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Abstract. This paper describes a shape signature that captures the
intrinsic geometric structure of 3D objects. The primary motivation of
the proposed approach is to encode a 3D shape into a one-dimensional
geodesic distribution function. This compact and computationally sim-
ple representation is based on a global geodesic distance defined on the
object surface, and takes the form of a kernel density estimate. To gain
further insight into the geodesic shape distribution and its practicality
in 3D computer imagery, some numerical experiments are provided to
demonstrate the potential and the much improved performance of the
proposed methodology in 3D object matching. This is carried out using
an information-theoretic measure of dissimilarity between probabilistic
shape distributions.
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1 Introduction

Three-dimensional objects consist of geometric and topological information, and
their compact representation is an important step towards a variety of imaging
applications including indexing, retrieval, and matching in a database of 3D mod-
els. The latter will be the focus of the present paper. There are two major steps
in object matching. The first step involves finding a reliable and efficient shape
representation or descriptor, and the second step is the design of an appropriate
dissimilarity measure for object comparison between shape representations.

Most three-dimensional shape matching techniques proposed in the literature
of computer graphics, computer vision and computer-aided design are based on
geometric representations which represent the features of an object in such a
way that the shape dissimilarity problem reduces to the problem of comparing
two such object representations. Feature-based methods require that features be
extracted and described before two objects can be compared. Among feature-
based methods, one popular approach is graph matching, where two objects
are represented by their graphs composed of vertices and edges. An efficient
representation that captures the topological properties of 3D objects is the Reeb
graph descriptor proposed by Shinagawa et al. [1]. The vertices of the Reeb graph
are the singular points of a function defined on the underlying object [1,2]. These
singularities carry important information for further operations, such as image
registration, shape analysis, surface evolution and object recognition [3,4,5].
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An alternative to feature-based representations is the shape distribution de-
veloped by Osada et al [6]. The idea here is to represent an object by a global
histogram based on the Euclidean distance defined on the surface of the object.
The shape matching problem is then performed by computing a dissimilarity
measure between the shape distributions of two arbitrary objects. This approach
is computationally stable and relatively insensitive to noise. Because of unsuit-
ability of the Euclidean distance when dealing with nonlinear manifolds, the
shape distribution, however, does not capture the nonlinear geometric structure
of the data.

In this paper, we propose a new approach for object matching based on
a global geodesic measure. The key idea behind our technique is to represent
an object by a probabilistic shape descriptor called geodesic shape distribution
that measures the global geodesic distance between two arbitrary points on the
surface of an object. In contrast to the Euclidean distance which is more suit-
able for linear spaces, the geodesic distance has the advantage to be able to
capture the (nonlinear) intrinsic geometric structure of the data. The geodesic
shape distribution may be used to facilitate representation, indexing, retrieval,
and object matching in a database of 3D models. More importantly, the geodesic
shape distribution provides a new way of looking at the object matching problem
by exploring the intrinsic geometry of the shape. The matching task therefore
becomes a one-dimensional comparison problem between probability distribu-
tions which is much easier than comparing 3D structures. Object matching may
be carried out by dissimilarity measure calculations between the corresponding
geodesic shape distributions, and it is accomplished in a highly efficient way.

Information-theoretic measures provide quantitative entropic divergences be-
tween two probability distributions. A common entropic dissimilarity measure
is Kullback-Leibler divergence [7] which has been successfully used in many
applications including indexing and image retrieval [8]. Another entropy-based
measure is the Jensen-Shannon divergence which may be defined between any
number of probability distributions [9], and it has been applied to a variety of
signal/image processing and computer vision applications including DEM image
matching [10], and ISAR image registration [11].

The rest of this paper is organized as follows. The next section is devoted
to the problem formulation. Section 3 describes the representation step of our
proposed technique. In Section 4, we present the Jensen-Shannon divergence
and show its attractive properties as a dissimilarity measure between probability
distributions. In Section 5, we provide numerical simulations to show the power
of the geodesic shape distribution for 3D object matching. And finally, Section 6
contains some conclusions and describes a brief outline of possible future work.

2 Problem Statement

Three-dimensional objects are usually represented as triangular meshes in com-
puter graphics and geometric-aided design. A triangle mesh is a pair M = (V, T ),
where V = (v1, . . . ,vm) is the set of vertices, and T = (T1, . . . , Tn) is the set of
triangles.
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In scientific visualization and analysis, a triangle mesh is too large to be
examined without simplification. One way to overcome this limitation is to rep-
resent a triangle mesh by surface features which can easily be computed and
which effectively characterize the global surface shape. The centroids of the set
of triangles T are desirable features that can efficiently be computed and which
have a global significance for the surface shape representation as illustrated in
Fig. 1. In addition, there is a well defined correspondence between a centroid
and its corresponding region (triangle) as depicted in Fig. 1. It is important to
point out that centroid-based methods have been used in a variety of computer
vision applications including clustering. In particular, the K-mean algorithm is
one of the most widely centroid-based technique used for clustering [13].

Unless we establish a meaningful measure of distance between the centroids
of a triangle mesh, no meaningful exploration of the underlying object structure
is possible. In order to take into account the interaction between the centroids,
we compute a pairwise distance measure g(ci, cj) from any centroid ci to all
the other centroids cj ∈ C. Fig. 1 illustrates an arbitrary distance between two
centroids. Notice that the distance g need not be an Euclidean metric.

Fig. 1. Distance between two arbitrary centroids of a 3D human head.

To obtain a global measure of the shape M, we simply integrate over all
centroids. More precisely, we define a function f : C ⊂ M → R such that

f(ci) =
1
|C|

∫
cj

g(ci, cj) dcj , (1)

where dcj denotes the area element that contains the centroid cj , that is, in
the discrete domain, dcj = area(Tj) the area of the triangle Tj , and |C| =
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∑n
j=1 area(Tj) is the total area of the surface M. The function f clearly repre-

sents a global measure of the shape, and therefore to each triangle mesh M we
will assign its global measure f .

The problem addressed in this paper can now be concisely described by the
following statement: Given two 3D objects M1 and M2 to be matched, find
their global measures f1 and f2, and then for a computed dissimilarity measure
D(f1, f2), we are to determine the relative match between them. In other words,
the dissimilarity between two objects measures “how different they are”, and a
smaller value of D means that the two objects are more similar. Fig. 2 depicts
a block-diagram of the proposed framework.

Fig. 2. Block-diagram of the proposed methodology.

3 Proposed Method

The basic idea behind the shape descriptor is to characterize a 3D object with
a one-dimensional function which will help us discriminate between objects in a
database of 3D models.

3.1 Global Geodesic Shape Function

The Reeb graph concept has been shown to be very effective in modeling 3D
objects based on cross sections such as MRI or CT images. It is more adapted
to modeling applications where the height is of special interest such as terrain
imaging. The height function, however, has some limitations to be used as an
object signature for matching, indexing, or retrieval of arbitrary 3D objects.
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The main reason is that the height function is not rotationally invariant. To
overcome these limitations, we propose a global geodesic function defined on the
object surface as follows. Let ci and cj be two points (centroids) on a triangle
mesh M. The geodesic distance g(ci, cj) between ci and cj is the shortest length
L(γ) =

∫ b

a
‖γ′(t)‖dt of a smooth curve γ : [a, b] → M such that γ(a) = ci and

γ(b) = cj . The geodesic distance may be viewed locally as the Euclidean one
dE(ci, cj) = ‖ci−cj‖, and it is clearly invariant to rigid transformations. Inspired
by the geodesic-based representation for 3D topology matching proposed by
Hilaga et al. [12], we define a global shape function f : C → R expressed in
terms of the rotationally invariant (square) geodesic distance as follows

f(ci) =
1
|C|

∫
cj

g(ci, cj)2dcj . (2)

The primary motivation behind the geodesic distance is that of overcoming the
limitations of the Euclidean distance which is linear in nature and therefore
cannot find nonlinear structures in the underlying object. It is worth noting
that the geodesic distance in not only rotationally invariant, but also invariant
to isometric transformations of the surface [16].

Unlike the Euclidean distance which is basically a straight line between two
points in a 3D space, the geodesic distance captures the global nonlinear struc-
ture and the intrinsic geometry of the data as illustrated in Fig. 3. It is clear that
the Euclidean distance between two arbitrary points in a nonlinear manifold is
just a straight segment connecting both points, whereas the geodesic distance,
which is the shortest curve along the surface connecting both points, clearly
reflects the nonlinear structure of the object.

Geodesic Distance Calculation. Given the set of centroids C = {c1, . . . , cn}
of a triangle mesh M, the geodesic distance calculation is based on a graph-based
approach recently used to compute the isometric feature mapping (Isomap) for
multidimensional scaling on nonlinear manifolds [14]. The algorithm has two
main steps:

(i) Construct a neighborhood graph by connecting a given centroid to its
k-nearest neighbors, and link these neighboring centroids by edges with
weights equal to the Euclidean distances.

(ii) Compute the geodesic distances (shortest paths) between all pairs of n
points in the constructed graph using Dijkstra’s or Floyd’s algorithm.

Note that the geodesic distance on triangulated surfaces may also be effectively
computed using the fast marching method introduced by Kimmel and Sethian
[17].

In discrete form, the geodesic shape function is reduced to

f(ci) =
1
|C|Ga = G

a

‖a‖1
, (3)
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Fig. 3. Euclidean vs. geodesic distance on a nonlinear manifold.

where G = (g2
ij) is the (square) geodesic distance matrix of size n × n, and

a = (a1, . . . , an)T is an n × 1 vector of triangle areas, i.e. aj = area(Tj). The
matrix G = (g2

ij) is symmetric with zeros in the diagonal, and positive off-
diagonal elements. Note that the geodesic shape function can be expressed as a
geodesic shape vector X = {X1, . . . , Xn}, where Xi = f(ci). This vector may be
viewed as a shape descriptor that can be used for 3D shape comparison.

3.2 Global Geodesic Shape Distribution

Assume that the geodesic shape vector X of an object M is a random sample
with a common (unknown) probability density function p. A common approach
to approximating the probability density function p is through the kernel density
estimation. This is an important data-driven tool that provides a very effective
way of unraveling structure in a set of data [15]. The kernel density estimator p̂
is given by

p̂(x) =
1

nh

n∑
i=1

K
(

x − Xi

h

)
, (4)

where K is a Gaussian kernel, and h is the bandwidth or window width to be
estimated. A good selection of this bandwidth is given by (see [15])

ĥ =
[

243 R(K)
35 µ2(K)2 n

]1/5

σ̂,

where R(K) =
∫

K(t)2 dt, µ2(K) =
∫

t2K(t) dt, and σ̂ = medj{|Xj −medi{Xi}|}
is the median absolute deviation.

To each 3D object represented by a triangle mesh M, we therefore associate
a kernel density p̂ which we will refer to as geodesic shape distribution. This
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probabilistic shape descriptor represents the object information and will be used
in our matching experiments. In order to compare two geodesic shape distri-
butions and hence to measure the performance of the proposed scheme, we will
describe in the next section an information-theoretic distance that quantifies the
difference between two 3D shapes through their probabilistic shape descriptors.

4 Probabilistic Dissimilarity

Let M1 and M2 two 3D objects with geodesic shape distributions p̂ and q̂ respec-
tively. Information theoretic measures provide quantitative entropic divergences
between two probability distributions. A common entopic measure is Kullback-
Leibler divergence. This dissimilarity measure, however, is not symmetric, un-
bounded, and undefined if p̂ is not absolutely continuous with respect to q̂. To
overcome these limitations, we use the Jensen-Shannon divergence D defined as

D(p̂, q̂) = H

(
p̂ + q̂

2

)
− H(p̂) + H(q̂)

2
,

where H(p̂) = −
∫

p̂(x) log2 p̂(x) dx is the differential entropy.
The Jensen-Shannon divergence is a statistical distance that is very useful in

quantifying differences between probability distributions or densities. In other
words, this dissimilarity measure quantifies differences in shape between two
arbitrary objects.

Unlike the Kullback-Leibler divergence, the Jensen-Shannon divergence has
the advantage of being symmetric, always defined, and generalizable to any num-
ber of probability distributions, with a possibility of assigning weights to these
distributions [9]. In addition to its convexity property, the Jensen-Shannon di-
vergence is shown to be an adapted measure of disparity among probability
distributions, and it is upper bounded D(p̂, q̂) ≤ log2(2) = 1 (see [11] for more
details).

5 Experimental Results

Object matching experiments were performed using a database of 3D models
collected from the internet. Each model is represented as a triangle mesh, and
the number of centroids is chosen to be equal n = 1000 for all models used
in experimentation. This number was fixed by reducing the number of triangles
while trying to preserve the overall shape of the triangle mesh. We experimented
with different values of n, and the resulting geodesic shape distribution has been
shown to be relatively insensitive to the choice of the number of centroids.

We conducted two sets of experiments. The first set of simulations deals with
objects that are topologically equivalent to a sphere (i.e. with genus equal to zero)
as shown in Fig. 4. The numerical results using the Jensen-Shannon dissimilar-
ity measure are depicted in Table 1 where the grayscale colorbar displays the
grayscale colormap of this dissimilarity matrix. This grayscale colormap ranges
from white (maximum similarity) to black (maximum dissimilarity), and passes
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Fig. 4. First set of experiments: 3D models and their geodesic shape distributions.

Table 1. Jensen-Shannon dissimilarity results for the first set of experiments.

through the gray colors indicating the values of the matching performance. As
illustrated in Table 1, the minimum dissimilarity rate is about 9%, that is the
matching rate is about 91%.

The second set of experiments is similar the first, except that the under-
lying objects have a different topology than the ones in the first part of the
experiments. Fig. 5 shows a set of objects with genus equal to one. Matching is
achieved by the minimum Jensen-Shannon distance computations as illustrated
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Fig. 5. Second set of experiments: 3D models and their geodesic shape distributions.

Table 2. Jensen-Shannon dissimilarity results for the second set of experiments.

in Table 2. Note that the minimum dissimilarity rate is about 2%, that is the
matching rate is about 98%.

6 Conclusions and Future Work

In this paper, we proposed an new methodology for object matching. The key
idea is to encode a 3D shape into a 1D geodesic shape distribution. Object match-
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ing is then achieved by calculating an information-theoretic measure of dissimi-
larity between the probability distributions. That is, the dissimilarity computa-
tions are carried out in a low-dimensional space of geodesic shape distributions.
Finally, while the experimental results presented in this paper are very encour-
aging, significant additional performance gains and efficient parallelizations are
still possible.
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