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Abstract
It is the purpose of this paper to propose and discuss certain modifications of the ideas concerning Gromov-
Hausdorff distances in order to tackle the problems of shape matching and comparison. These reformulations
render these distances more amenable to practical computations without sacrificing theoretical underpinnings. A
second goal of this paper is to establish links to several other practical methods proposed in the literature for
comparing/matching shapes in precise terms. Connections with the Quadratic Assignment Problem (QAP) are
also established, and computational examples are presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling.

1. Introduction

Given the great advances in recent years in the fields of shape
acquisition and modelling, and the resulting huge collections
of digital models that have been obtained it is of great impor-
tance to be able to define and compute meaningful notions
of similarity between shapes which exhibit invariance to dif-
ferent deformations and or poses of the objects represented
by those shapes. It is the case that similar problems arise in
different disciplines such as molecular biology, databases of
objects, face recognition, matching of articulated objects and
pattern recognition in general.

There have been many approaches to the problem of (pose
invariant) shape matching and recognition in the literature,
for example [HK03, LH05,OFCD02, RWP05, EK03, Fro90,
RTG00, CG99, MS05]. In many cases the underlying idea
revolved around the comparison of certain metric invariants
of the shapes so as to ascertain whether they were in fact the
same shape (up to a certain notion of invariance).

The concept of Gromov-Hausdorff distances [Gro99] was
first proposed as a tool for formalizing shape comparison
ideas in [MS05]. This distance is able to detect the metric
similarity between the shapes as it operates on their metric
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structure, that is, shapes are viewed as metric spaces. This
notion of distance compares the full metric information con-
tained in the shapes, as opposed to other notions that may
only compare simple (incomplete) invariants. Therefore two
shapes will be declared equal if and only if they are isomet-
ric. This means that the invariance properties are to be en-
coded by the metrics one chooses to endow the shapes with.
For example, if the shapes are endowed with Euclidean met-
rics, the underlying invariance is to rigid isometries.

The ideas presented in this paper are not restricted to 3D
shapes as they can applied to any point clouds (sets of points)
which are endowed with metric structures.

This paper presents new results that extend the original
definition of Gromov-Hausdorff distances in a way such that
the associated discrete problems one needs to solve in prac-
tical applications are of an easier nature than yielded by pre-
vious related approaches, [MS05,BBK06]. The practical ap-
proach put forward in [MS05] was inherently combinatorial
and hard to optimize. Another feature of this approach is that
the approximation bounds between the discrete and contin-
uous entities were probabilistic, and the proof of these re-
quired the assumption that the shapes were actually smooth
embedded manifolds.

In [BBK06], the authors, also under the assumption that
the underlying shapes are smooth surfaces, proposed a con-
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tinuous optimization setting which seemed to alleviate some
of the impracticalities of the original proposal. They how-
ever had to resort to local interpolation of the metrics in or-
der to make their computations possible (this is where the
smoothness assumption is used). The underlying ideas were
still of a somewhat combinatorial nature in the sense that
their matchings were maps between the shapes. In this pa-
per we completely remove this feature from the framework
and consider a different way of pairing two shapes which
directly leads to standard optimization problems where no
additional assumptions are needed, i.e. no assumption about
the smoothness of the underlying shape. We show that our
approach leads to Quadratic Optimization Problems (QOPs)
with linear constraints. In addition, this new set of ideas al-
lows connecting the Gromov-Hausdorff framework to pre-
existing approaches which have proven useful in the Shape
Comparison/Matching arena. Examples of these methods are
those proposed by [OFCD02,HK03,EK03,CG99,KV05]. In
more detail, our modified notion of Gromov-Hausdorff dis-
tance will admit these notions of similarity as lower and/or
upper bounds.

Throughout our presentation we use some simple con-
cepts from measure theory and point set topology which can
be consulted for example in [Dud02].

The paper is organized as follows: Section §2 introduces
the problem of Shape Comparison in a general setting and
presents basic elements such as notions of shape similarity
upon which the rest of the paper is based. Section §3 briefly
discusses the idea of introducing invariances into our no-
tions of similarity. Section §4 reviews the notion of Gromov-
Hausdorff distance and its main properties. In that section
we also discuss connections with the Quadratic Assignment
Problem. Section §5 delves into the core of the paper where a
new notion of proximity between metric spaces is introduced
and its connections with the Gromov-Hausdorff distance and
other notions are established. Some basic lower and upper
bounds are presented there. Section §6 presents other more
interesting lower and upper bounds for the proposed notion
of similarity. The aim is twofold, on one hand doing this
makes apparent the connection to other approaches found
in the literature, and on the other it provides lower bounds
which are easily computable and consequently of practical
value. Section §7 discusses the computational aspect of our
ideas, establishing that the problems one needs to solve in
practice are either Linear or Quadratic Optimization Prob-
lems (with linear constraints). We present computational ex-
amples in Section §8 and conclusions in Section §9. Due to
space limitations, long technical proofs are not given in this
paper and will be presented elsewhere.

2. Comparing objects
An object in a compact metric space (Z,d) will be a compact
subset of Z. Let C Z denote the set of all compact subsets
of Z (objects).

Assume that inside the metric space Z,d we are trying

to compare objects A and B. One possibility is to use the
Hausdorff distance:

dZH A,B : max sup
a A

inf
b B

d a,b , sup
b B

inf
a A

d a,b (1)

In general, whenever one intends to compare two objects,
a correspondence/alignment is established for this purpose.
The following definition and Proposition make this apparent
for the case of the Hausdorff distance.

Definition 1 (Correspondence) For sets A and B, a subset
R A B is a correspondence (between A and B) if and and
only if

a A, there exists b B s.t. a,b R
b B, there exists a A s.t. a,b R

Let R A,B denote the set of all possible correspondences
between sets A and B.

Proposition 1 Let Z,d be a compact metric space. Then
the Hausdorff distance between any two sets A,B Z can
be expressed as:

dZH A,B inf
R

sup
a,b R

d a,b (2)

where the infimum is taken over all R R A,B .

The Hausdorff distance is indeed a metric on the set of com-
pact subsets of the (compact) metric space Z,d .

Proposition 2 [BBI01]

1. Let A,B,C C Z then

dZH A,B dZH A,C dZH B,C .

2. If dZH A,B 0 for A,B C Z then A B.

In practice, these two properties are desirable, and we will
insist on having them for whichever notion of similarity be-
tween shapes we chose to work with. These properties imply
in particular that if one is interested in comparing objects A
and B, and if n Z and m Z are finite (maybe “noisy”)
samples of A and B respectively, then

dZH A,B dZH n, m dZH A, n dZH B, m (3)

In practice we always have to rely on finite samples of an ob-
ject. The quality of the approximation of an object A by such
a finite set n can obviously be described by dZH A, n .

Therefore (3) tells us that comparing these discrete sam-
ples gives us an answer as good as the approximation of the
underlying objects by these discrete sets.

The new ideas we propose rely on the idea of relaxing the
notion of correspondence as given by Definition 1. In order
to do this we need to introduce a new class of objects which
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we call Cw Z (and define precisely below). Roughly speak-
ing, an object in this class will be specified by not only the
set of points that form it but one is also required to specify a
distribution of importance over these points.

This relaxed notion of correspondence between objects is
called matching measure (or coupling) and is made precise
in Definition 3 below.

There is a very well known family of distances which
makes use of this different way of pairing objects. These are
the so called, Mass Transportation distances [Vil03] (a.k.a.
Wasserstein-Kantorovich-Rubinstein distances as known in
the Math community or Earth Mover’s distance [Mum91,
RTG00] in the Shape Recognition arena). We review those
concepts next.

2.1. Transporation Distances

Assume as before that A,B C Z and let µA and µB be Borel
probability measures with supports A and B, respectively.
Informally, this means that if a set C Z is s.t. C A
then µA C 0. A precise definition is given below:

Definition 2 The support of a measure µ on a metric space
Z,d , denoted by supp u , is the minimal closed subset
Z0 Z such that µ Z Z0 0.

These probability measures can be thought of as acting as
weights for each point in each of the sets. A simple interpre-
tation is that for each a A, r 0, µA B a, r quantifies the
(relative) importance of the point a at scale r (in the discrete
case this measure can clearly be interpreted as signaling how
much we trust the sample point). In other words, if a is an-
other point in A and if µA B a, r µA B a , r we would
say that a is more important than a at scale r. Note that since
µA (µB) is a probability measure, µA A 1 (µB B 1).

We naturally require that A supp µA and B
supp µB . By taking µA and µB into account we will there-
fore be comparing not only the geometry of the sets, but also,
the distribution of “importance” over the sets. We introduce

Cw Z : A,µA , A C Z

where µA is a is Borel probability measure with supp µA
A.

Definition 3 (Matching Measure) Let A,B Cw Z . We
say that a measure µ on the product space A B is a cou-
pling of µA and µB iff

µ A0 B µA A0 , µ A B0 µB B0 (4)

for all Borel sets A0 A, B0 B. We denote by M µA,µB
the set of all couplings of µA and µB.

It turns out that for each µ M µA,µB , supp µ A B is
a correspondence which we denote by R µ .

Lemma 1 Given µ M µA,µB , then R µ : supp µ be-
longs to R A,B .

For each p 1 we consider the following family of distances
on Cw Z :

dZW,p A,B : inf
µ M µA,µB A B

dp a,b dµ a,b
1 p

(5)

for 1 p , and

dZW, A,B : inf
µ M µA,µB

sup
a,b R µ

d a,b (6)

These distances are none other than the Wasserstein-
Kantorovich-Rubinstein distances between mea-
sures, [Vil03,Dud02]. These distances have been considered
for Shape Comparison/Matching applications several times
(for some values of p, typically p 1 or 2), see for
example [RTG00,CG99,KV05].

As we did in the definition of dZW,p, in the sequel we
will abuse notation by sometimes representing an object
A,µA Ow Z also by either A or µA. The reader should
keep in mind, however, that a measurable set A Z can
be represented by many probability measures, all that is re-
quired is that those probability measures have support A.

An initial question, which is now easy to answer is how do
these distances relate to dZH , . Upon noting that (1) and (6)
are essentially the same expression and that R µ R A,B
we obtain:

Proposition 3 For A,µA and B,µB in Cw Z

dZH A,B dZW, A,µA , B,µB

for all choices of µA and µB such that A supp µA and
B supp µB .

This connection between Hausdorff and Mass Transporta-
tion distances has already been pointed out in the robotics
literature, [HM04].

We review the main properties of this family of distances
next.

Proposition 4 [Vil03]

1. For each 1 p dpW,p defines a metric on Cw(Z).
2. For any 1 p q and A,B Cw Z

dZW,p A,B dZW,q A,B .

Distances dZW,p, for finite p offer an interesting alternative
to the Hausdorff distance. Note that in the finite discrete
case, computing them involves solving a Linear Optimiza-
tion Problem (LOP).

Assume n and m are finite (possibly noisy) samples
from A and B, respectively. Assume further that each of them
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is given together with a discrete probability measure µn and
!n, respectively. Then Property 1 above implies that (cf. (3))

dZW,p A,B dZW,p n, m dZW,p A, n dZW,p B, m .
(7)

This is a trivial observation, the point one must make is that
now the quality of the approximation of A by its discrete rep-
resentative n is governed by the Wasserstein-Kantorovich-
Rubinstein distance between µA and µn. For objects A,µA
and B,µB we sometimes abuse the notation by writing
dZW,p µA,µB instead of dZW,p A,B .

3. Introducing Invariances

Let O Z denote our class of objects. We have mentioned
two choices: C Z and Cw Z .

For the case of any well behaved notion of distance D on
O Z one can decide to study the following problem: Let
T be the group of isometries on Z (i.e. T T, z, z Z,
d T z ,T z d z, z ) and A,B O Z , then consider

DT A,B : inf
T T

D A,T B . (8)

The most common case, Z,d IRk, , has been ap-
proached by several authors in the past, with D dH ,
(and O Z C Z ) in [HKR93], and D dZW,p , (and
O Z Cw Z ) [CG99,RTG00] and references therein.

A different idea, used to certain extent in [HK03,
OFCD02,EK03,BK04] consists of comparing the invariants
to T T. This leads to comparing the metric information of
A and B more directly. More precisely, if A a1, . . .,am
and B b1, . . . ,bn are finite sets of points, ideally one
would like to meaningfully compare the distance matrices
DA ai a j andDB bi b j in a fashion com-
patible with the particular choice of D (and O Z ) that we
have made. In the past, people have been resorting to com-
parisons between simple invariants constructed from the dis-
tance matrices. For example, in [HK03] the authors use (es-
sentially) the row sums of the distance matrices as the invari-
ants they compare.

At any rate, comparing these distances matrices amounts
to considering A, and B, as metric spaces without
any reference to Z.

This is the basic idea of the so called Gromov-Hausdorff
distances (which arises from the choice D dZH , and
O Z C Z ) and Measured Gromov-Hausdorff distances
(arising from the choice D dZW,p and O Z Cw Z ). We
discuss these ideas next.

4. The Gromov-Hausdorff Distance

Following [Gro99], we introduce the Gromov-Hausdorff
distance between (compact) metric spaces X and Y :

dGH X ,Y : inf
Z, f ,g

dZH f X ,g Y (9)

where f : X Z and g : Y Z are isometric embeddings
(distance preserving) into the metric space Z. This expres-
sion seems daunting from the computational point of view.
We will recall equivalent tamer expressions below. Nev-
ertheless, this expression helps framing the procedure of
[EK03] inside the Gromov-Hausdorff realm, see [MS05].

Definition 4 (Metric Coupling) From now on let
D dX ,dY denote the set of all possible metrics on the
disjoint union of X and Y, X Y. This means that be-
sides satisfying all triangle inequalities, it also holds
that if d D dX ,dY then d x,x dX x,x and
d y,y dY y,y for all x,x X and y,y Y .

Remark 1 One can equivalently (in the sense of equal-
ity) define the Gromov-Hausdorff distance between metric
spaces X ,dX and Y,dY as ( [BBI01])

dGH X ,Y inf
R,d

sup
x,y R

d x,y (10)

where the infimum is taken over R R X ,Y and d
D dX ,dY .

Next, we state some well known properties of the Gromov-
Hausdorff distance dGH , which will be essential for our
presentation.

From now on, for metric spaces X ,dX and Y,dY let
" : X X Y Y IR be given by

" x,x ;y,y : dX x,x dY y,y (11)

Proposition 5 1. Let X ,dX , Y,dY and Z,dZ be metric
spaces then

dGH X ,Y dGH X ,Z dGH Y,Z .

2. If dGH X ,Y 0 and X ,dX , Y,dY are compact met-
ric spaces, then X ,dX and Y,dY are isometric.

3. Let x1, . . . ,xn X be a R-covering of the compact met-
ric space X ,dX . Then dGH X , x1, . . . ,xn R.

4. For compact metric spaces X ,dX and Y,dY :
1
2
diam X diam Y dGH X ,Y (12)

1
2
max diam X ,diam Y

where diam X : maxx,x X dX x,x stands for the Di-
ameter of the metric space X ,dX .

5. For bounded metric spaces X ,dX and Y,dY ,

dGH X ,Y 1
2

inf
R R X ,Y

sup
x1 , x2 X
y1 , y2 Y

s.t. xi , yi R

" x1,x2;y1,y2

(13)

Proofs of Properties 1 to 5 can be found in [BBI01].
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Remark 2 It is possible to use Gromov-Hausdorff ideas to
define a notion of partial similarity between two objects, see
[MS05].

Remark 3 We want to argue that expression (13) is reminis-
cent of the QAP (Quadratic Assignment Problem). This will
let us loosely infer something about the inherent complexity
of computing the Gromov-Hausdorff distance. Let’s restrict
ourselves to the case of finite metric spaces, x1, . . . ,xn
and y1, . . . ,ym . For R R , let #Ri j equal 1 if
i, j R and 0 otherwise. Then we have:

dGH X ,Y 1
2
min
R
max
i,k, j,l

"ik jl #
R
i j#

R
kl

where "ik jl : dX xi,xk dY y j,yl . Now, one can obtain
a family of related problems by relaxing the max to a sum as
follows: Fix p 1 and let " p

ik jl : dX xi,xk dY y j,yl p,
then one can also consider the problem:

Pp min
R i j kl

" p
ik jl#

R
i j#

R
kl .

Note that one can recast the above problem as follows. Let $
denote the set of matrices defined by the constraints below:

1. #i j 0,1 for all i, j
2. i #i j 1 for all j
3. j #i j 1 for all i

and let Lp # : i j kl "
p
ik jl#i j#kl . then Pp is equivalent

to

min
# $

Lp #

which can be regarded as a generalized version of the QAP.
In the standard QAP ( [PW94]) n m and the inequalities 2.
and 3. defining $ above are actually equalities, what forces
each # to be a permutation matrix.

Actually, we prove next that, when n m, Pp reduces
to a QAP. It is known that the QAP is an NP-hard problem
[PW94].

In fact, it is clear that for any # $ there exist % &n
(n n permutations matrices) such that #i j %i j for all 1
i, j n. Then, since " p

ik jl is non negative for all 1 i, j,k, l
n, it follows that Lp # Lp % . Therefore the minimal value
of Lp # is attained at some # &n.

Remark 4 It was pointed out in [MS05] that Property 5
above can be recast in a somewhat clearer form: For func-
tions ' : X Y and ( : Y X consider the numbers
A ' : supx1,x2 X dX x1,x2 dY ' x1 ,' x2 , B ( :
supy1,y2 Y dX ( y1 ,( y2 dY y1,y2 and C ',( :
supx X , y Y dX x,( y dY ' x ,y , then

dGH X ,Y inf
' : X Y
( : Y X

1
2
max A ' ,B ( ,C ',(

(14)

Formula (14) is suggestive from the computational point of
view and leads to considering certain algorithmic procedures
such as those in [MS05,BBK06].

In this paper we carry out a modification of the original
formulation of [MS05], namely, we propose to substitute the
underlying Hausdorff distance by a relaxed notion of prox-
imity between objects (more precisely by the Wasserstein-
Kantorovich-Rubinstein distance) and then find what the
equivalent version of Property 5 in Proposition 5 would be.

The basic idea is to consider three out of the (four) differ-
ent expressions we have for the Gromov-Hausdorff distance
and try to pick the one that will provide the most compu-
tationally tractable framework without sacrificing the theo-
retical underpinnings. These three expressions are (13),(10)
and (14). The path starting at (14) has been explored first
in [MS05] and later in [BBK06]. In this paper we concen-
trate therefore on (13) and (10). We argue below that these
two options are more natural and finally single out one of
them based on computational cost considerations of the as-
sociated discrete problem. Interestingly, we will also show
that the two final expressions, call them (13) and (10)
are not related by an equality, in contrast with the fact that
(13) (10), see Remark 8 below.

In contrast with the line followed in [MS05, BBK06]
which is expounded and justified for points sampled from
smooth surfaces, the formalism of measure metric spaces
used here (and explained below) allows our approach to
work in more (theoretical and practical) generality.

One initial observation is that both expressions (13) and
(10) make use of the notion of Relation/Correspondence.
We have seen in previous sections that in fact, at the level
of Hausdorff distances the formal substitution of correspon-
dences for measure couplings, and of max for Lp norms
(p 1) leads to Wasserstein-Kantorovich-Rubinstein dis-
tances. We now carry out the same program on the Gromov-
Hausdorff distance. One more word about this program, that
directly alludes to the promised computational advantage of
foregoing correspondences in favor of matching measures, is
that the former objects are essentially of combinatorial na-
ture whereas the latter objects can take continuous values,
even in the case of discrete spaces, this point is further dis-
cussed in §7.

5. Lp Gromov-Hausdorff Distances

It is the purpose of this paper to present a modification of
the ideas underlying the definition of the Gromov-Hausdorff
distance given above that is better suited for practical appli-
cations. For this we consider more structure than just a set
of points with a metric on them: We also assume a probabil-
ity measure is given on the (sets of) points, as was the case
in §2.1. Again, this probability measure can be thought of
as indicating the importance of the difference points in the
dataset.
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5.1. Measure Metric Spaces

Definition 5 [Gro99] A metric measure space (mm-space
for short) will always be a triple X ,dX ,µX where

X ,dX is a compact metric space.
µX is a Borel probability measure on X i.e. µX X 1.

When it is clear from the context, we will denote the triple
X ,dX ,µX by only X . The reason for imposing µX X 1
is that we think of µX as a modelization of the acquisition
process or sampling procedure. Moreover, we will assume
w.l.o.g. that for all our mm-spaces X supp X .

Two mm-spaces X ,dX ,µX and Y,dY ,µY are called
isomorphic iff there exists an isometry ( : supp µX
supp µY such that µX ( 1 B µY B for all B Y mea-
surable.

5.2. The distance

As before we need to introduce a notion of correspon-
dence/coupling between the mm-spaces involved in the com-
parison. The definition below is essentially the same as Def-
inition 3.

Definition 6 Given two metric measure spaces X ,dX ,µX
and Y,dY ,µY we say that a measure µ on the product space
X Y is a coupling of µX and µY iff

µ A Y µX A , µ X A µY A (15)

for all measurable sets A X, A Y . We denote by
M µX ,µY the set of all couplings of µX and µY .

Starting from (13) we now construct a new, tentative notion
of distance between metric spaces. We use this expression
as our starting point because we want the new distance to
directly compare the metrics of X and Y (in a meaningful
way). Roughly, we will substitute the maxs in (13) by Lp
norms and correspondences by coupling measures.

For p 1, and µ M µX ,µY let

Jp µ : (16)

1
2 X Y X Y " x,x ;y,y p dµ x,y dµ x ,y

1 p

and also let

J µ : 1
2

sup
x, x X
y, y Y

s.t. x, y , x , y R µ

" x,x ;y,y (17)

Remark 5 Note that given the definitions above one has
that (under suitable regularity assumptions)

Jp µ
p J µ

Definition 7 For p 1 we define the distance Dp be-
tween two mm-spaces X and Y by

Dp X ,Y : inf
µ M µX ,µY

Jp µ (18)

One actually needs to prove that expression (18) in fact de-
fines a metric on the set of all isomorphism classes of mm-
spaces. This is an interesting technical step in itself. These
and other properties of Dp, of similar spirit to those reported
for dGH , in Proposition 5 are listed in Proposition 6 be-
low.

Remark 6 In [Stu06] Sturm introduced another distance
for mm-spaces (for each p 1) as follows: (he presented
the case p 2)

Sp X ,Y : inf
µ,d X Y

d x,y p µ dx,dy
1 p

(19)

where the infimum is taken over all d D dX ,dY (recall
Definition 4) and µ M µX ,µY .

The corresponding definition for p is

S X ,Y inf
µ,d

sup
x,y R µ

d x,y (20)

This proposal corresponds to what we called (10) .

Remark 7 Note the similarity between S and dGH ,
as given by formula (14). Since R µ µ M µX ,µY
R X ,Y it is obvious that S X ,Y dGH X ,Y , cf. Propo-
sition 2.

Remark 8 At this point it is clear that in our construction,
(13) (18) and (10) (19). Note that since (13) and
(10) are equal, one could conjecture (18) and (19) to be
equal as well. In this respect, one can prove that Sp Dp
for 1 p and that S D . However, for p
the equality does not hold in general. One simple counterex-
ample is the following: For each n 3 let X Xn be the
n 1 -simplex (which has n points) endowed with metric
di j 1 for i j and probability measure !i 1

n . Let Y be a
single point y . It is easy to verify that then S1 Xn,Y 1

2 .
On the other hand, from Proposition 6 below we know that
D1 Xn,Y 1

2 i j !i! jdi j
1 i !

2
i

2
n 1
2n . Hence we

see that S1 Xn,Y D1 Xn,Y for n 2.

As we argue in §7, the expression Dp is more amenable
to numerical computations than that of Sp.

Remark 9 One may wonder what is the relationship be-
tween dGH X ,Y and (some of) the Dp X ,Y ’s. In this
respect the proposition below asserts that dGH X ,Y
D X ,Y .
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Definition 8 For a mm-space X ,dX ,µX , for p 1, we
define its p-diameter as

diamp X :
X X

dX x,x p µX dx µX dx
1 p

for 1 p , and diam X : diam supp µX
2 .

One can prove the following properties of Dp:

Proposition 6 (a) For each p 1, Dp defines a metric on
the set of all (isomorphism classes of) mm-spaces.
(b) Whenever supp µX X and supp µY Y we have

dGH X ,Y D X ,Y .

(c) What happens under two different probability measures
on the same space (keeping the same metric)? Let Z,d
be a compact metric space and ) and * two different
Borel probability measures on Z. Let X Z,d,) and
Y Z,d,* then

Dp X ,Y dZW,p ),* .

(d) What happens under two different metrics on the same
space (keeping the same probability measure)? Let Z be a
compact metric space and ) be a Borel probability mea-
sure on Z. Let X Z,d,) and Y Z,d ,) then

Dp X ,Y 1
2
d d Lp Z Z,) ) .

(e) (What happens for a random sampling of the metric
space?) Let m X be a set of m random variables
xi : + X defined on some probability space + with
law µX . Let µm ,, : 1

m
m
i 1 #xi , denote the empiri-

cal measure. For each , + consider the metric measure
spaces X ,dX ,µX and X ,dX ,µm , then for µX -almost all
, +, X ,dX ,µm

Dp X ,dX , µX as m .
(f) When Y y , for p 1, then

Dp X ,Y diamp X
2

and from this and Property (a) (triangle inequality)

Dp X ,Y
diamp X diamp Y

2
(21)

(g) For mm-spaces X and Y and for 1 p it holds that

Sp X ,Y Dp X ,Y .

Also, for mm-spaces X and Y such that X supp µX and
Y supp µY it holds that

S X ,Y D X ,Y

(h) Upper bound in terms of p-diameters. For p 1 one
has:

Dp X ,Y
diamp X p diamp Y p

2

1 p
.

(i) Ordering of the different distances: Dp Dq when p
q 1

Remark 10 Writing the framework with p as a parameter
is not gratuitous nor superfluous. In fact even the simple
bound (21) will be useful for discriminating between certain
metric spaces that the corresponding Gromov-Hausdorff
bound (12) cannot. For example, consider the case when
X S1,d1,µ1 and X S2,d2,µ2 where d1 and d2 are the
usual spherical distance metrics and µ1 and µ2 stand for nor-
malized area on S1 and S2, respectively. Then (12) vanishes
as (21)p also does. However, since diam2 S1 % 3

and diam2 S2 %2
2 2, it follows that (21)p 2 does per-

mit telling S1 and S2 apart.

6. Lower and Upper Bounds and Connections to Other
Approaches

In practice, having lower bounds that are easy to compute
(in the sense that they are not computationally expensive) is
very important as they facilitate classification tasks: If dur-
ing a query the value of the lower bound is above a certain
threshold one would say that the answer to the query is neg-
ative without incurring the potentially higher computational
cost of evaluating the full metric.

Also, we intend to relate our framework to other proposals
in the literature, we will do this by establishing that several
notions of dissimilarity between shapes are essentially lower
or upper bounds to our proposed Dp (18). We have already
seen some lower and upper bounds in §5, in particular the re-
lation to dGH , and Sturm’s proposal have been discussed
there.

6.1. First Lower Bound

For p 1 let sXp x X dX x,x p µX dx 1 p and
sX x supx supp µX dX x,x . Then one obtains the fol-
lowing bounds for Dp:

Case p 1:

Dp X ,Y 1
2

inf
µ M µX ,µY X Y

sXp x sYp y µ dx,dy

(22)
which is aMass Transportation Problem ( [Vil03]) for the
cost sXp x sYp y .
Case p

D X ,Y 1
2

inf
µ M µX ,µY

max
x,y R µ

sX x sY y

(23)

For p 1 let FLBp denote the right-hand-side of (22) (and
(23)).

Equation (22) is a simple consequence of Minkowski’s
Inequality and (23) is a consequence of this simple fact:
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for functions f ,g : Z IR it holds that max f maxg
max f g .

This lower bound is roughly what was computed by
Hamza and Krim in [HK03]: They used the functions sX2 for
describing each space X .

6.2. Second Lower Bound
In this section we prove a lower bound for our family of
distances which relies on some kind of comparison of the
distribution of distances of X and Y . For p 1, consider
the following optimization problem:

SLBp X ,Y : (24)

1
2 inf- M X X Y Y dX X dY Y p d- X,Y

1 p

where M M µX µX ,µY µY stands for the set of
probability measures on X X Y Y with marginals
µX µX and µY µY . Clearly, (24) provides a lower bound
to Dp X ,Y since for any µ M µX ,µY , µ µ M µX
µX ,µY µY . A similar claim is true for p .

It is clear now that this bound is nothing but a measure of
distance between the distribution of interpoint distances in X
and Y . In fact, one can prove the following:

Proposition 7 For any mm-space Z,dZ,µZ and t
0,diam Z , let FZ t µZ µZ z, z dZ z, z t .
Then for p 1,

SLBp X ,Y 1
2

1

0
F 1
X u F 1

Y u p du
1 p

and for p 1 the expression simplifies to

SLB1 X ,Y 1
2 0

FX t FY t dt.

Now, FZ t can be interpreted as follows: Assume that one
randomly samples two points z and z from Z indepen-
dently, and each distributed according to the law µZ , then
FZ t equals the probability that the distance between these
two random samples is not greater than t, that is, FZ t
P dZ z,z t . This is exactly one of the signatures com-
puted by Osada et al in the famous Shape Distributions ap-
proach to comparing shapes, [OFCD02]. This line was pur-
sued in more theoretical terms, for the case of finite Eu-
clidean metric sets, in [BK04].

6.3. Third Lower Bound
For p 1, consider Fp : X Y IR given by

Fp x,y : inf
µ M µX ,µY X Y

" x,x ;y,y p µ dx ,dy .

Then, it is clear that

Dp X ,Y 1
2

inf
µ M µX ,µY X Y

Fp x,y µ dx,dy
1 p

(25)

This lower bound is reminiscent of Lawler’s lower bound in
the QAP literature, see Remark 3.

Let TLBp denote the right-hand-side of (25). This lower
bound is tighter than the one in §6.1 in the sense that
TLBp FLBp for all p 1. To the best of our knowledge
this is the first time this bound is used in the context of Shape
Matching/Comparison.

6.4. Upper Bounds

Assume we want to compare compact subsets of Euclidean
space IRk under invariance to rigid isometries the group of
which we denote by T. Then, following Section §3 one suit-
able notion of similarity between objects X ,µX and Y,µY
in Ow IRk is

EW,p X ,Y : inf
T T

dIR
k

W,p X ,T Y .

Consider the mm-spaces X X , ,µX and Y Y,
,µY , then by simple application of Minkowski’s inequality
(for the norm ) one can easily prove that

Dp X ,Y EW,p X ,Y .

This bound connects our work with [CG99,KV05] and ref-
erences therein. A similar (stronger) claim holds true when
we use dZH instead of dZW,p and dGH instead of Dp.

7. Computational Technique

In this section we deal with the practical implementation of
our ideas. We recast the discrete counterpart of the ideas we
proposed as (continuous) optimization problems.

Assume we are given discrete mm-spaces
x1, . . . ,xn and y1, . . . ,yn with met-

rics dX and dY , respectively, and probability measures
. .1, . . . ,.n and ! !1, . . . ,!n , respectively.

LetM : µ IRn n 0 µi j 1, i µi j ! j, j µi j
.i, for all 1 i n ,1 j n . Note that the number of
constraints inM (all of which are linear) is n n .

Let p 1, . Then the problem we intend to solve is:

Pp
minµ MJp µ

Jp µ : n
i,i 1

n
j, j 1µi jµi j d

X
i j dYi j

p

Problem Pp is a QOP (with linear constraints), albeit not
necessarily convex. Nevertheless there exist a myriad of
techniques in the literature for handling this kind of prob-
lems. For the computation of examples presented in §8 we
implemented an alternate optimization procedure ( [Lue03])
which relies on solving successive LOPs and which we ini-
tialize by solving the problem FLBp (see below). We used
a Matlab interface, [Gio] for the open source LOP solver
glpk and YALMIP as an interpreter, [Löf04].

Let µ be the matching measure we obtain upon con-
vergence of the method. We then estimate Dp ,
1
2 Jp µ

1 p.
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Remark 11 If one were to try to compute Sp , , the re-
sulting optimization problem, we argue, would be signifi-
cantly harder. In fact, the problem would read

Sp
min µ,d M,D Ip µ,d

Ip µ,d : n
i 1

n
j 1µi j d

p
i j

where D d IRn n s.t. di j di j dXii di j
di j and di j di j dYj j di j di j , 1 i, i n , 1
j, j n . Note that the number of constraints in D is
NS : 2 n n

2 n n
2 . Therefore for solving Sp one

needs 2 n n variables and NS constraints as opposed
to n n variables and n n constraints for solving
Dp . Therefore, from the practical point of view, this justi-
fies singling out Dp as a more convenient choice. Also, it is
worth mentioning that problem Sp is a Bilinear Optimiza-
tion problem, which can obviously be recast as a QOP.

It is useful to recast the lower bounds discussed in §6.1
in this optimization setting. We exemplify this for the first
lower bound only:

FLBp
minµ MLp µ

Lp µ : 1
2

n
i 1

n
j 1µi j s

X
p i sYp j

where sXp i n
k 1.k dXik

p 1 p
and sYp j

n
k 1 !k dYjk

p 1 p
for 1 i n and 1 j n .

While we do not it here explicitly, it should be clear that
the discrete formulations of SLBp and TLBp also lead to
LOPs. In the latter case, however, one needs to solve n n
LOPs over the variable µ M.

8. Computational Examples

In this section we present some computational examples that
exemplify the use of our framework. We used the publicly
available (triangulated) shapes database [SP]. This database
comprises shapes from seven different classes: camel,
cat, elephant, faces,heads, horse and lion.

Each class contains several different poses of the same
shape. These poses are richer than just rigid isometries, see
Figure 1 for an example of what these shapes look like in
the case of the camel models. The number of vertices in
the models ranged from 7K to 30K. From each model X
we selected 4000 points using the Euclidean farthest point
sampling procedure. Briefly, one first randomly chooses a
point from the dataset. Then one chooses the second point
as the one at maximal distance from the first one. Subse-
quent points are chosen always to maximize the distance to
the points already chosen. Let X denote this reduced model.
Then we defined an intrinsic distance using Dijkstra’s algo-
rithm on the graph G X with vertex set X where each ver-
tex is connected by an edge to those vertices with which it

shares a triangle. We further subsample X again using the
farthest point procedure (with the distance computed using
G X ) and retain only 50 points. Denote the resulting set by
. We then endowed with the normalized distance met-
ric inherited from the Dijkstra procedure described above,
and a probability measure based on Voronoi partitions: The
mass (measure) at point x equals the proportion of points
in X which are closer to x than to any other point in .
So from each model Xk we obtained a discrete mm-space

k,d k ,! k . Then we computed a matrix D1 di j
such that di j D1 i, j (that is, we fixed p 1) where
1 i j N and N 72 (all models had between 9 and 11
poses). See Figure 1 for a graphical representation of D1.

In order to evaluate the discriminative power contained
in D1 we consider a classification task as follows: We ran-
domly select one shape from each class, form a training set
T and use it for performing 1-nearest neighbor classifica-
tion (where nearest is with respect to the metric D1) of the
remaining shapes. By simple comparison between the class
predicted by the classifier and the actual class to which the
shape belongs we thus obtain an estimate for the probability
of mis-classification Pe D1 . We then repeat this procedure
for 10000 random choices of the training set. Using the same
randomized procedure we obtain an estimate of the confu-
sion matrix C for this problem. That is, Ci j equals the prob-
ability that the classifier will assign class j to a shape when
the actual class was i. We also evaluated the performance of
FLB1 using this method. We obtained Pe D1 0.025 and
Pe FLB1 0.141. Refer to Figure 1 for more details.

9. Conclusions

We have introduced a modification and expansion of the
original Gromov-Hausdorff notion of distance between met-
ric spaces which takes into account probability measures
defined on measurable subsets of these metric spaces. This
new definition allows for a discretization which is more nat-
ural and more general than previous approaches, [MS05,
BBK06]. In addition to this, several previous approaches to
the problem of Shape Matching/Comparison become inter-
related when put into the common framework we introduce.
Finally, computational experiments on a database of shapes
were presented to exemplify the applicability of our ideas.
Further developments such as the extension of the ideas here
presented to partial shape matching will be reported else-
where.
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