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1 Description

The idea is to become more familiar with the invariants known as shape distributions [osada], shape contexts
[BM,BM-1] and those proposed by Hamza and Krim [HK].

A second goal is that you use these invariants to compute the lower bounds for Dp discussed in [M07].

The zipfile some-functions.zip contains a few matlab functions and a script test.m that you’ll find
useful as a template for your computations.

1.1 Some test spaces

In the package you’ll find functions that produce samples from spheres Sd�1 of different dimensions, endowed
with either geodesic or Euclidean metrics. Also, it is of interest to compare these to spaces Ik :� r0, 1sk for
k � 1, 2, . . .. In order to make the comparison more interesting, you should normalize all distance matrices
so that diameter equals 1 for all the spaces you generate.

In particular, you should check that

• For X � Sd with geodesic metric, sX,1 and diam1pXq are independent of d. Compute these for samples
of n � 2000 points on S1, S2, S3.

1.2 The invariants

In all considerations below, pX, dX , µXq is a finite mm-space. You need to write matlab functions for
computing

• the p-diameter of a mm-space. Remember that

diamp pXq �

�¸
x,x1

dp
Xpx, x

1qµXpxqµXpx
1q

�1{p

.

• Hamza-Krim invariant. This invariant is a.k.a. eccentricity (see paper by Peyre et al.). For p ¥ 1,

sX,ppxq �

�¸
x1

dp
Xpx, x

1qµXpx
1q

�1{p
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• Shape distributions: Compute the shape distributions signature FX of X. Recall ([M07], Proposition
7) that

FXptq � µX b µX

�
px, x1q s.t. dXpx, x

1q ¤ t
�

Note: the only challenge here is understanding what’s the meaning of the formula above.

• (geodesic) Shape contexts: Compute the geodesic shape context signature CX of X:

CXpx, tq � µXpx
1 s.t. dXpx, x

1q ¤ tq

1.3 Lower bounds

• Write a matlab function that takes as input two mm-spaces X and Y and p P r1,8s and returns the
lower bound for Dp given by equation (21) in [M07]:

1
2
|diamp pXq � diamp pY q |.

We call this lower bound, ZLBp (zero-lower bound).

• Let p � 1. Write a matlab function that takes as input two finite mm-spaces X and Y and computes
SLB1 ([M07] Proposition 7).

• Write a matlab function that takes as input two finite mm-spaces X and Y and p P r0,8q and computes
FLBp (§6.1 [M07]). Note: For this you will have to solve a simple LOP. Remember that matlab’s
optimization toolbox knows how to do this.

2 Comparison

Consider the following 9 mm-spaces (formed by 2000 random samples each, use the functions I provided):

1. pSk,Euclidean,uniformq for k � 1, 2, 3.

2. pSk, geodesic,uniformq for k � 1, 2, 3.

3. pIk,Euclidean,uniformq for k � 1, 2, 3.

with normalized distance matrices. Let S denote the set of these nine mm-spaces.

You need to compute,

• ZLBp for all pairs of spaces in S. Display result as a matrix. Do this for several choices of p to see if
you obtain better discrimination. Recall that p � 1 is likely to give bad discrimination in the case of
spheres with geodesic distance.

• Obtain a matrix with all the pair-wise comparisons using SLB1.

• Obtain a matrix with all the pair-wise comparisons using FLBp for p � 1 and p � 2.

Question: Which of the methods tested gives the best discrimination? How would you quantify this?

3 Details

• I estimate this should take no more than 4 hrs. Due date is Nov. 10th.

• What I expect to get back from you: all requisite functions and a matlab script that makes the
computations and displays the results, with graphs etc and the final tables of comparisons according
to Section 2.
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