Shape Matching: A Metric Geometry Approach

Facundo Mémoli.
CS 468, Stanford University, Fall 2008.

The Problem of Shape/Object Matching

- databases of objects
- objects can be many things:
- proteins
- molecules
- 2D objects (imaging)
- 3D shapes: as obtained via a 3D scanner
- 3D shapes: modeled with CAD software
- 3D shapes: coming from design of bone protheses
- text documents
- more complicated structures present in datasets (things you can't visualize)

3D objects: examples

- cultural heritage (Michelangelo project: http://www-graphics.stanford.edu/projects/mich/)
- search of parts in a factory of, say, cars
- face recognition: the face of an individual is a 3 D shape...
- proteins: the shape of a protein reflects its function.. protein data bank: http://www.rcsb.org

Typical situation: classification

- assume you have database \mathcal{D} of objects.
- assume \mathcal{D} is composed by several objects, and that each of these objects belongs to one of n classes C_{1}, \ldots, C_{n}.
- imagine you are given a new object o, not in your database, and you are asked to determine whether o belongs to one of the classes. If yes, you also need to point to the class.
- One simple procedure is to say that you will assign object o the class of the closest object in \mathcal{D} :

$$
\begin{gathered}
\operatorname{class}(o)=\operatorname{class}(z) \\
\text { where } z \in \mathcal{D} \text { minimizes } \operatorname{dist}(o, z)
\end{gathered}
$$

- in order to do this, one first needs to define a notion dist of distance or dis-similarity between objects.

Another important point: invariances

Are these two objects the same?

Another important point: invariances

Are these two objects the same?

this is called invariance to rigid transformations

Another important points: invariances

 what about these two?
roughly speaking, this corresponds to invariance to bending transformations..

invariances...

The measure of dis-similarity dist must capture the type of invariance you want to encode in your classification system.

$\operatorname{dist}(\mathbb{x}$
$)=0 ?$

What we proposed in the course:

1. Decide what invariances you wish to incorporate. It is OK if you don't have invariances (Hausdorff + Wasserstein)
2. Represent shapes as metric spaces (or mm-spaces):

- Identify what metric is preserved by the notion of invariance you chose to consider.
- Endow shapes with that metric
- Choose weights that are meaningful for your application (if you don't have any reason to choose: then set them to be equal)

3. Define a metric on your class of objects.

We studied the case of no invariances first.

No invariances..

- You start out with a compact metric space (Z, d) (called ambient space, typically $Z=\mathbb{R}^{k}$).
- We saw two constructions:

$$
\left(\mathcal{C}(Z), d_{\mathcal{H}}^{Z}\right) \quad \text { and } \quad\left(\mathcal{C}_{w}(Z), d_{\mathcal{W}, p}^{Z}\right)
$$

where $\mathcal{C}(Z)$ stands for all compact subsets of Z and $\mathcal{C}_{w}(Z)$ for all weighted subsets of Z : that is, pairs $\left(A, \mu_{A}\right)$ where μ_{A} is a probability measure on Z s.t. $\operatorname{supp}\left[\mu_{A}\right]=A$.

Ambient space isometries..(Extrinsic approach)

Fix a compact metric space (Z, d). Let $I(Z)$ denote the isometry group of Z (when $Z=\mathbb{R}^{k}, I(Z)=E(k)$, that is, all Euclidean isometries.)

- In this case, we considered either objects in $\mathcal{C}(Z)$ or in $\mathcal{C}_{w}(Z)$. Let $\mathcal{O}(Z)$ denote your choice.
- Let dist be the corresponding metric (Hausdorff or Wasserstein).
- Then, we constructed distances between objects in $\mathcal{O}(Z)$ that were blind to isometries:

$$
\operatorname{dist}^{i s o}(X, Y):=\inf _{T \in I(Z)} \operatorname{dist}(X, T(Y))
$$

for all $X, Y \in \mathcal{O}(Z)$.

Ambient space isometries..(Extrinsic approach)

Fix a compact metric space (Z, d). Let $I(Z)$ denote the isometry group of Z (when $Z=\mathbb{R}^{k}, I(Z)=E(k)$, that is, all Euclidean isometries.)

- In this case, we considered either objects in $\mathcal{C}(Z)$ or in $\mathcal{C}_{w}(Z)$. Let $\mathcal{O}(Z)$ denote your choice.
- Let dist be the corresponding metric (Hausdorff or Wasserstein).
- Then, we constructed distances between objects in $\mathcal{O}(Z)$ that were blind to isometries:

$$
\operatorname{dist}^{i s o}(X, Y):=\inf _{T \in I(Z)} \operatorname{dist}(X, T(Y))
$$

for all $X, Y \in \mathcal{O}(Z)$.

Ambient space isometries..(Extrinsic approach)

Fix a compact metric space (Z, d). Let $I(Z)$ denote the isometry group of Z (when $Z=\mathbb{R}^{k}, I(Z)=E(k)$,

- In this case, we c denote your ch remember BENDS

The intrinsic approach...

- Regard shapes as metric spaces in themselves: no reference to any ambient space.
- That is, objects/shapes now are metric spaces or mm-spaces $\left(X, d_{X}\right)$ or $\left(X, d_{X}, \mu_{X}\right)$.
- Let \mathcal{M} denote collection of all metric spaces and \mathcal{M}_{w} the collections of all mm-spaces.
- Endow \mathcal{M} and/or \mathcal{M}_{w} with a metric.
- We saw the following constructions:
- On \mathcal{M} we put the Gromov-Hausdorff distance $d_{\mathcal{G H}}($,$) .$
- On \mathcal{M}_{w} we put two metrics, \mathfrak{S}_{p} and \mathfrak{D}_{p}. These metrics could be called Gromov-Wasserstein metrics.

$\mathcal{C}(Z)$	$\mathcal{C}_{w}(Z)$
\mathcal{M}	\mathcal{M}_{w}
$d_{\mathcal{H}}$	
$d_{\mathcal{G H}}$	\mathfrak{D}_{p}
	\mathfrak{S}_{p}

Extrinsic approach

Extrinsic approach

Intrinsic approach

What is the relationship between the Intrinsic and Extrinsic Approaches?

- Answer known for $Z=\mathbb{R}^{k}$, [M08-euclidean].
- In class we saw the case of $d_{\mathcal{G} \mathcal{H}}$ vs. $d_{\mathcal{H}}^{\text {iso }}:$ for all $X, Y \in \mathbb{R}^{k}$,
$d_{\mathcal{G H}}((X,\|\cdot\|),(Y,\|\cdot\|)) \leqslant \inf _{T \in E(k)} d_{\mathcal{H}}(X, T(Y)) \leqslant C_{k}\left(d_{\mathcal{G H}}((X,\|\cdot\|),(Y,\|\cdot\|))\right)^{1 / 2} M^{1 / 2}$
where $M=\max (\operatorname{diam}(X), \operatorname{diam}(Y))$.
- There is a similar claim valid for \mathfrak{S}_{p} vs. $d_{\mathcal{W}, p}^{i s o}$.

Main points

- Define notion of distance on shapes. Get sampling consistency + stability for free.
- GH distance leads to hard combinatorial optimization problems.
- Relaxations of these do not appear to be correct.
- Gromov-Wasserstein distances are better. Both \mathfrak{D}_{p} and \mathfrak{S}_{p} yield quadratic optimization probs. with linear constraints.
- Sturm's \mathfrak{S}_{p} requires large nbr. of constraints, then we argue for \mathfrak{D}_{p}.
- Many lower bounds for \mathfrak{D}_{p} are possible. These employ invariants previously used in the literature:
- Shape Distributions
- Eccentricities (Hamza-Krim)
- Shape contexts

Main Technical concepts

- Metric spaces, mm-spaces, isometries, approximate isometries, probability measures.
- Correspondences, measure couplings, metric couplings.
- Hausdorff distance. Wasserstein distance. Mass transportation.
- Gromov-Hausdorff distance. Gromov-Wasserstein distances.
- Invariants of mm-spaces

correspondences and the Hausdorff distance

Definition [Correspondences]
For sets A and B, a subset $R \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{R}(A, B)$ denote the set of all possible correspondences between sets A and B. Note that in the case $n_{A}=n_{B}$, correspondences are larger than bijections.

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $\left(\left(r_{a, b}\right)\right) \in\{0,1\}^{n_{A} \times n_{B}}$ s.t.

$$
\begin{aligned}
& \sum_{a \in A} r_{a b} \geq 1 \quad \forall b \in B \\
& \sum_{b \in B} r_{a b} \geq 1 \quad \forall a \in A
\end{aligned}
$$

Proposition

Let (X, d) be a compact metric space and $A, B \subset X$ be compact. Then

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

correspondences and measure couplings

Let $\left(A, \mu_{A}\right)$ and $\left(B, \mu_{B}\right)$ be compact subsets of the compact metric space (X, d) and μ_{A} and μ_{B} be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure μ on $A \times B$ s.t. (in the finite case this means $\left.\left(\left(\mu_{a, b}\right)\right) \in[0,1]^{n_{A} \times n_{B}}\right)$

- $\sum_{a \in A} \mu_{a b}=\mu_{B}(b) \forall b \in B$
- $\sum_{b \in B} \mu_{a b}=\mu_{A}(a) \forall a \in A$

Let $\mathcal{M}\left(\mu_{A}, \mu_{B}\right)$ be the set of all couplings of μ_{A} and μ_{B}. Notice that in the finite case, $\left(\left(\mu_{a, b}\right)\right)$ must satisfy $n_{A}+n_{B}$ linear constraints.

correspondences and measure couplings

Proposition [$(\mu \leftrightarrow R)$]

- Given $\left(A, \mu_{A}\right)$ and $\left(B, \mu_{B}\right)$, and $\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)$, then

$$
R(\mu):=\operatorname{supp}(\mu) \in \mathcal{R}(A, B) .
$$

- König's Lemma. [gives conditions for $R \rightarrow \mu$]

Wasserstein distance

$$
\begin{gathered}
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)} \\
\Downarrow(R \leftrightarrow \mu) \\
d_{\mathcal{W}, \infty}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))} \\
\Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right) \\
d_{\mathcal{W}, p}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
\end{gathered}
$$

Wasserstein distance

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

$$
\Downarrow(R \leftrightarrow \mu)
$$

$$
d_{\mathcal{W}, \infty}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))}
$$

$$
\Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right)
$$

$$
d_{\mathcal{W}, p}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
$$

Wasserstein distance

$$
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)}
$$

$$
\Downarrow(R \leftrightarrow \mu)
$$

$$
\begin{aligned}
d_{\mathcal{W}, \infty}(A, B) & =\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))} \\
& \Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right) \\
d_{\mathcal{W}, p}(A, B) & =\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
\end{aligned}
$$

Wasserstein distance

$$
\begin{gathered}
d_{\mathcal{H}}(A, B)=\inf _{R \in \mathcal{R}(A, B)}\|d\|_{L^{\infty}(R)} \\
\Downarrow(R \leftrightarrow \mu) \\
d_{\mathcal{W}, \infty}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{\infty}(R(\mu))} \\
\Downarrow\left(L^{\infty} \leftrightarrow L^{p}\right)
\end{gathered}
$$

$$
d_{\mathcal{W}, p}(A, B)=\inf _{\mu \in \mathcal{M}\left(\mu_{A}, \mu_{B}\right)}\|d\|_{L^{p}(A \times B, \mu)}
$$

GH distance

GH: definition

$$
d_{\mathcal{G} \mathcal{H}}(X, Y)=\inf _{Z, f, g} d_{\mathcal{H}}^{Z}(f(X), g(Y))
$$

correspondences and GH distance

The GH distance between $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ admits the following expression:

$$
d_{\mathcal{G H}}^{(1)}(X, Y)=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{R \in \mathcal{R}(X, Y)}\|d\|_{L^{\infty}(R)}
$$

where $\mathcal{D}\left(d_{X}, d_{Y}\right)$ is a metric on $X \sqcup Y$ that reduces to d_{X} and d_{Y} on $X \times X$ and $Y \times Y$, respectively.

$$
\begin{gathered}
X \\
X \\
Y \\
Y
\end{gathered}\left(\begin{array}{cc}
Y \\
d_{X} & \mathbf{D} \\
\mathbf{D}^{T} & d_{Y}
\end{array}\right)=d
$$

In other words: you need to glue X and Y in an optimal way. Note that D consists of $n_{X} \times n_{Y}$ positive reals that must satisfy $\sim n_{X} \cdot C_{2}^{n_{Y}}+n_{Y} \cdot C_{2}^{n_{X}}$ linear constraints.

Another expression for the GH distance

For compact spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ let

$$
d_{\mathcal{G H}}^{(2)}(X, Y)=\frac{1}{2} \inf _{R} \max _{(x, y),\left(x^{\prime}, y^{\prime}\right) \in R}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|
$$

We write, compactly,

$$
d_{\mathcal{G} \mathcal{H}}^{(2)}(X, Y)=\frac{1}{2} \inf _{R}\left\|d_{X}-d_{Y}\right\|_{L^{\infty}(R \times R)}
$$

Equivalence thm:

Theorem [Kalton-Ostrovskii]
For all X, Y compact,

Relaxing the notion of

correspondence from GH to GW

Shapes as mm-spaces, [M07]

Remember:

$\left(X, d_{X}, \mu_{X}\right)$

1. Specify representation of shapes.
2. Identify invariances that you want to mod out.
3. Describe notion of isomorphism between shapes (this is going to be the zero of your metric)
4. Come up with a metric between shapes (in the representation of 1.)

- Now we are talking of triples $\left(X, d_{X}, \mu_{X}\right)$ where X is a set, d_{X} a metric on X and μ_{X} a probability measure on X.
- These objects are called measure metric spaces, or mm-spaces for short.
- two mm-spaces X and Y are deemed equal or isomorphic whenever there exists an isometry $\Phi: X \rightarrow Y$ s.t. $\mu_{Y}(B)=\mu_{X}\left(\Phi^{-1}(B)\right.$ for all (measurable) sets $B \subset Y$.

Remember

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are isomorphic iff there exists isometry $\Phi: X \rightarrow Y$ s.t. $\mu_{X}\left(\Phi^{-1}(B)\right)=\mu_{Y}(B)$ for all measurable $B \subset Y$.

The plan

$\inf _{d, R}\|d\|_{L^{\infty}(R)}$
$\frac{1}{2} \inf _{R}\left\|\Gamma_{X, Y}\right\|_{L^{\infty}(R \times R)}$

Can \mathfrak{S}_{p} be equal to \mathfrak{D}_{p} ?

- Using the same proof as in the Kalton-Ostrovskii Thm., one can prove that

$$
\mathfrak{S}_{\infty}=\mathfrak{D}_{\infty}
$$

- Also, it is easy to see that for all $p \geq 1$

$$
\mathfrak{S}_{p} \geq \mathfrak{D}_{p}
$$

- But the equality does not hold in general. One counterexample is as follows: take $X=\left(\Delta_{n-1},\left(\left(d_{i j}=1\right)\right),\left(\nu_{i}=1 / n\right)\right)$ and $Y=(\{q\},((0)),(1))$. Then, for $p \in[1, \infty)$

$$
\mathfrak{S}_{1}(X, Y)=\frac{1}{2}>\frac{1}{2}\left(\frac{n-1}{n}\right)^{1 / p}=\mathfrak{D}_{1}(X, Y)
$$

- Furthermore, these two (tentative) distances are not Lipschitz equivalent!! This forces us to analyze them separately. The delicate step is proving that $\operatorname{dist}(X, Y)=0$ implies $X \simeq Y$.
- K. T. Sturm has analyzed \mathfrak{S}_{p}. Analysis of \mathfrak{D}_{p} is in [M07].

$$
\left\{\Delta_{n}\right\}_{n=1}^{\infty}
$$

Properties of \mathfrak{D}_{p}

Theorem 1 ([M07]). 1. Let X, Y and Z mm-spaces then

$$
\mathfrak{D}_{p}(X, Y) \leqslant \mathfrak{D}_{p}(X, Z)+\mathfrak{D}_{p}(Y, Z)
$$

2. If $\mathfrak{D}_{p}(X, Y)=0$ then X and Y are isomorphic.
3. Let $\mathbb{X}_{n}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ be a subset of the mm-space (X, d, ν). Endow \mathbb{X}_{n} with the metric d and a prob. measure ν_{n}, then

$$
\mathfrak{D}_{p}\left(X, \mathbb{X}_{n}\right) \leqslant d_{\mathcal{W}, p}\left(\nu, \nu_{n}\right)
$$

4. $p \geqslant q \geqslant 1$, then $\mathfrak{D}_{p} \geqslant \mathfrak{D}_{q}$.
5. $\mathfrak{D}_{\infty} \geqslant d_{\mathcal{G H}}$.

The parameter p is not superfluous

For $p \in[1, \infty]$ let $\operatorname{diam}_{p}(X)=\left\|d_{X}\right\|_{L^{p}\left(\mu_{X} \otimes \mu_{X}\right)}$.
The simplest lower bound for \mathfrak{D}_{p} one has is based on the triangle inequality plus the observation that

$$
\mathfrak{D}_{p}\left(\left(X, d_{X}, \mu_{X}\right),(\{q\}, 0,1)\right)=\operatorname{diam}_{p}(X)
$$

Then,

$$
\mathfrak{D}_{p}(X, Y) \geqslant \frac{1}{2}\left|\operatorname{diam}_{p}(X)-\operatorname{diam}_{p}(Y)\right|
$$

For example, when $X=S^{n}$ (spheres with uniform measure and usual intrinsic metric):

- $p=\infty$ gives $\operatorname{diam}_{\infty}\left(S^{n}\right)=\pi$ for all $n \in \mathbb{N}$
- $p=1$ gives $\operatorname{diam}_{1}\left(S^{n}\right)=\pi / 2$ for all $n \in \mathbb{N}$
- $p=2$ gives $\operatorname{diam}_{2}\left(S^{1}\right)=\pi / \sqrt{3}$ and $\operatorname{diam}_{2}\left(S^{2}\right)=\sqrt{\pi^{2} / 2-2}$

Lower bounds for \mathfrak{D}_{p} in terms of invariants

. Recall the invariants we defined before. Fix $X \in \mathcal{G}_{w}$ and $p \geqslant 1$.

- distribution of distances: $F_{X}:[0, \infty) \rightarrow[0,1]$,

$$
t \mapsto\left(\mu_{X} \otimes \mu_{X}\right)\left(\left\{\left(x, x^{\prime}\right) \mid d_{X}\left(x, x^{\prime}\right) \leqslant t\right\}\right) .
$$

- local distribution of distances: $C_{X}: X \times[0, \infty) \rightarrow[0,1]$,

$$
t \mapsto \mu_{X}\left(\left\{x^{\prime} \mid d_{X}\left(x, x^{\prime}\right) \leqslant t\right\}\right) .
$$

- eccentricities: $s_{X, p}: X \rightarrow \mathbb{R}^{+}$,

$$
x \mapsto\left\|d_{X}(x, \cdot)\right\|_{L^{p}\left(\mu_{X}\right)} .
$$

- There are explicit lower bounds for \mathfrak{D}_{p} in terms of these invariants, [M07].
- These lower bounds are important in practice: yield LOPs, easy optimization problems.
Solution can be used as initial condition for solving \mathfrak{D}_{p}.

Shape Distributions [Osada-et-al]

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Shape Distributions [Osada-et-al]

Shape Distributions [Osada-et-al]

Shape Distributions [Osada-et-al]

Shape Contexts

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

0
0
0
0
0
0

Shape Contexts

Inlll

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Shape Contexts

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Hull ho

Hamza-Krim

$$
\frac{\sum_{j} d_{1, j}}{N}
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \cdots \\
d_{12} & 0 & d_{23} & d_{24} & \cdots \\
d_{13} & d_{23} & 0 & d_{34} & \cdots \\
d_{14} & d_{24} & d_{34} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\begin{gathered}
\frac{\sum_{j} d_{2, j}}{N} \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$

$$
\frac{\sum_{j} d_{N, j}}{N}
$$

Hamza-Krim

$$
\frac{\sum_{j} d_{1, j}}{N}
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Hamza-Krim

$$
\frac{\sum_{j} d_{1, j}}{N}
$$

$$
\left(\begin{array}{ccccc}
0 & d_{12} & d_{13} & d_{14} & \ldots \\
d_{12} & 0 & d_{23} & d_{24} & \ldots \\
d_{13} & d_{23} & 0 & d_{34} & \ldots \\
d_{14} & d_{24} & d_{34} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\frac{\sum_{j} d_{N, j}}{N}
$$

The discrete case.

The option proposed and analyzed by K.L Sturm [St06], reads

$$
\mathfrak{S}_{p}(X, Y)=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} d^{p}(x, y) \mu_{x, y}\right)^{1 / p}
$$

The second option reads [M07]

$$
\mathfrak{D}_{p}(X, Y)=\inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} \sum_{x^{\prime}, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{p} \mu_{x, y} \mu_{x^{\prime}, y^{\prime}}\right)^{1 / p}
$$

The first option,

$$
\mathfrak{S}_{p}=\inf _{d \in \mathcal{D}\left(d_{X}, d_{Y}\right)} \inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} d^{p}(x, y) \mu_{x, y}\right)^{1 / p}
$$

requires $\mathbf{2}\left(\mathbf{n}_{\mathbf{X}} \times \mathbf{n}_{\mathbf{Y}}\right)$ variables and $\mathbf{n}_{\mathbf{X}}+\mathbf{n}_{\mathbf{Y}}$ plus $\sim \mathbf{n}_{\mathbf{Y}} \cdot \mathbf{C}_{\mathbf{2}}^{\mathbf{n}_{\mathbf{X}}}+\mathbf{n}_{\mathbf{X}} \cdot \mathbf{C}_{\mathbf{2}}^{\mathbf{n}_{\mathbf{Y}}}$ linear constraints. When $p=1$ it yields a bilinear optimization problem.

Our second option,

$$
\mathfrak{D}_{p}(X, Y)=\inf _{\mu \in \mathcal{M}\left(\mu_{X}, \mu_{Y}\right)}\left(\sum_{x, y} \sum_{x^{\prime}, y^{\prime}}\left|d_{X}\left(x, x^{\prime}\right)-d_{Y}\left(y, y^{\prime}\right)\right|^{p} \mu_{x, y} \mu_{x^{\prime}, y^{\prime}}\right)^{1 / p}
$$

requires $\mathbf{n}_{\mathbf{X}} \times \mathbf{n}_{\mathbf{Y}}$ variables and $\mathbf{n}_{\mathbf{X}}+\mathbf{n}_{\mathbf{Y}}$ linear constraints. It is a quadratic (generally non-convex :-() optimization problem (with linear and bound constraints) for all p.

Future

- Study families of shapes.
- Statistic of families of shapes.
- Partial shape matching.
- Connections with Persistent topology invariants (Frosini+others... Yi will describe Frosini's work)
- Comparison/matching of animated geometries (Peter will talk about this)

Future

- Study families of shapes.
- Statistic of families of shapes.
- Partial shape matching.
- Connections with Persistent topology invariants (Frosini+others... Yi will describe Frosini's work)
- Comparison/matching of animated geometries (Peter will talk about this)

Future

- Study families of shapes.
- Statistic of families of shapes.
- Partial shape matching.
- Connections with Persistent topology invariants (Frosini+others... Yi will describe Frosini's work)
- Comparison/matching of animated geometries (Peter will talk about this)

and more

- Explain/relate more methods using these ideas: what about eigenvalue based methods?
- Shape signatures [Reuter-et-al]: associate to each shape the sorted list of eigenvalues of the Laplacian on the shape.
- Leordaneau... from matching of pairs of points to matching of points.
- The GH distance and related Metric Geometry ideas are very powerful and can probably help uniformizing the treatment of many algorithmic procedure out there.

Bibliography

[BBI] Burago, Burago and Ivanov. A course on Metric Geometry. AMS, 2001
[EK] A. Elad (Elbaz) and R. Kimmel. On bending invariant signatures for surfaces, IEEE Trans. on PAMI, 25(10):1285-1295, 2003.
[BBK] A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proc. Natl. Acad. Sci. USA, 103(5):1168-1172 (electronic), 2006.
[HK] A. Ben Hamza, Hamid Krim: Probabilistic shape descriptor for triangulated surfaces. ICIP (1) 2005: 1041-1044
[Osada-et-al] Robert Osada, Thomas A. Funkhouser, Bernard Chazelle, David P. Dobkin: Matching 3D Models with Shape Distributions. Shape Modeling International 2001: 154-166
[SC] S. Belongie and J. Malik (2000). "Matching with Shape Contexts". IEEE Workshop on Contentbased Access of Image and Video Libraries (CBAIVL2000).
[Goodrich] M. Goodrich, J. Mitchell, and M. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):371-376, 1999.
[M08-partial] F.Memoli. Lp Gromov-Hausdorff distances for partial shape matching, preprint.
[M08-euclidean]F. Mémoli. Gromov-Hausdorff distances in Euclidean spaces. NORDIA-CVPR-2008.
[M07] F.Memoli. On the use of gromov-hausdorff distances for shape comparison. In Proceedings of PBG 2007, Prague, Czech Republic, 2007.
[MS04] F. Memoli and G. Sapiro. Comparing point clouds. In SGP '04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 32-40, New York, NY, USA, 2004. ACM.
[MS05] F. Memoli and G. Sapiro. A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math., 5(3):313-347, 2005.
http://math.stanford.edu/~memoli

