Shape Matching: A Metric Geometry Approach CS468

Assignment 3

Facundo Mémoli
Department of Mathematics, Stanford University.

memoli@math.stanford.edu

http://math.stanford.edu/~memoli

Fall 2008

1 Description

The idea is to become more familiar with the invariants known as *shape distributions* [osada], *shape contexts* [BM,BM-1] and those proposed by Hamza and Krim [HK].

A second goal is that you use these invariants to compute the lower bounds for \mathbf{D}_p discussed in [M07].

The zipfile some-functions.zip contains a few matlab functions and a script test.m that you'll find useful as a template for your computations.

1.1 Some test spaces

In the package you'll find functions that produce samples from spheres S^{d-1} of different dimensions, endowed with either geodesic or Euclidean metrics. Also, it is of interest to compare these to spaces $I^k := [0, 1]^k$ for $k = 1, 2, \ldots$ In order to make the comparison more interesting, you should normalize all distance matrices so that diameter equals 1 for all the spaces you generate.

In particular, you should check that

• For $X = S^d$ with geodesic metric, $s_{X,1}$ and $\operatorname{diam}_1(X)$ are independent of d. Compute these for samples of n = 2000 points on S^1 , S^2 , S^3 .

1.2 The invariants

In all considerations below, (X, d_X, μ_X) is a finite mm-space. You need to write matlab functions for computing

 \bullet the *p*-diameter of a mm-space. Remember that

$$\mathbf{diam}_{p}\left(X\right) = \left(\sum_{x,x'} d_{X}^{p}(x,x')\mu_{X}(x)\mu_{X}(x')\right)^{1/p}.$$

• Hamza-Krim invariant. This invariant is a.k.a. eccentricity (see paper by Peyre et al.). For $p \ge 1$,

$$s_{X,p}(x) = \left(\sum_{x'} d_X^p(x, x') \mu_X(x')\right)^{1/p}$$

• Shape distributions: Compute the shape distributions signature F_X of X. Recall ([M07], Proposition 7) that

$$F_X(t) = \mu_X \otimes \mu_X ((x, x') \text{ s.t. } d_X(x, x') \leqslant t)$$

Note: the only challenge here is understanding what's the meaning of the formula above.

• (geodesic) Shape contexts: Compute the geodesic shape context signature C_X of X:

$$C_X(x,t) = \mu_X(x' \text{ s.t. } d_X(x,x') \le t)$$

1.3 Lower bounds

• Write a matlab function that takes as input two mm-spaces X and Y and $p \in [1, \infty]$ and returns the lower bound for \mathbf{D}_p given by equation (21) in [M07]:

$$\frac{1}{2}|\mathbf{diam}_{p}\left(X\right)-\mathbf{diam}_{p}\left(Y\right)|.$$

We call this lower bound, ZLB_p (zero-lower bound).

- Let p = 1. Write a matlab function that takes as input two finite mm-spaces X and Y and computes SLB_1 ([M07] Proposition 7).
- Write a matlab function that takes as input two finite mm-spaces X and Y and $p \in [0, \infty)$ and computes FLB_p (§6.1 [M07]). Note: For this you will have to solve a simple LOP. Remember that matlab's optimization toolbox knows how to do this.

2 Comparison

Consider the following 9 mm-spaces (formed by 2000 random samples each, use the functions I provided):

- 1. $(S^k, \text{Euclidean, uniform})$ for k = 1, 2, 3.
- 2. $(S^k, \text{geodesic}, \text{uniform})$ for k = 1, 2, 3.
- 3. $(I^k, \text{Euclidean, uniform})$ for k = 1, 2, 3.

with normalized distance matrices. Let \mathcal{S} denote the set of these nine mm-spaces.

You need to compute,

- ZLB_p for all pairs of spaces in S. Display result as a matrix. Do this for several choices of p to see if you obtain better discrimination. Recall that p = 1 is likely to give bad discrimination in the case of spheres with geodesic distance.
- Obtain a matrix with all the pair-wise comparisons using SLB₁.
- Obtain a matrix with all the pair-wise comparisons using FLB_p for p=1 and p=2.

Question: Which of the methods tested gives the best discrimination? How would you quantify this?

3 Details

- I estimate this should take no more than 4 hrs. Due date is Nov. 10th.
- What I expect to get back from you: all requisite functions and a matlab script that makes the computations and displays the results, with graphs etc and the final tables of comparisons according to Section 2.