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The Problem of Shape/Object Matching

• databases of objects

• objects can be many things:

– proteins
– molecules
– 2D objects (imaging)
– 3D shapes: as obtained via a 3D scanner
– 3D shapes: modeled with CAD software
– 3D shapes: coming from design of bone protheses
– text documents
– more complicated structures present

in datasets (things you can’t visualize)



3D objects: examples

• cultural heritage (Michelangelo project:
http://www-graphics.stanford.edu/projects/mich/)

• search of parts in a factory of, say, cars

• face recognition: the face of an individual is a 3D shape...

• proteins: the shape of a protein reflects its function..
protein data bank: http://www.rcsb.org



Typical situation: classification

• assume you have database D of objects.

• assume D is composed by several objects, and that each
of these objects belongs to one of n classes C1, . . . , Cn.

• imagine you are given a new object o, not in your
database, and you are asked to determine whether o belongs
to one of the classes. If yes, you also need to point to the class.

• One simple procedure is to say that you will assign object
o the class of the closest object in D:

class(o) = class(z)

where z ∈ D minimizes dist(o, z)

• in order to do this, one first needs to define a notion
dist of distance or dis-similarity between objects.



X Y

Another important point: invariances

Are these two objects the same?



XY

this is called invariance to rigid transformations

Another important point: invariances

Are these two objects the same?



Another important points: invariances

what about these two?

roughly speaking, this corresponds to invariance to bending transformations..



invariances...

The measure of dis-similarity dist must capture the
type of invariance you want to encode in your classification system.

= ?
dist( , ) = 0 ?



What we proposed in the course:

1. Decide what invariances you wish to incorporate. It is OK if you don’t
have invariances (Hausdorff + Wasserstein)

2. Represent shapes as metric spaces (or mm-spaces):

• Identify what metric is preserved by the notion of invariance you
chose to consider.

• Endow shapes with that metric
• Choose weights that are meaningful for your application (if you don’t

have any reason to choose: then set them to be equal)

3. Define a metric on your class of objects.

We studied the case of no invariances first.



No invariances..

• You start out with a compact metric space Z, d (called ambient space,
typically Z Rk).

• We saw two constructions:

C Z , dZ
H and Cw Z , dZ

W,p

where C Z stands for all compact subsets of Z and Cw Z for all weighted
subsets of Z: that is, pairs A, µA where µA is a probability measure on
Z s.t. supp µA A.

X Y X Y



Ambient space isometries..(Extrinsic approach)

Fix a compact metric space Z, d . Let I Z denote the isometry group of Z
(when Z Rk, I Z E k , that is, all Euclidean isometries.)

• In this case, we considered either objects in C Z or in Cw Z . Let O Z
denote your choice.

• Let dist be the corresponding metric (Hausdorff or Wasserstein).

• Then, we constructed distances between objects inO Z that were blind to isometries:

distiso X, Y : inf
T I Z

dist X,T Y

for all X, Y O Z .

X Y
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XY

but this was not general enough...
remember BENDS





The intrinsic approach...

• Regard shapes as metric spaces in themselves: no reference to any ambient
space.

• That is, objects/shapes now are metric spaces or mm-spaces X, dX or
X, dX , µX .

• LetM denote collection of all metric spaces andMw the collections of all
mm-spaces.

• Endow M and/or Mw with a metric.

• We saw the following constructions:

– On M we put the Gromov-Hausdorff distance dGH , .
– On Mw we put two metrics, Sp and Dp. These metrics could be

called Gromov-Wasserstein metrics.



C Z Cw Z

dH dW,p

M Mw

dGH SpDp



Extrinsic approach

C Z Cw Z

dH dW,p

M Mw

dGH SpDp



Intrinsic approach

Extrinsic approach

C Z Cw Z

dH dW,p

M Mw

dGH SpDp



What is the relationship between the Intrinsic
and Extrinsic Approaches?

• Answer known for Z Rk, [M08-euclidean].

• In class we saw the case of dGH vs. diso
H : for all X, Y Rk,

dGH X, , Y, inf
T E k

dH X, T Y Ck dGH X, , Y, 1 2 M1 2

where M max diam X ,diam Y .

• There is a similar claim valid for Sp vs. diso
W,p.



Main points

• Define notion of distance on shapes. Get sampling consistency + stability
for free.

• GH distance leads to hard combinatorial optimization problems.

• Relaxations of these do not appear to be correct.

• Gromov-Wasserstein distances are better. Both Dp and Sp yield quadratic
optimization probs. with linear constraints.

• Sturm’s Sp requires large nbr. of constraints, then we argue for Dp.

• Many lower bounds for Dp are possible. These employ invariants previ-
ously used in the literature:

– Shape Distributions
– Eccentricities (Hamza-Krim)
– Shape contexts



Main Technical concepts

• Metric spaces, mm-spaces, isometries, approximate isometries, probability
measures.

• Correspondences, measure couplings, metric couplings.

• Hausdorff distance. Wasserstein distance. Mass transportation.

• Gromov-Hausdorff distance. Gromov-Wasserstein distances.

• Invariants of mm-spaces



correspondences
and the Hausdorff distance
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Definition [Correspondences]

For sets A and B, a subset R ⊂ A×B is a correspondence (between A and B)
if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let R(A, B) denote the set of all possible correspondences between sets
A and B. Note that in the case nA = nB, correspondences are larger than
bijections.



correspondences
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Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

∑

a∈A

rab ≥ 1 ∀b ∈ B

∑

b∈B

rab ≥ 1 ∀a ∈ A



correspondences

Proposition
Let (X, d) be a compact metric space and A, B ⊂ X be compact. Then

dH(A, B) = inf
R∈R(A,B)

‖d‖L∞(R)

19

Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

∑

a∈A

rab ≥ 1 ∀b ∈ B

∑

b∈B

rab ≥ 1 ∀a ∈ A



correspondences and 
measure couplings
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Let (A, µA) and (B, µB) be compact subsets of the compact metric space (X, d)
and µA and µB be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure µ on A×B s.t. (in
the finite case this means ((µa,b)) ∈ [0, 1]nA×nB )

•
∑

a∈A µab = µB(b) ∀b ∈ B

•
∑

b∈B µab = µA(a) ∀a ∈ A

Let M(µA, µB) be the set of all couplings of µA and µB.
Notice that in the finite case, ((µa,b)) must satisfy nA + nB linear constraints.



correspondences and 
measure couplings
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Proposition [(µ↔ R)]

• Given (A, µA) and (B, µB), and µ ∈M(µA, µB), then

R(µ) := supp(µ) ∈ R(A, B).

• König’s Lemma. [gives conditions for R→ µ]



Wasserstein distance
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dH(A, B) = inf
R∈R(A,B)

‖d‖L∞(R)

⇓ (R ↔ µ)

dW,∞(A, B) = inf
µ∈M(µA,µB)

‖d‖L∞(R(µ))

⇓ (L∞ ↔ Lp)

dW,p(A, B) = inf
µ∈M(µA,µB)

‖d‖Lp(A×B,µ)
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GH distance
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dGH(X, Y ) = inf
Z,f,g

dZ
H(f(X), g(Y ))

GH: definition

24



correspondences and 
GH distance
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The GH distance between (X, dX) and (Y, dY ) admits the following expression:

d(1)
GH(X, Y ) = inf

d∈D(dX,dY )
inf

R∈R(X,Y )
‖d‖L∞(R)

where D(dX , dY ) is a metric on X " Y that reduces to dX and dY on X × X
and Y × Y , respectively.

( X Y

X dX D
Y DT dY

)
= d

In other words: you need to glue X and Y in an optimal way. Note that
D consists of nX × nY positive reals that must satisfy ∼ nX · CnY

2 + nY · CnX
2

linear constraints.



Another expression for 
the GH distance
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For compact spaces (X, dX) and (Y, dY ) let

d(2)
GH(X, Y ) =

1
2

inf
R

max
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

We write, compactly,

d(2)
GH(X, Y ) =

1
2

inf
R
‖dX − dY ‖L∞(R×R)



Equivalence thm:
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Theorem [Kalton-Ostrovskii]
For all X, Y compact,

d(1)
GH d(2)

GH

infd,R ‖d‖L∞(R)
1
2 infR ‖dX − dY ‖L∞(R×R)



Relaxing the notion of 
correspondence
from GH to GW
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d(1)
GH !!

!!!!!!!!!!!!!!

""

d(2)
GH

""

dH

##"""""""""

$$

d(1)
GW,p

? ?

!!

!!!!!!!!!!!!!
d(2)
GW,p

dW,p

%%""""""""



(X, dX , µX)Shapes as mm-spaces, [M07]

Remember:

1. Specify representation of shapes.

2. Identify invariances that you want to mod out.

3. Describe notion of isomorphism between shapes (this is going to be the
zero of your metric)

4. Come up with a metric between shapes (in the representation of 1.)

• Now we are talking of triples (X, dX , µX) where X is a set, dX a metric
on X and µX a probability measure on X.

• These objects are called measure metric spaces, or mm-spaces for short.

• two mm-spaces X and Y are deemed equal or isomorphic whenever there
exists an isometry Φ : X → Y s.t. µY (B) = µX(Φ−1(B) for all (measur-
able) sets B ⊂ Y .
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Remember

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact
metric space and ν is a Borel probability measure. Two mm-spaces are iso-
morphic iff there exists isometry Φ : X → Y s.t. µX(Φ−1(B)) = µY (B) for all
measurable B ⊂ Y .

3/4 1/4
1

1/2
1

1/2
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d(1)
GH d(2)

GH

infd,R ‖d‖L∞(R)
1
2 infR ‖ΓX,Y ‖L∞(R×R)
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{∆n}∞n=1

Can Sp be equal to Dp?

• Using the same proof as in the Kalton-Ostrovskii Thm., one can prove
that

S∞ = D∞.

• Also, it is easy to see that for all p ≥ 1

Sp ≥ Dp.

• But the equality does not hold in general. One counterexample is as fol-
lows: take X = (∆n−1, ((dij = 1)), (νi = 1/n)) and Y = ({q}, ((0)), (1)).
Then, for p ∈ [1,∞)

S1(X,Y ) =
1
2

>
1
2

(
n− 1

n

)1/p

= D1(X, Y )

• Furthermore, these two (tentative) distances are not Lipschitz equiv-
alent!! This forces us to analyze them separately. The delicate step is
proving that dist(X, Y ) = 0 implies X % Y .

• K. T. Sturm has analyzed Sp. Analysis of Dp is in [M07].
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Properties of Dp

Theorem 1 ([M07]). 1. Let X,Y and Z mm-spaces then

Dp X, Y Dp X, Z Dp Y,Z .

2. If Dp X,Y 0 then X and Y are isomorphic.

3. Let Xn x1, . . . , xn X be a subset of the mm-space X, d, ν .
Endow Xn with the metric d and a prob. measure νn, then

Dp X, Xn dW,p ν, νn .

4. p q 1, then Dp Dq.

5. D dGH.
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The parameter p is not superfluous

For p 1, let diamp X dX Lp µX µX
.

The simplest lower bound for Dp one has is based on the triangle inequality
plus the observation that

Dp X, dX , µX , q , 0, 1 diamp X

Then,

Dp X, Y
1
2

diamp X diamp Y

For example, when X Sn (spheres with uniform measure
and usual intrinsic metric):

• p gives diam Sn π for all n N

• p 1 gives diam1 Sn π 2 for all n N

• p 2 gives diam2 S1 π 3 and diam2 S2 π2 2 2



Lower bounds for Dp in terms of invariants

. Recall the invariants we defined before. Fix X Gw and p 1.

• distribution of distances: FX : 0, 0, 1 ,

t µX µX x, x dX x, x t .

• local distribution of distances: CX : X 0, 0, 1 ,

t µX x dX x, x t .

• eccentricities: sX,p : X R ,

x dX x, Lp µX
.

• There are explicit lower bounds for Dp in terms of these invariants, [M07].

• These lower bounds are important in practice: yield LOPs, easy opti-
mization problems.
Solution can be used as initial condition for solving Dp.
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The discrete case.

The option proposed and analyzed by K.L Sturm [St06], reads

Sp(X, Y ) = inf
d∈D(dX ,dY )

inf
µ∈M(µX ,µY )

(
∑

x,y

dp(x, y)µx,y

)1/p

The second option reads [M07]

Dp(X, Y ) = inf
µ∈M(µX ,µY )




∑

x,y

∑

x′,y′

|dX(x, x′)− dY (y, y′)|pµx,yµx′,y′




1/p
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The first option,

Sp = inf
d∈D(dX ,dY )

inf
µ∈M(µX ,µY )

(
∑

x,y

dp(x, y)µx,y

)1/p

requires 2(nX × nY) variables and nX + nY plus ∼ nY · CnX
2 + nX · CnY

2

linear constraints. When p = 1 it yields a bilinear optimization problem.

Our second option,

Dp(X, Y ) = inf
µ∈M(µX ,µY )




∑

x,y

∑

x′,y′

|dX(x, x′)− dY (y, y′)|pµx,yµx′,y′




1/p

requires nX × nY variables and nX + nY linear constraints. It is a quadratic
(generally non-convex :-( ) optimization problem (with linear and bound con-
straints) for all p.



Future

• Study families of shapes.

• Statistic of families of shapes.

• Partial shape matching.

• Connections with Persistent topology invariants (Frosini+others... Yi will
describe Frosini’s work)

• Comparison/matching of animated geometries (Peter will talk about this)
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and more

• Explain/relate more methods using these ideas: what about eigenvalue
based methods?

– Shape signatures [Reuter-et-al]: associate to each shape the sorted
list of eigenvalues of the Laplacian on the shape.

– Leordaneau... from matching of pairs of points to matching of points.

• The GH distance and related Metric Geometry ideas are very powerful
and can probably help uniformizing the treatment of many algorithmic
procedure out there.
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