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Abstract—Isometric surfaces share the same geometric structure, also known as the “first fundamental form.” For example, all

possible bendings of a given surface that includes all length preserving deformations without tearing or stretching the surface are

considered to be isometric. We present a method to construct a bending invariant signature for such surfaces. This invariant

representation is an embedding of the geometric structure of the surface in a small dimensional Euclidean space in which geodesic

distances are approximated by Euclidean ones. The bending invariant representation is constructed by first measuring the

intergeodesic distances between uniformly distributed points on the surface. Next, a multidimensional scaling (MDS) technique is

applied to extract coordinates in a finite dimensional Euclidean space in which geodesic distances are replaced by Euclidean ones.

Applying this transform to various surfaces with similar geodesic structures (first fundamental form) maps them into similar signature

surfaces. We thereby translate the problem of matching nonrigid objects in various postures into a simpler problem of matching rigid

objects. As an example, we show a simple surface classification method that uses our bending invariant signatures.

Index Terms—MDS (Multi-Dimensional Scaling), FMTD (Fast Marching Method on Triangulate Domains), isometric signature,

classification, geodesic distance.

æ

1 INTRODUCTION

AUTOMATIC matching of nonrigid surfaces like articulated
objects is a challenging problem in the field of shape

and surface analysis. One of the milestones in this field was
reported by Schwartz et al. in [32], where a multidimen-
sional scaling (MDS) method was used to flatten a cortical
triangulated surface onto a plane. This approach finds a
uniform parameterization for convoluted surfaces, that can
serve as a first step in a more general surface matching
procedure. This early solution to the uniform surface
parameterization problem led to recent efficient algorithms
for the texture mapping problem in computer graphics [37]
and to voxel-based flattening of the cortex in medical image
analysis [20].

When matching curved surfaces, a better approach needs
to be thought of. It has been recently shown that the high
error introduced by restricting curved surfaces to a plane
actually prevents the matching process of nontrivial objects
[13]. We here propose to extend the “flat embedding” idea
of Schwartz et al. and use higher dimensional Euclidean
spaces to capture the intrinsic geometric structure of
isometric surfaces. In our approach, the dimension of the
embedding space is determined by the complexity of the
surface in hand. By adding a few more dimensions and by
embedding a given surface in a small dimensional space
(rather than just a plane), we are able to go beyond the
surface parameterization problem and design an accurate

and robust matching procedure for convoluted surfaces. An
important example is face recognition as reported in [13].

In computer vision, the problem of determining the
similarity between two shapes has been well studied, see
[2], [27], [30] for some shape matching solutions. Most
existing techniques address rigid object matching by
algorithms that search for the transformation that max-
imizes shape similarities while aligning the two objects, see
e.g., [31]. Other examples are [7], [8], where Besl proposed
metrics for measuring matches between curves and
surfaces. These techniques were designed to handle rigid
transformation and thus find it unnatural to deal with
“nonrigid” or “articulated” objects.

Faugeras [18], and Faugeras and Hebert [19] used
quaternions to transform the 3D rotation problem into a
four-dimensional minimum eigenvalue problem, while the
translation is computed using a standard least-squares
technique. Lavallee and Szeliski [26] solved the 2D/3D
matching problem by a least-squares minimization of the
“energy” required to align the projection lines of the camera
contours tangent to the object. Barequet and Sharir [6]
associate a footprint for each surface point in order to
separately extract the rotation and translation components
of the desired rigid transformation. Again, these techniques
focus on matching rigid objects. Surveys on these techni-
ques can be found in [6], [10].

One less “rigid” technique to match shapes is by
comparing their geometric-statistical properties. The idea
is to compare discrete histograms of geometric measures.
Thacker et al. [1], [5], [3], [4], and Horn [22] presented
shapes in images by histograms of either differential
measures, like normals or curvatures, or semilocal struc-
tures, like angles and distances between pairs of line
segments. Besl [9] used the histogram of the crease angle
for all edges in a 3D triangular mesh to assign a signature
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for a given mesh. In a more recent work, Osada et al. [29]
used a variation of this concept by evaluating the prob-
ability distribution function (PDF) of a given measure on a
3D surface such as the Euclidean distances between two
random points on the surface. Then, they compared two
surfaces by evaluating the distance between their statistical
signatures. This technique is simple and somewhat robust
to small perturbations. However, its classification rate is
considered to be low.

Another set of shape matching techniques are based on
comparing high level components of a given shape. Such a
model-based approach first decomposes the given shape into
primitive parts or set of features. Then, it measures similarity
between different shapes based on their primitive parts (or
sets of features). Bloomenthal and Lin [11] and Storti et al. [34]
used such a method to construct a skeletal-based modeling
for shape matching. These techniques work on rigid shapes
that can be modeled by a skeletal representation.

In this paper, we extend ideas we put forward in [15] and
introduce a different solution to a different surface match-
ing problem. While most of the previous methods dealt
mainly with rigid transformations or rely on key points and
local or semidifferential invariant measures, here we
address the bending invariant problem by a transformation
that takes isometric surfaces to similar surfaces in a finite
dimensional (flat) Euclidean space. In the Euclidean space,
these surfaces can be compared using simple rigid object
matching techniques. Our technique is designed to compare
between full 2D surfaces as well as patches of surfaces.

Our method is based on two numerical procedures. The
first is the fast marching on triangulated domains (FMTD) [23]
that efficiently calculates geodesic distances on triangulated
curved surfaces. The second is the Multi-Dimensional
Scaling (MDS) [14], [12], [25] that reveals the geometric
structure of a set of data items from the (dis)similarity
information between them.

The outline of this paper is as follows: Section 2 gives an
overview of the proposed approach and its various
components. Section 3 presents the basic concepts of MDS
and compares between three MDS methods: The Classical
Scaling, the Least-Squares, and the Fast MDS. Clustering
results for a few objects are presented in Section 4. Section 5
concludes the paper with comments on possible extensions
like generating local signatures around key points for
semilocal signatures.

2 ISOMETRIC SIGNATURES

“An allowable mapping of the surface S onto the surface ~SS
is said to be isometric or length preserving if the length of any
arc on ~SS is the same as that of its inverse image on S” [24].
Our goal is to extract from this definition a numerical
algorithm for matching two isometric surfaces or, in other
words, surfaces for which the geodesic distances between
corresponding surface points are the same. Therefore, our
method should utilize intrinsic geodesic distances between
surface points.

The proposed technique is a combination of two numerical
schemes: the fast marching on triangulated domains (FMTD)
algorithm and one of the multidimensional scaling (MDS)
procedures. We use the geodesic distances between surface

points that are invariant to surface bending. Then, by feeding
a matrix of geodesic distances between surface points as a
dissimilarity measure to an MDS process, we map isometric
(bending-invariant) surfaces into similar signatures.

As mentioned in the introduction, similar steps were
proposed by Schwartz et al. in [32] for surface flattening
into a plane. Zigelman et al. [37] revisited the numerical
ingredients of that framework and used an MDS flattening
approach to efficiently solve the texture mapping problem.
The MDS output space was set to m ¼ 2, which means
flattening the given surface onto a plane. Then, by using the
correspondence between the points on the original surface
and its flattened version, they mapped planar textures back
to the surface with minimal local and global distortions, see
Fig. 1. In a related paper [20], the FMTD procedure was
replaced by an unbiased graph search-based technique and
applied to voxel surfaces.

Here, by allowing more dimensions, we extend the
above flat-embedding idea and map a given surface into a
new one embedded in a small dimensional space (which is
not restricted to be a plane). Let us start with a simple
description of the main steps of the proposed method. Fig. 2
is a sketch of the process of computing the bending
invariant signature surface for two different postures of a
hand. The first step involves the computation of geodesic
distances between points on the surface. On the second row
of Fig. 2, one minimal geodesic path connecting two surface
points is plotted as a thick white curve, while equal
geodesic distance contours from one point are plotted as
thinner white contours. The third row presents the bending
invariant surfaces generated by transforming the geodesic
distances between points into Euclidean ones (via an MDS
procedure). This way, both hands are mapped into similar
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Fig. 1. Texture mapping—flattening via MDS. Top left: Original surface.

Top right: Flattened surface. Bottom right: Texture on a plane. Bottom

left: Mapping the texture on the original surface.



looking surfaces. We use these bending invariant surfaces
as signatures. At the bottom, the curve corresponding to the
minimal geodesic connecting the two points on the original
hands is transformed into a straight line connecting the two
corresponding points on the signature surface.

In this paper, we deal with triangulated surfaces, though
the framework can be applied to any kind of surface
representation. We first sample the vertices of the triangles
that describe the surface and select a subset of n points
uniformly distributed on the surface. Next, we construct a
matrix of geodesic distances between these n selected points
on the surface. This way, we fill in the entries of an n� n

symmetric dissimilarity matrix D with zeros along the

diagonal. Based on an analysis of the surfaces we would

like to match, we compute the MDS output dimension, m,

and sampling rate, n. The output dimension m can be

sensitive to the representation error, according to which m

is increased as long as the representation error (that will be

defined in Section 3) does not get below a given threshold.

The MDS procedure produces a set of coordinates in a

Euclidean space Rm that minimize a representation error.

The Euclidean distances between the output points are as

close as possible to the geodesic distances between the

original coordinates. The MDS actually finds an embedding

of the surface in the finite dimensional Euclidean space in

which the geodesic distances are mapped to Euclidean

ones. We denote this surface embedded in the Euclidean

space as a bending invariant signature surface or as an

isometric signature of the original surface.

2.1 Geodesic Distances

A recent paper by Hilaga et al. [21] also explores the

intergeodesic distances between points on a surface in order

to match nonrigid surfaces. The authors first define a scalar

function on the surface they refer to it as the “distribution of

geodesic distances.” For each surface point, the “distribu-

tion function” is computed by integrating the geodesic

distances from the given point to the rest of the points on

the surface. Next, the skeletal structure of that scalar

function is constructed and analyzed via multidimensional

Reeb graphs (MRG). The similarity between surfaces is

measured by matching their MRGs. This method is aimed at

matching topologically similar surfaces rather than iso-

metric surfaces. Actually, in their implementation, the

geodesic distances on a triangulated surface were measured

by the Dijkstra graph search algorithm, which is a

numerically inconsistent approach that induces metrication

errors if the surface is sampled in a regular way.
In order to compute the geodesic distances between pairs

of points on the surface, we use another method, the fast

marching on triangulated domains introduced by Kimmel and

Sethian in [23]. It is an extension of Sethian’s fast marching

method [33], which is a numerically consistent distance

computation algorithm that works on rectangular grids (see

Tsitsiklis [36] Eikonal solver on rectangular grids for a

related approach).
The basic idea is an efficient numerical approach that

solves an Eikonal equation on the triangulated surface. The

solution is a surface distance function that is proven to

converge to the “viscosity” smooth solution as the numer-

ical grid (triangulation) is refined. Like the Dijkstra graph

search method, the distance function is constructed by

starting from a sources point and propagating outwards.
The fast marching on triangulated domains method can

compute the geodesic distance between one vertex and the

rest of the ~nn surface vertices in Oð~nnÞ operations. Repeating

this computation for n (n < ~nn) selected vertices, we can

compute a geodesic distance matrix D in Oðn~nnÞ operations.

Each ij entry of D represents the square geodesic distance

between vertex vi and vertex vj. That is,
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Fig. 2. Top row: Two different configurations of a hand. Second row: A
minimal geodesic path connecting two surface points is plotted as a thick
white curve, while equal geodesic distance contours are plotted as
thinner white contours. Third row: Signature generated by transforming
geodesic distances into Euclidean ones. Bottom row: The minimal
geodesic curve on the hand becomes a straight line connecting the two
corresponding points on the bending invariant surface.



�ij ¼ dSðvi; vjÞ
½D�ij ¼ ð�ijÞ

2;
ð1Þ

where dSðvi; vjÞ is the geodesic distance (measured on the
surface S) between the surface point indicated by the vertex
vi, and the surface point indicated by the vertex vj.

2.2 Triangulation, Complexity, and Accuracy

A triangulated surface is an approximate representation of a
continuous one. The representation error introduced by
triangulating a smooth surface is of an order of the length of
the edges of the triangles. The smaller the triangles get, the
more accurate the triangulation represents the surface.
Obviously, the same argument holds when subsampling a
triangulated surface. For computational efficiency of our
numerical procedures, we would like to consider as small as
possible a subset of the given initial vertices. In order to be
able to distinguish between bending invariant signatures of
nonisometric surfaces when sampling the surfaces, one
should be aware of the relative size of the characteristic
features differentiating the surfaces. The approximation
step should be verified to keep objects that belong to
different classes well separated.

Recall that, given surfaces in 3D, we would like to
measure their isometric dissimilarity and thereby classify
them. At the first step, we compute the geodesic distance
matrix for each surface using the fast marching on
triangulated domains. Given a triangulated surface with
~nn vertices, we select a subset of n � ~nn vertices and calculate
the geodesic distances between each pair of vertices in this
set using the original surface. The subsampling technique
we used is an iterative process where, at each iteration, the
farthest vertex (in geodesic sense) from the already selected
ones is selected. The sampling process starts by randomly
selecting the first vertex and terminates when the number of
selected vertices reaches a predefined number. This
subsampling procedure is also known as iterative Voronoi
sampling, see, e.g., [16]. Vertices are chosen iteratively in a
greedy manner: Each iteration the vertex with the largest
geodesic distance to the rest of the chosen vertices is
selected. If required, the geometric connectivity between the
selected vertices is then computed by Melax triangulation
decimation technique [28].

2.3 MDS-Mapping and Matching

The MDS-mapping step involves setting the required
dimension, m, and an application of one of the MDS
techniques described in Section 3 on the geodesic distances
matrices. The MDS technique produces new coordinates of
the surface vertices that we named isometric signature. We
can also handle similarity (uniform scaling) transformations
by normalizing the signature surface. After the MDS-
mapping, the signature surfaces are uniformly scaled into
a unit bounding box, centered (automatically in classical
MDS), and oriented using the second order moments (the
eigenvalues in the classical MDS).

Finally, we have to compare between the signature
surfaces that are given by their coordinates in Rm. We can
construct a distance matrix between these given surfaces
based on some unique measure, like the Hausdorff
distance. Actually, any algorithm that finds a similarity

between rigid objects can be used at this stage of our
framework. We have practically transformed the problem of
matching isometric/nonrigid/articulated surfaces into the
problem of matching “rigid objects” that we refer to as
isometric signatures, with the following properties:

. The dimension of the embedding space in which
these invariant surfaces or rigid objects “live”
depends on the complexity of the original surface.

. When using classical scaling, the second order cross
moments vanish.

. The orientation alignment about the center of mass is
also solved as a by-product of classical scaling.

Let us list some candidate measures for the rigid object
matching step of of our framework.

. Apply heuristic algorithms that search for the
transformation that maximizes shape similarities
while aligning the two objects [31], [7], [8].

. Evaluate the probability distribution function (PDF)
of a given geometric measure on a 3D surface such
as the Euclidean distance between two random
points on the surface as proposed in [29].

. Use a simple model-based approach to decompose
the given shapes into parts or set of features and
then compute (heuristically) a dissimilarity measure
between different shapes based on those parts (or
sets of features) [11], [34].

A relatively simple matching measure for rigid objects
was proposed by Tal and Elad in [35]. They consider only
the first few moments (less than 15) of each surface and
calculate the Euclidean distances between each pair of such
moments vectors. We use this simple concept to demon-
strate that the main clustering work was done by generating
the bending invariant signatures and, from there on, any
trivial classifier will do.

Let Mi be a vector of the first few moments of the surface
Si, then the moments-distance matrix, DM , is defined as

½DM �ij ¼ kMi ÿMjk2
2:

Applying again an MDS procedure on this matrix yields
points in a Euclidean space, where each point represents
one surface. We expect signatures of isometric surfaces to be
clustered together while signatures of nonisometric surfaces
will be well separated in this new Euclidean space, as will
be illustrated in Section 4.

3 MULTIDIMENSIONAL SCALING METHODS

Multi-Dimensional Scaling (MDS) is a family of methods
that map measurements of similarity or dissimilarity among
pairs of feature items into distances between feature points
with given coordinates in a small-dimensional Euclidean
space. The graphical display of the (di)similarity measure-
ments provided by an MDS procedure enables us to view
the data and explore its geometric structure. Most metrical
MDS methods expect a set of n items and their pairwise
(dis)similarities and the desired dimensionality, m, of the
Euclidean embedding space. As MDS is an important step
in our framework, in this section, we briefly review three
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MDS methods and evaluate their properties which are

relevant to our framework.
MDS algorithms map each item to a point xi ¼ Xi in an

m-dimensional Euclidean space Rm by minimization of, for

example, the stress function,

StressðXÞ ¼
P

i<j wijð�ij ÿ dijðXÞÞ
2P

i<j �
2
ij

; ð2Þ

where �ij is the input dissimilarity measure between item i

and j, dijðXÞ is the Euclidean distance between these items

in the m-dimensional Euclidean space, and wij are some

weighting coefficients. In our problem, as proximity values

we use the geodesic distances computed by the fast marching

on triangulated domains procedure.
Let us start with a simple example in which we fix

m ¼ 3. Given the dissimilarities matrix, an MDS procedure

produces coordinates, X, in R3, for which the Euclidean

distances between the points in R3 would be as close as

possible under some norm to the geodesic distances

between the corresponding surface vertices. The Euclidean

distance between each pair of points in X would be as close

as possible to the distance between the corresponding

points extracted from the data that, in our case, represent

the geodesic distance on the surface. Given the connectivity

of the vertices as triangles that represent the curved surface,

we can connect the corresponding points after the MDS-

mapping and obtain a surface that we refer to as a bending

invariant signature of the original surface.
The selection of R3 in this example was arbitrary. In order

to select a “proper” dimension, m, we define the effective

dimensionality of the problem to bem, the smallest number of

dimensions that allow an invariant signature to capture a

given percentage of the representation energy. In other

words, the representation error captured by the Euclidean

embedding in Rm is smaller than a predefined threshold.
In our experiments, we allowed a representation error of

up to 5 percent. For m ¼ 3, we can graphically view the

invariant signature as a surface in R3. For m � 6, the

invariant signature can be viewed as a colored surface,

where the first three coordinates are used as physical

coordinates in R3 and the next coordinates are used as color

indices. Actually, as defined above, m itself is an invariant

measure that captures both the topological and topographic

complexity of the surface.

3.1 Classical MDS

Classical scaling was originated in the 1930s when Young

et al. showed that, given a matrix of distances between points

in a Euclidean space, one can extract coordinates such that

distances are preserved, see, e.g., [12]. This method allows us

to evaluate, in a simple way, the representation error for a

given surface in a given number of dimensions.
Let the coordinates of n points in a k dimensional

Euclidean space Rk be given by xr, ðr ¼ 1; . . . :; nÞ, where

xr ¼ ½xr1; xr2; . . . ; xrk�T . The Euclidean distance between the

rth and the sth points is given by

d2
rs ¼ ½xr ÿ xs�

T ½xr ÿ xs�: ð3Þ

Let the inner product matrix be B, where the rs element

is given by ½B�rs ¼ brs ¼ xTr xs. Given the squared distances

matrix D, the inner product matrix is given by (see [14])

B ¼ ÿ 1

2
JDJ; ð4Þ

where

J ¼ I ÿ 1

n
11T

11�n ¼ ½1; 1; . . . :; 1�T :

We also have that B ¼ XXT , where X ¼ ½x1; . . .xn�T is the

n� k matrix of the coordinates. The inner product matrix B

is symmetric, positive semidefinite, and of rank k. There-

fore, B has k nonnegative eigenvalues and nÿ k zero

eigenvalues. The matrix B can be expressed in terms of its

spectral decomposition,

B ¼ V�V T ; ð5Þ

where

�n�n ¼ diagð�1; �2; . . . ; �k; 0 . . . :; 0Þ:

For convenience, the eigenvalues of B are ordered such

that �1 � �2 � . . . :�k � 0. Hence, the required coordinates

are given by using the nonzeros submatrix �k�k and the

corresponding eigenvectors submatrix Vn�k,

Xn�k ¼ Vn�k�
1
2

k�k:

The classical scaling is considered to be an efficient

algebraic approach to solving MDS problems. It can be

calculated inOðn2Þ, wheren is the number of feature points in

the given model. This is due to the fact that there is a need to

find only the first m eigenvalues and their corresponding

eigenvectors, which can be computed by variations of the

“power method,” see, for example, [25]. Instead of the stress

function (2), the classical MDS approach minimizes a version

of the Frobenius norm given by

E ¼ kV � ð�ÿ e��Þ � V Tk; ð6Þ

where

e�� ¼ diagð�1; �2; . . . ; �m; 0 . . . 0Þ;
� ¼ diagð�1; �2; . . . ; �m; ::; �k; 0 . . . 0Þ;

and m � k.

3.2 Least Squares MDS

The Least Squares technique is a standard optimization

approach to solve the minimization problem of the cost

defined by the stress function (2). The problem is that there is

no simple way to form a closed expression for the first

derivative of this nonlinear functional. A simple yet powerful

minimization strategy is the principle of minimizing a

function by iterative majorization. This method is applied in

the SAMCOF (Scaling by Maximizing a Convex Function)

algorithm for minimizing the stress [12]. The idea is to bound

the stress function SðXÞ iteratively by a simple function

ŜSðX;ZÞ, where Z is a possible solution, ŜSðX;ZÞ � SðXÞ for
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X 6¼ Z, and ŜSðZ;ZÞ ¼ SðZÞ. Let us briefly review this

procedure. For further details, see [12].
Minimizing the stress (2) is equivalent to minimizing the

following functional.

SðXÞ ¼
X
i<j

wijð�ij ÿ dijðXÞÞ2; ð7Þ

or

SðXÞ ¼ �2
� þ �ðXÞ

2 ÿ 2�ðXÞ;

where

�2
� ¼

X
i<j

wij � �2
ij;

�ðXÞ2 ¼
X
i<j

wijdijðXÞ2;

�ðXÞ ¼
X
i<j

wij�ij � dijðXÞ;

and

dijðXÞ ¼
Xn
a¼1

ðxia ÿ xjaÞ2
 !1=2

:

Applying Cauchy-Schwartz inequality and basic algebraic
operations, it can be shown that the stress function can be
bounded by the following quadratic function in X:

SðXÞ � �2
� þ trXTVX ÿ 2trXTBðZÞZ ¼ �ðX;ZÞ;

where the matrix BðZÞ elements are

bij ¼
ÿ wij�ij

dijðZÞ i 6¼ j and dijðZÞ 6¼ 0

0 i 6¼ j and dijðZÞ ¼ 0

(

bii ¼
Xn

j¼1;j6¼i
bij;

and the matrix V elements are given by

Vij ¼
X
i<j

wijAij

Aij ¼ ðei ÿ ejÞðei ÿ ejÞT ;

where ei is the ith column of the identity matrix and thereby
Aij is an n� n matrix.

The minimum of �ðX;ZÞ can be extracted by setting the
derivative of �ðX;ZÞ to zero and the required solution is
given by

Xi ¼ V þBðZÞZ: ð8Þ

Here, the matrix V þ is the Moore-Penrose inverse of V . It
can be shown that if all weights wij ¼ 1, then the update
simplifies to

Xi ¼ nÿ1BðZÞZ: ð9Þ

The SAMCOF algorithm for MDS can be summarized by

the following steps,

1. Set Z ¼ X0 and i ¼ 0, where X0 is a (non)random
initial configuration.

2. Compute the stress function SðX0Þ.
3. Set i ¼ iþ 1.
4. Compute the next solution Xi by (8) or (9).
5. If SðXiÞ ÿ SðXiÿ1Þ < ", then stop.
6. Set Z ¼ Xi and go to Step 3.

Considering more than three dimensions, as illustrated

in Table 1, decreases the stress (2) by less than 1 percent in

our examples. In all of our test cases, the LS MDS required

less than a hundred iterations to converge. Hence, the

complexity is of Oðn2 �NumOfIterationsÞ.

3.3 Fast MDS

The Fast MDS is a recent heuristic technique proposed by

Faloutsos and Lin [17]. This method is computationally

efficient, OðnmÞ where m is the target dimension, that can

be considered to be OðnÞ in our case. Yet, unlike the two

previous procedures, it does not minimize any global

measure, but merely attempts to approximate it. This

technique works recursively by generating a new dimen-

sion at each step, providing m-dimensional coordinates after

applying the recursion m times. The basic idea is to project

the vertices on a selected axis. First, the algorithm selects

two “pivot” vertices, Oa and Ob, that are as far as possible

from one other. Next, all other vertices are projected on the

line defined by ðOa;ObÞ using the cosine law xi ¼ d2
aiþd2

ab
ÿd2

bi

2dab
,

see Fig. 3.

The next step is to project all items to an ðnÿ 1Þ
hyperplane H that is perpendicular to the line (Oa;Ob) and
generate a new distance matrix according to,

d2
i0j0 ¼ d2

ij ÿ ðxi ÿ xjÞ
2: ð10Þ

This step should be repeated m times. At each step, the
calculated xi, i ¼ ð1; 2 . . . :; nÞ, are the new added dimen-
sion coordinates. The m-dimensional coordinates can be
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Fig. 3. Projection on the hyperplane H.

TABLE 1
LS MDS: The Stress (2) as a Function

of the Number of Dimensions m



calculated in OðmnÞ provided that, at each step, we use a
linear heuristic algorithm to choose the two pivot vertices.

3.4 Evaluating the MDS-Mappings

We computed invariant signatures of various surfaces by
the above three MDS techniques and obtained the results in
Fig. 4 for m ¼ 3. Table 2 summarizes the stress (2) for
increasing dimensions of the three MDS techniques. As

expected, the heuristic fast method produced the least
accurate results (in terms of stress) yet was the fastest, while
the accurate (in terms of stress) LS technique was the
slowest. The LS method reaches the minimal stress, which is
not surprising since the classical MDS minimizes another
measure (the Frobenius norm) as described above. Never-
theless, we can see that the stress decreases for all three
methods as the number of dimensions, m, gets larger.

Our next goal is to evaluate the various MDS procedures as
part of the whole classification framework. In our examples
the LS method that minimizes the stress function better
captures the geometric structure of the data compared to the
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Fig. 5. The Log-ratio of the distances between two classes of two
different objects and the variances of the classes. The solid line
represents the LS and the dashed line the classic MDS.

TABLE 2
The Stress (2) for LS, Classical, and Fast MDS as a

Function of m, the Number of Dimensions of the
Embedding Euclidean Space

Fig. 4. Top row: Original surface. Second row: Fast MDS result. Third row: LS MDS result. Bottom row: Classical MDS result.



results obtained by classical scaling and the fast MDS. That is,

isometric surfaces were better clustered and better separation

between the different classes was obtained by minimizing the

stress. Fig. 5 shows two graphs of the ratio between the

distance between the centers of mass of two classes, and the

variances of these classes. The better the separation, the

higher these ratios should be. In most of our examples, the LS

gave better separation results, as shown by the solid black

curve.
The above analysis leads to the almost obvious conclusion,

that the faster the MDS method, the worse its performances in

terms of stress and separation between classes.

4 CLASSIFYING ISOMETRIC SURFACES

We applied the proposed algorithm to the surfaces shown
in Fig. 6. The input includes bending versions of six
different surfaces, A human body, a hand, a hat, a paper, a
dog, two dinosaurs, and a giraffe. For the MDS-mapping
results shown in Fig. 7 we used the Least Squares MDS. For
presentation purposes, justified by an error analysis of our
3D objects, we selected the Euclidean embedding space to
be of three dimensions. One can see that isometric surfaces
are mapped to similar geometric structures.

The results of applying the moments-based clustering

step is shown in the right frame of Fig. 8. As a reference, the
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Fig. 6. Eight input surfaces of two kinds of dinosaurs (Barosaurus and Tyrannosaurus Rex), a human body, a hand, a hat, a paper, a dog, a giraffe,
and a few bending versions of these surfaces.



left frame displays the results of applying the moment-
based MDS clustering procedure to the original surfaces.
The isometric signature surfaces form small and compact
well-separated groups compared to the moments-based
clustering of the original surfaces. Again, the moments-
based distances between the invariant signatures and final
MDS-based clustering and classification steps are just one
example for comparing the bending invariant signatures of
the surfaces. It has been chosen mainly because it is similar
in nature to the first steps of constructing the invariant
signatures, which is the main focus of this paper. Other
matching techniques between rigid objects that operate on

the invariant signature surfaces are possible and would

most probably yield better clustering results.

5 CONCLUSIONS

An efficient method for computing bending invariant

signatures of isometric surfaces was presented. The method

is based on the fast marching on triangulated domains

algorithm followed by a multidimensional scaling (MDS)

technique. An invariant signature of a surface is computed

by applying an MDS procedure on the geodesic distances
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Fig. 7. Output—the invariant signature surfaces using LS MDS.



matrix computed by the fast marching on triangulated

domains algorithm. Three different MDS techniques were

tested and evaluated for this task: the Classical, the Least

Squares, and the Fast MDS. Our approach, followed by a

simple clustering algorithm, was shown to be useful for

nonrigid isometric surface classification.

Semilocal invariant signatures can help in identifying

nonrigid objects that are partially occluded. A possible

extension of the method to handle partially occluded

surfaces is a local application of the signature around key

surface points. The neighborhood of the key points is

defined by geodesic circles around the key points on the

surface, while the key points themselves should be selected

by analyzing isometric invariant measures, like extremum

points of the Gaussian curvature. One such application for

face recognition is currently under development with

promising preliminary results [13].
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