphG = (V,E) is constructed by taking as set of vertices

V the set of histogramsh(X)
i andh(Y)

j ,1 ≤ i, j ≤ N, respec-
tively, associated to the rows of the matrixMX andMY. Each

histogramh(X)
i of the matrixMX is connected to every his-

togramh(Y)
j of the matrixMY through an edgeei j , which is

added to the set of edgesE of G (see Figure5). Each edge
ei j ∈ E is then weighted with a suitable metric.

Figure 5: Histogram based approach for matching geodesic
distance matrices (GDMs). Each row of the GDMs MX and

MY of size N×N is associated to a histogram h(X)
i and h(Y)

j ,
respectively. Each histogram generated from MX is con-
nected via N edges with all histograms of MY. An edge ei j is

weighted with the distance dχ2(h
(X)
i ,h(Y)

j ) (see Equation3).
A matching between MX and MY is that set of edges (thick-
ened edges) minimizing the sum of the edge weights.

Usually, histograms are compared by using various bin-
to-bin distance functions [RTG00], such as MinkowskiLp

distance,χ2 distance, Kullback-Leibler divergence distance,

and Bhattacharyya distance. These methods assume that the
domains of the histograms are already aligned, although in
practice histograms approximating the same probability den-
sity function (PDF) might be misaligned and have differ-
ent scales. To overcome this problem, techniques consider-
ing scale invariant cross-bin comparison of histograms (e.g.,
the Earth Mover’s distance) were developed in [RTG00,
OFCD02, LO06]. However, since our histograms are small
and the geodesic distances of the GDMs are normalized, we
experimentally observed that a good compromise between
matching efficiency and effectiveness can be obtained by us-
ing theχ2 distance between histograms,

dχ2(hi ,h j ) =
1
2

B

∑
k=1

(hi [k]−h j [k])
2

hi [k]+h j [k]
, (3)

whereB is the number of bins of the histogramshi andh j ,
andhi [k], h j [k] are the values in thekth bin ofhi andh j . Bins
equal to zero,hi [k] = h j [k] = 0, are not compared.

A matchingin G is a subsetEM ⊂ E of edges ofE, such
that no two edges inEM share a common vertex ofV. We aim
at finding theminimum weight perfect matching, which is the
minimum weight matching with cardinality|EM | = |V|/2
(e.g., the set of thickened edges in Figure5). This prob-
lem can be solved inO(|V|2 log|V|) time with Edmonds’
blossom algorithm as in [CR99]. We use the C implemen-
tation kindly provided by Cook [CR99]. Recently, Schwartz
et al. [SSW05] presented an algorithm achieving a running
time of O(|V|2) under the assumption that the edge weights
are integers and uniformly distributed.

EM induces a bijectionπ∗ : {1, ..,N}→{1, ..,N} between
the histograms computed fromMX and those computed from
MY. Therefore, the dissimilarity between the two GDMsMX
andMY is estimated with the function

δh(MX ,MY) = ∑
ei j∈EM

w(ei j ) =
N

∑
i=1

dχ2(h
(X)
i ,h(Y)

π∗(i)), (4)

which sums the weights of the edges inEM .

6. Results

We evaluate the effectiveness of our matching method on a
collection of 24 surfel-based models subdivided in 6 classes
of 4 isometric objects shown in Figure6. The models are ar-
ranged by rows according to their classes, which are color
coded, in addition. Each class contains a set of nearly iso-
metrically deformed versions of one object. These models
were obtained by surfelizing [RVS04] a collection of trian-
gle meshes kindly provided by Ron Kimmel (together with
the models shown in Figure1).

We test our matching method by performing a query for
each object of this collection. The dissimilarity values of the
query objects with respect to all other objects of the collec-
tion are computed with Eq.4. Then, they are coded as gray
level and displayed in a dissimilarity matrix image, Figure7.
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Maximal dissimilarities are depicted in white, while zero
dissimilarities are black. The models are grouped by class.
The dissimilarity matrix shown in Figure7 presents blocks
of darker pixels along the main diagonal. These blocks are as
large as the related class size. This indicates that every object
matches the objects within its class better than those in other
classes. Thus, our method is able to successfully identify the
classes of the objects of the collection. However, there are
two exceptions. A retrieved object is calledrelevant if be-
longs to the same class of the query object. Ideally, the rele-
vant objects should be ranked in the first positions when or-
dered according to their dissimilarity. In those two bad cases
one relevant object is retrieved at positions 8 and 6 instead
of at position 4 or less. The non-optimal results of these two
queries slightly drop the R-precision (RP) measured with our
method to the value 97.2%, which is a bit smaller than the
maximal value (100%).

We compare our method using the FPS strategy (Our
method FPS) and the uniform sampling strategy (Our
method US) with the following methods, which we imple-
mented in C++:

Hamza03 is the method of Hamza and Krim in [HK03],
which we extended for point set surfaces using the FPS
to select 1024 reference points;

Memoli05 is the method of Mémoli and Sapiro in [MS05];
Osada02 D2 is the method of Osada et al. in [OFCD02],

which consists in comparing a single global histogram
of the Euclidean inter-distances between 1000 random
points selected on the surface with the uniform sampling;

Osada02 G2 (FPS) is the methodOsada02 D2considering
geodesic distances instead of Euclidean distances. When
the suffix FPS is reported the sampling is achieved with
the FPS strategy instead of the uniform sampling;

Depth-images is the method described in [RVS04], which
is based on the Fourier analysis of 6 depth images of
256×256 pixels.

The methodsOsada02 D2andDepth-imageswere not de-
signed to be isometry invariant and therefore are not ex-
pected to perform very well in our tests. Table1 reports a
comparison of some well known measures of retrieval effec-
tiveness [TV04, BKS∗05] of these methods for the models
in Figure6. A similar comparison is performed by calculat-
ing the precision vs. recall diagram shown in Figure8. The
rows in Table1 and the plots in Figure8 are ordered with
respect to the R-Precision (RP). Our method obtained better
performance than the others. Moreover, notice that, as ex-
pected, the use of the FPS strategy improved the retrieval
performance of both our method and the methodOsada02
G2.

All experiments with our matching method were per-
formed with shape descriptors ofN histograms withB bins,
whereN = 256 andB = 16. These values ofN andB rep-
resent a good tradeoff between retrieval effectiveness and
execution time. A smallN implies that the sampling may

Figure 6: 24 surfel-based models partitioned in 6 classes
(one per row, color coded) of 4 deformed objects each.

miss important topological or geometrical structures of the
object. Thus,N is chosen by considering the effectiveness of
the local histograms and the geometry complexity of the sur-
faces. For our test objects in Figure6, the size of a surfel set
varies between 26,000 and 230,000 surfels. On average, the
models of the paper sheets have about 30,000 surfels, while
the models of the crocodiles have about 215,000 surfels. For
each surfaceSi ,1≤i≤24 we increase the number of refer-
ence pointsNi from 1 toN∗

i , i.e., the value at which the maxi-
mal distancedχ2 between neighboring histograms is smaller
than a fixed threshold. Then, we chooseN = maxi N

∗
i and

round up to a power of 2 for simplicity.

The average run time per matching was 0.34s, obtained
with a non-optimized C++ code executed on an Intel Pen-
tium 4 2.80 GHz with 2GB of RAM running under a Win-
dows XP Professional system. Our ongoing work concerns
a criterion for computing an adaptive number of reference
points for each surface and extending our algorithms to

c© The Eurographics Association 2008.



Mauro R. Ruggeri & Dietmar Saupe / Isometry-invariant matching of point set surfaces

Figure 7: Dissimilarity matrix images computed using our
method on the collection of surfel-based models illustrated
in Figure 6. White pixels indicate maximum dissimilarities,
while at black pixels dissimilarities equal to 0. The models
are grouped by class along each row.

Matching method P̄50 P̄100 BEP RP NN
Our method FPS 100.0 99.1 98.6 97.2 100.0
Our method US 96.5 95.4 95.8 91.7 95.8
Osada02 G2 FPS 92.5 88.3 87.5 79.2 91.7

Hamza03 92.3 87.8 90.3 77.8 87.5
Memoli05 85.2 79.4 80.6 69.4 79.2

Osada02 G2 87.7 79.8 84.7 62.5 83.3
Depth-images 64.1 55.1 55.6 40.3 54.2
Osada02 D2 52.4 43.8 50.0 31.9 37.5

Table 1: Comparison of the retrieval effectiveness of differ-
ent shape matching methods. The following retrieval effec-
tiveness measures are reported in percentages:P̄50 andP̄100
= average precision over recall range 50% and 100%, re-
spectively; RP = R-precision (first tier); BEP = Bull’s Eye
Performance (second tier); NN = nearest neighbor.

match sets of histograms of different cardinalities, which
will reduce the run time of the matching. The timing of our
matching algorithm can further be reduced by more efficient
bipartite matching algorithms [SSW05] and by simplifying
the search of the minimum weight perfect graph matching
when exploiting certain orderings between the histograms.
A further improvement will allow to decrease the number of
reference points by starting the FPS from points with mean-
ingful topological/geometrical features. All these improve-
ments will contribute to make our matching method suit-
able for fast 3D database classification and retrieval. Tests
on larger databases are planned.

The surfel-based models presented in this paper are ren-
dered using Pointshop3D [ZPKG02]. The 3D models in Fig-
ures1,2,3 are part of the Pointshop3D repository.

Figure 8: Comparison of the retrieval effectiveness of differ-
ent matching methods executed on the collection of surfel-
based models shown in Figure6.

7. Conclusions

In this paper we presented a technique for matching point
set surfaces, which is invariant with respect to isometries,
scaling and rigid transformations. Our technique starts by
sampling a set of reference points evenly distributed on the
point set surface by using the farthest point sampling strat-
egy. Then, the geodesic distances between these reference
points are normalized and stored in a geodesic distance ma-
trix. A shape descriptor is extracted as set of histograms each
describing the PDF of the elements of a row of the dis-
tance matrix. During matching, a complete bipartite graph
is constructed from two shape descriptors. The dissimilar-
ity between two shape descriptors is estimated by summing
the edges’ weights of the minimum weight perfect match-
ing computed with Edmonds’ blossom algorithm. Our shape
descriptor is invariant with respect to isometric and rigid
transformation and scaling. The scaling invariance may be
removed by not normalizing the distance matrix and the his-
tograms. Our method works with surfaces consisting of one
connected component, but of arbitrary genus.

On a collection of 24 surfel-based models subdivided in
classes of deformed objects, our method showed very good
retrieval effectiveness and the ability to classify non-rigid
objects. The efficiency and the effectiveness of our method
depends on the choice and the number of reference points.
Ongoing work is aimed at identifying an optimal number
of reference points for a surface and at adapting the sam-
pling procedure to meaningful topological/geometrical fea-
tures. These developments will extend our methods to sur-
faces containing several connected components. This ap-
proach may also be suitable for partial matching.

c© The Eurographics Association 2008.
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