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Abstract

Shape deformations preserving the intrinsic properties of a surfaceadieddsometries. An isometry deforms a
surface without tearing or stretching it, and preserves geodesic distaide present a technique for matching
point set surfaces, which is invariant with respect to isometries. A seffefence points, evenly distributed on
the point set surface, is sampled by farthest point sampling. The dedatissince between reference points is
normalized and stored in a geodesic distance matrix. Each row of the ny&tos a histogram of its elements.
The set of histograms of the rows of a distance matrix is taken as a desavfpthe shape of the surface. The
dissimilarity between two point set surfaces is computed by matching thesporrding sets of histograms with
bipartite graph matching. This is an effective method for classifying and reziog objects deformed with
isometric transformations, e.g., non-rigid and articulated objects in diffep@stures.

Categories and Subject Descript@scording to ACM CCS) H.3.3 [Information Systems]: Information Search and
Retrieval 1.3.5 [Computing Methodologies]: Computational Geometd/@bject Modeling

1. Introduction

Recent developments in 3D modelling and acquisition tech-
niques contributed to the large spread of 3D models in many
fields such as CAD/CAM, architecture, computer entertain-
ment, culture heritage, and medicine. In many contexts 3D
models represent non-rigid or deformable 3D objects, which
may have different postures or deformations. The deforma-
tions that transform a surface without changing its intrin-

sic properties are calleidometries An isometry preserves

geodesic distances, thus deforms an object without stretch-

ing or tearing its surface (see Figuty Many surface de-

formations in nature and in industrial applications can be
approximated with isometries, e.g., bending limbs or parts
of living beings’ bodies, natural bending of human organs,
varying facial expressions and moving components of artic-

ulated objects. In an articulated object components are at-

tached through joints and can move about.

Object recognition, retrieval and classification in these

T This research was supported by the DFG Graduiertenkolleg
1042 “Explorative Analysis and Visualization of Large Infeation
Spaces”.
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Figure 1: A point set surface representing an articulated
object is shown in two different postures after applying an
isometric deformation. The geodesic distance between the
selected points as well as the geodesic path does not change
with the deformation.

contexts require an isometry-invariant comparison of 3D
objects. In industrial part/component inspection and in
CAD/CAM engineering applications 3D models of articu-
lated objects can be scanned, modelled and stored in dif-
ferent postures. Similarly, human organs may be subjected
to different deformations when acquired via medical scan-
ning equipments. Another interesting application is 3D face
recognition, where facial expressions can be approximated
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by isometric deformations of the facial surfadg@BKO05]. canonical coordinates in the Euclidean sp&® by ap-

In this case an isometry-invariant comparison would allow plying multi-dimensional scaling (MDS). In this canonical
face recognition despite different expressions with which the representation the geodesic distances on the original sur-
faces could be acquired. face were approximated by the corresponding Euclidean dis-
tances. The matching problem of non-rigid and deformed
objects was then reduced to the problem of matching rigid
objects embedded iR™, which can be approached with well
known algorithms.

In this paper we consider the problem of isometry-
invariant matching of point set surfaces. A point set surface
in R® is described by a set of sample points. A point-based
representation of a surface can be enriched with attributes

approximating the properties of geometry and material such  Mémoli and Sapiro in MS05 compared point clouds

as surface orientation and diffuse/specular color. For exam- (representing dense samplings of manifolds) by computing
ple, to achieve realistic rendering each sample point is com- an approximation of the Gromov-Hausdorff (GH) distance
monly taken as a circular (or elliptical) disk of a certain area petween two compact metric spaces. They considered the
to approximate the surface between the sample points. This geodesic distance as a metric on surfaces. The GH distance
rendering primitive is callecsurfel [PZvBG0(Q. Point set is an extension of the symmetric Hausdorff distance, and in-
surfaces received much attention in the last years for their tyitively measures how far two compact subsets of a metric
natural relation to 3D scanning techniques and their flexi- space are from being isometric. They showed that the com-
ble representation, which makes them suitable for particular putation of GH distance leads to a combinatorial problem.
tasks such as interactive modelling/rendering, simulation of They proposed an heuristic, which progressively constructs
physical phenomena, and multi-resolution and out-of-core approximations of the GH distance of subsets of the point

methods GP07. Since a point set surface is described by  clouds by minimizing the approximation error point-wise.
a set of sample points iR3, it can be considered as a dis-

cretization and basic representation of a surface. This has ~ Bronstein et al. BBKO6] approximated the GH distance
the advantage that algorithms for point based representationsPetween two smooth surfaces using a generalized MDS al-
can also be applied to any other surface representations (e.g.90rithm to compute the minimum-distortion between those

triangle meshes, NURBS, etc.) after a suitable sampling. surfaces. They proposed a multi-resolution minimization al-
gorithm minimizing a cost function approximating the dis-

tortion map between two triangulated surfaces. This ap-
proach was also used to compute an approximation of a non-
3D shape descriptors and object matching invariant with re- symmetric partial embedding distance, which intuitively
spect to isometries were conceived by other authors, who measures how similar a patdti of the surfacey is to the
mostly focussed on triangle mesh representations. surfaceX.

Hilaga et al. HSKKO1] presented a technique to match Mémoliin [Mém07 reformulated the problem of approx-
the topology of triangulated models, by comparing Multires-  imating the GH distance between compact metric spaces as
olution Reeb Graphs (MRGs). The MRG was constructed by a mass transportation problem, where the mass of each sam-
considering a suitable discrete approximation of the func- ple point of the metric spaces is expressed as a probability
tion (V) = [pes9(V, p)dSdefined on the triangulated sur-  measure. This reformulation leads to a quadratic optimiza-
face S of the model, whereg(v,p) is the geodesic dis-  tion problem with linear constraints, which is approached
tance between, p € S Their algorithm for matching two wijth a heuristic relying on solving successive linear opti-
MRGs is a coarse-to-fine strategy, which searches the nodemization problems. Moreover, the author provided a theo-
pairs providing the largest value of similarity while main-  retical framework, which allows to understand the compu-

2. Related work and approach

taining topological consistency. Similarly tdHSKKO1], tational complexity of the Gromov-Hausdorff distance and
Hamza and KrimIHK03] considered a discrete approxima- ts relation to other metrics and matching methods presented
tion of the global squared geodesic distance funqtigr) = in [HKO3, EK03, MS05 BBKO06].

Jpesa(v, p)°dSdefined on the triangulated surfaBeji (V) ) )

was computed by considering as points € Sonly the cen- Reuter at al. inRWP0§ compared two triangulated sur-
troidsc; of a subseS ¢ Sof mtriangles of the mesB. The faces by computing the distance between two isometry-

resultsy (G;) were then assumed as random variables with a invariant feature vectors given by the firseigenvalues of
common probability density function, which was considered the Laplace-Beltrami operator. Jain and Zhang JZQ7]

as statistical shape descriptor. The dissimilarity between two compared non-rigid objects by matching spectral embed-
objects was calculated by computing the Jensen-Shannondings, which are derived from the eigenvectors of affinity
divergence between the corresponding statistical shape de-matrices computed considering geodesic distances.

scriptors. Interesting methods for comparing point set surfaces

Elad and Kimmel EKO3] proposed a canonical represen- were presented inQZCG0§ and [DGGO04. Carlsson et
tation for triangulated surfaces, which is invariant with re- al. [CZCG03 compared barcode descriptors of point clouds
spect to isometries. A surface i was transformed into computed by using the persistence homology theory. Dey et

(© The Eurographics Association 2008.
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points. The shortest path is computed by applying Dijkstra’s
algorithm on an graph, which is constructed from the point
set and approximates the surface topology and geometry.
We construct amxtended sphere-of-influence gra@s1G),

b which produces a good description of non-smooth surfaces
Sampling Computing geodesic ~ Normalized geodesic Set of histograms and better aCCOmmOdates Variations in the point Sample den-

dstances ditance matrix sity than other graphs proposed in the literature. The eSIG
Figure 2 Construction scheme of our isometry-invariant 1S constructed from a point set surfae= {vi,..,vn}. The
shape descriptor. sphere centered at the point samplevith radius given by

the distance to the nearest neighbor is calledsihteere of

influenceof v;. The SIG is the graph with verticeg in

which two verticesv; andv; (i # j) are connected by an
al. [DGG04 compared noisy point clouds, by matching sig-  edges; if the corresponding spheres of influence intersect.
natures extracted from segmented parts of the point sets by Each edge; is weighted by the Euclidean distance between
making use of the Morse theory. Surveys on matching and the connected vertices. We extend the concept of SIG by
retrieving 3D shapes can be found iM04] and [BKS™09). considering the surfel-based representation used for render-

ing our point set surfaces. We connect two vertices by an

hedge only if the corresponding surfels have approximately
the same orientation. However, in presence of noise or ir-
regular sampling a SIG may produce small clusters of con-
nected points that are inter-cluster disconnected even though
they are part of the same surface component. To overcome
f this problem the SIG is extended as KZ04] by setting

Similarly to [MS05 MémO07 our method compares point
set surfaces by matching metric spaces described throug
geodesic distance matrices. We formulate this problem as
bipartite graph matching, which leads to a more efficient
and effective matching of point set surfaces th&SpY.

As in [EK03,HKO3] we extract an isometry-invariant shape

descriptor (SD) from a geodesic distance matrix. Instead o he radius of th h d h notthe di
considering a global histogram roughly describing the entire the ra Ius o the spheres c_entere ?‘ each pototthe dis-
tance to itsk-th nearest neighbor witk > 1, a parameter

surface HKO3], our SD consists of a small set of local his- £ th hod. Th | q duced in th
tograms each describing the surface as seen from a specificO the method. The extraneous long edges produced In the

reference point. This produces a more accurate description graph using thig apprPaCh are then pruned With statistical
of the intrinsic properties of the surface, which leads to a methods, e.g., discarding outliers based on quartiles. We call
better retrieval effectiveness the resulting graph eSIG. The computation of the eSIG takes

O(|Slog|g) in time.
The main idea of our method is expressed in the scheme . . . .
shown in Figure2. A set of N random reference points, This approach provides fast approximations of the

evenly distributed on a point set surface, is selected (see geodgsic distanc_es on point/surfel-bgsed surfaces. Since the
Section4). The geodesic distance between every pair of resulting ggodesm paths are constrained to pass t.hrough the
reference points is then normalized and stored in a matrix SaMPle points (surfel centers), the accuracy of this method
called geodesic distance matrix (GDM) (see SecipThe de_pend on thg sar_npll_ng and is se'nsmve to noise. In our ap-
geodesic distances are computed by applying the Dijkstra plication deficiencies in the sampling are well compensated
algorithm on an extended sphere-of-influence graph (esIG) PY the extended edges of the eSIG. However, when needed

constructed from the point set surface (see Se@)oThe the approximation_ error can be redyced by using mpre accu-
similarity of two point based models is then computed by rate methods, whlch_are _robust with respect to noise at the
matching the statistical shape descriptors extracted from the COSt Of higher execution timeRDSKO0§.

corresponding GDMs. Each row of the GDM is associated to
the histogram of its elements and collected into a set of his-
tograms, which describes the shape of the surface (see Sec-
tion 5). Matching two sets of histograms is achieved by bi-
partite graph matching. Our method is invariant with respect
to isometric and similarity transformations (translation, ro-
tation) and scaling.

b
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3. Computing geodesic distances on point set surfaces @) (b)
Figure 3. (a) 2D view of an extended sphere-of-influence
graph (eSIG). (b) Geodesic path computed with Dijkstra’s

algorithm on an eSIG constructed from a surfel-based
model.

In this section we briefly resume our technique to compute
fast approximations of geodesic distances between points
on a point set surfaceDRSK0§. A geodesiacan be intu-
itively defined as the shortest path between two points on a
surface. Its length is the geodesic distance between its end

(© The Eurographics Association 2008.
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4. Sampling point set surfaces

The first step of our method is to select a setNofandom
points from a point set surface. These random points will
serve ageference point$o generate all xN GDM. Since

we aim at capturing the geometrical and topological struc-
tures of a surface, we require the reference points to be prop-
erly distributed over the surface.

The problem of sampling a surface is well studied in com-
puter graphics P07 MF92, EKO3, MD03, NS04, e.g., in
point based rendering, in painterly rendering systems, and in
mesh optimization and simplification. Surfaces are also sam-
pled in several matching method®fFCDO02 EK03, TV04,
NSO04. In these methods, a surface is approximated by a tri-
angular mesh that is uniformly sampled as a preliminary step
of a shape feature extraction algorithm. This sampling strat-
egy basically consists in picking random triangles with prob-
abilities proportional to their area, and generate random sam-
ple points inside them with equal probability per unit area.
The uniform sampling is widely adopted in many methods,
since it is simple to implement and fast to execute. How-
ever, it is not always the optimal choice for creating shape
descriptors. In fact, uniform sampling methods may gener-

whereN is the number points to be selected. It has the advan-
tage to be efficient, easy to implement with our framework,
and generates sample points whose distances to each other
have suitable lower and upper boun&.PZ97. The main
idea of the FPS is to select, at each iteration, the point of
the surface, which is the farthest from all currently selected
points. In practice, at each iteration the FPS selects the ver-
tex of the Voronoi diagram (induced by the current set of se-
lected points on the surface) having the largest geodesic dis-
tance to the centers of the adjacent Voronoi cells. We run the
FPS on a point set surfa&by starting from the two points

at maximal geodesic distance tillsample points have been
selected. We call those sample poirgference points

5. Computing and matching geodesic distance matrices

Given a sef of N reference points sampled on a point set
surfaceS, we compute the associated geodesic distance ma-
trix (GDM) of size NxN. Each elementnj of the GDM
stores the geodesic distanggy,q;) between the sample
pointsq;,qj € Q, associated to the ith row and the jth col-
umn, respectively. A GDM is symmetric with diagonal el-
ements equal to 0. The GDM is normalized to the sum of

ate samples that are very close to each other and non-evenlya|| geodesic distances. Figueshows a GDM as an image,

distributed on the surface (see Figut&). For shape anal-

Figure 4: Uniform sampling vs. evenly spaced sampling of
a point set surface, rendered using surfels.

ysis and matching it is important that the spacial distribu-
tion of points captures the shape of the object, so that a
shape descriptor does not miss important geometric struc-
tures. Nehab and Shilane IN$04 showed that the use of a
non-uniformly and evenly distributed sampling can improve
the effectiveness of surface matching methods. Encouraged
by that result we adopt a sampling strategy, which gener-
ates a set of reference points non-uniformly and evenly dis-
tributed over a point set surface. Among the technique pro-
posed in computer graphics to obtain a sampling of surfaces
in R® with those featuresMIF92, ELPZ97 MD03, NS04,

we considered the Farthest Point Sampling (FPS) algo-
rithm [ELPZ97, which was efficiently extended for triangu-
lar meshes and point clouds by Moenning etIDD3]. The

FPS is a fast iterative algorithm running@{NlogN) time,

where each element is coded by a gray scale color: the value
0.0 is coded as black and the maximal value as white.

The dissimilarity between two point set surfaces can be
estimated by comparing their corresponding GDMSPY5.
The indices of the GDMs’ rows and columns indicate the
order in which the reference points are associated to them.
This order is arbitrary. To compare two surfaces sampled by
N points each we match the sample points such that the cor-
responding (reordered) geodesic distances on both surfaces
are as similar as possible.

Formally, letN be the number of rows and columns of a
GDM, andm: {1,..,N}—{1,..,N} a permutation of the set
{1,..,N} of indices of its rows and columns. The problem of
comparing two GDMdVx andMy can be stated as finding
the permutatiorrt, which minimizes the distance function
dn(Mx, My ) betweerMx andMy, where

(Y)

drn(Mx,My) = My

1<i<j<N

m )

and n}(jx)

umn of My, andrrﬁ(?)n(j) is the element oy given by(i)
and1i(j), which are associated by the permutatioto the
indicesi and j, respectively. Thus, the permutatiorestab-
lishes the correspondence between the rows and columns of
My and the rows and columns b, . The dissimilarity value
betweerMyx andMy is then given by

is the element stored in the ith row and jth col-

d(Mx,My) = n@ILIrL dr(Mx, My), )

wherelly is the set of all permutations of the gét .., N} of

(© The Eurographics Association 2008.
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row and column indices dfly. Thus, this approach implies
a search over the sé€ty, and needs to be addressed with
combinatorial methods. The computation @My, My) is
time consuming, since the sizeldf is |[My| = N!.

We reformulate this problem as a bipartite graph match-
ing [KV0O] to make it computationally tractable. We asso-
ciate to each row of the GMDiglx andMy a histogram of
its elements. Let be the reference point associated to the

rowi of the GDMMy, the histogramni(x) describes the dis-
tribution of the geodesic distances between the pgiaind
all the reference points associated to the other rowdof
olf the point set surfac¥ as seen frongj. The generated his-
tograms have a small number of biBswhich depends on
the number of reference points, e.B.= 16 for N = 256.
With this approach each GDMN(xN) is described by a set
of N histograms oB bins, which are stored and used as a
shape descriptor for the point set surface.

The problem of matching two GDMs is then turned into
the problem of finding the best match between two sets of
N histograms, which can be modelled as a bipartite graph
matching problemKV00]. A complete undirected bipartite
graphG = (V,E) is constructed by taking as set of vertices

V the set of histogramhi<x) and h(jY),l <i,j <N, respec-
tively, associated to the rows of the matkity andMy . Each
histogramhi(x> of the matrixMy is connected to every his-
togramhm of the matrixMy through an edge;j, which is
added to the set of edg&sof G (see Figures). Each edge

gj € E is then weighted with a suitable metric.

b, fatl. Tt N

- S
My ke m

Figure5: Histogram based approach for matching geodesic
distance matrices (GDMs). Each row of the GDMg lsind

My of size NxN is associated to a histograrrﬁ)ﬂ and t§Y>,
respectively. Each histogram generated fronx & con-
nected via N edges with all histograms of M\n edge g is
weighted with the distancg(ﬂ(hfx), h(jY)) (see EquatiorB).

A matching between Mand My is that set of edges (thick-
ened edges) minimizing the sum of the edge weights.

e 0y

Usually, histograms are compared by using various bin-
to-bin distance functionsRTG0Q, such as Minkowskip
distancey? distance, Kullback-Leibler divergence distance,

(© The Eurographics Association 2008.

h*®) can then be considered as a statistical shape descriptor

and Bhattacharyya distance. These methods assume that the
domains of the histograms are already aligned, although in
practice histograms approximating the same probability den-
sity function (PDF) might be misaligned and have differ-
ent scales. To overcome this problem, techniques consider-
ing scale invariant cross-bin comparison of histograms (e.qg.,
the Earth Mover's distance) were developed RIT{z0Q
OFCDO02 LO06]. However, since our histograms are small
and the geodesic distances of the GDMs are normalized, we
experimentally observed that a good compromise between
matching efficiency and effectiveness can be obtained by us-
ing thex? distance between histograms,

12 (K —hyK)?
WO =22 higehi o ©

whereB is the number of bins of the histograrnsandh;,
andh; k], hj[K] are the values in thieh bin ofhj andh;. Bins
equal to zerohj[k] = hj[k] = 0, are not compared.

A matchingin G is a subseEy C E of edges ofg, such
that no two edges iRy share a common vertex ¥f We aim
at finding theminimum weight perfect matchinghich is the
minimum weight matching with cardinalitfEy| = [V|/2
(e.g., the set of thickened edges in Fig@je This prob-
lem can be solved i©O(]V|?log|V|) time with Edmonds’
blossom algorithm as inQR99. We use the C implemen-
tation kindly provided by Cook@R99. Recently, Schwartz
et al. [SSWO03] presented an algorithm achieving a running
time of O(|V|%) under the assumption that the edge weights
are integers and uniformly distributed.

Em induces a bijectiom™ : {1,..,N}—{1,..,N} between
the histograms computed frolfly and those computed from
My . Therefore, the dissimilarity between the two GDMg
andMy is estimated with the function

N
(M, My) = S wiej) =S da(h™ Y ) @)
ngEM . i;x I m(l)

which sums the weights of the edgesHn .

6. Results

We evaluate the effectiveness of our matching method on a
collection of 24 surfel-based models subdivided in 6 classes
of 4 isometric objects shown in Figue The models are ar-
ranged by rows according to their classes, which are color
coded, in addition. Each class contains a set of nearly iso-
metrically deformed versions of one object. These models
were obtained by surfelizingvS04 a collection of trian-

gle meshes kindly provided by Ron Kimmel (together with
the models shown in FigurB.

We test our matching method by performing a query for
each object of this collection. The dissimilarity values of the
guery objects with respect to all other objects of the collec-
tion are computed with E@t. Then, they are coded as gray
level and displayed in a dissimilarity matrix image, Figidre
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Maximal dissimilarities are depicted in white, while zero
dissimilarities are black. The models are grouped by class.
The dissimilarity matrix shown in Figure presents blocks

of darker pixels along the main diagonal. These blocks are as
large as the related class size. This indicates that every object
matches the objects within its class better than those in other
classes. Thus, our method is able to successfully identify the
classes of the objects of the collection. However, there are
two exceptions. A retrieved object is calleglevantif be-
longs to the same class of the query object. Ideally, the rele-
vant objects should be ranked in the first positions when or-
dered according to their dissimilarity. In those two bad cases
one relevant object is retrieved at positions 8 and 6 instead
of at position 4 or less. The non-optimal results of these two
queries slightly drop the R-precision (RP) measured with our
method to the value 97.2%, which is a bit smaller than the
maximal value (100%).

We compare our method using the FPS strateQur (
method FPS) and the uniform sampling strategyOur
method US) with the following methods, which we imple-
mented in C++:

Hamza03 is the method of Hamza and Krim irHKO3],
which we extended for point set surfaces using the FPS
to select 1024 reference points;

Memoli05 is the method of Mémoli and Sapiro iMB05];

Osada02 D2 is the method of Osada et al. I©OFCDO03,
which consists in comparing a single global histogram
of the Euclidean inter-distances between 1000 random
points selected on the surface with the uniform sampling;

Osada02 G2 (FPS) is the methodDsada02 DzZonsidering
geodesic distances instead of Euclidean distances. When
the suffix FPS is reported the sampling is achieved with
the FPS strategy instead of the uniform sampling;

Depth-images is the method described iiRY/S04, which
is based on the Fourier analysis of 6 depth images of
256x 256 pixels.

The method®sada02 D2and Depth-imagesvere not de-
signed to be isometry invariant and therefore are not ex-
pected to perform very well in our tests. Talleeports a
comparison of some well known measures of retrieval effec-
tiveness TV04, BKS*05] of these methods for the models
in Figure6. A similar comparison is performed by calculat-
ing the precision vs. recall diagram shown in Fig8r&he
rows in Tablel and the plots in Figur8 are ordered with
respect to the R-Precision (RP). Our method obtained better
performance than the others. Moreover, notice that, as ex-
pected, the use of the FPS strategy improved the retrieval
performance of both our method and the meti@xhda02

G2

All experiments with our matching method were per-
formed with shape descriptors Nfhistograms wittB bins,
whereN = 256 andB = 16. These values dfl andB rep-
resent a good tradeoff between retrieval effectiveness and
execution time. A smalN implies that the sampling may

)\?\52, ,
|t
(I

Figure 6: 24 surfel-based models partitioned in 6 classes
(one per row, color coded) of 4 deformed objects each.

miss important topological or geometrical structures of the
object. ThusN is chosen by considering the effectiveness of
the local histograms and the geometry complexity of the sur-
faces. For our test objects in Figuethe size of a surfel set
varies between 26,000 and 230,000 surfels. On average, the
models of the paper sheets have about 30,000 surfels, while
the models of the crocodiles have about 215,000 surfels. For
each surface&s, 1<i<24 we increase the number of refer-
ence pointd\; from 1 toN*, i.e., the value at which the maxi-
mal distanced,. between neighboring histograms is smaller
than a fixed threshold. Then, we chod$e= max N and
round up to a power of 2 for simplicity.

The average run time per matching was 0.34s, obtained
with a non-optimized C++ code executed on an Intel Pen-
tium 4 2.80 GHz with 2GB of RAM running under a Win-
dows XP Professional system. Our ongoing work concerns
a criterion for computing an adaptive number of reference
points for each surface and extending our algorithms to

(© The Eurographics Association 2008.
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humans dogs giraffes hands crocodiles papers

9

Figure 7: Dissimilarity matrix images computed using our
method on the collection of surfel-based models illustrated
in Figure 6. White pixels indicate maximum dissimilarities,
while at black pixels dissimilarities equal to 0. The models
are grouped by class along each row.

Matching method| Psg Pioo | BEP RP NN
Our method FPS| 100.0 | 99.1 | 98.6 | 97.2 | 100.0
Our method US| 96.5 | 954 | 958 | 91.7 | 95.8
Osada02 G2FPS 925 | 88.3| 875 | 79.2 | 91.7
Hamza03 923 | 87.8| 90.3 | 77.8| 875
Memoli05 85.2 | 79.4| 80.6 | 69.4 | 79.2
Osada02 G2 87.7 | 79.8 | 84.7 | 625 | 83.3
Depth-images 64.1 | 55.1 | 55.6 | 40.3 | 54.2
Osada02 D2 524 | 43.8| 50.0 | 31.9| 375

Table 1: Comparison of the retrieval effectiveness of differ-
ent shape matching methods. The following retrieval effec-
tiveness measures are reported in percentaBggandPygp

= average precision over recall range 50% and 100%, re-
spectively; RP = R-precision (first tier); BEP = Bull's Eye
Performance (second tier); NN = nearest neighbor.

match sets of histograms of different cardinalities, which
will reduce the run time of the matching. The timing of our

matching algorithm can further be reduced by more efficient
bipartite matching algorithmsSSW05 and by simplifying

the search of the minimum weight perfect graph matching
when exploiting certain orderings between the histograms.
A further improvement will allow to decrease the number of

reference points by starting the FPS from points with mean-
ingful topological/geometrical features. All these improve-

ments will contribute to make our matching method suit-

able for fast 3D database classification and retrieval. Tests

on larger databases are planned.
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Figure 8: Comparison of the retrieval effectiveness of differ-
ent matching methods executed on the collection of surfel-
based models shown in Figuge

7. Conclusions

In this paper we presented a technique for matching point
set surfaces, which is invariant with respect to isometries,
scaling and rigid transformations. Our technique starts by
sampling a set of reference points evenly distributed on the
point set surface by using the farthest point sampling strat-
egy. Then, the geodesic distances between these reference
points are normalized and stored in a geodesic distance ma-
trix. A shape descriptor is extracted as set of histograms each
describing the PDF of the elements of a row of the dis-
tance matrix. During matching, a complete bipartite graph
is constructed from two shape descriptors. The dissimilar-
ity between two shape descriptors is estimated by summing
the edges’ weights of the minimum weight perfect match-
ing computed with Edmonds’ blossom algorithm. Our shape
descriptor is invariant with respect to isometric and rigid
transformation and scaling. The scaling invariance may be
removed by not normalizing the distance matrix and the his-
tograms. Our method works with surfaces consisting of one
connected component, but of arbitrary genus.

On a collection of 24 surfel-based models subdivided in
classes of deformed objects, our method showed very good
retrieval effectiveness and the ability to classify non-rigid
objects. The efficiency and the effectiveness of our method
depends on the choice and the number of reference points.
Ongoing work is aimed at identifying an optimal number
of reference points for a surface and at adapting the sam-
pling procedure to meaningful topological/geometrical fea-

The surfel-based models presented in this paper are ren-tures. These developments will extend our methods to sur-

dered using Pointshop3ZPKG0J. The 3D models in Fig-
uresl,2,3 are part of the Pointshop3D repository.

(© The Eurographics Association 2008.

faces containing several connected components. This ap-
proach may also be suitable for partial matching.
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