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The Problem of Shape/Object Matching

e databases of objects
e objects can be many things:

proteins
molecules

2D objects (imaging)

3D shapes: as obtained via a 3D scanner

3D shapes: modeled with CAD software

3D shapes: coming from design of bone protheses
text documents

more complicated structures present
in datasets (things you can’t visualize)




3D objects: examples

e cultural heritage (Michelangelo project:
http://www-graphics.stanford.edu/projects/mich/)

search of parts in a factory of, say, cars
face recognition: the face of an individual is a 3D shape...

proteins: the shape of a protein reflects its function..
protein data bank: http://www.rcsb.org




Typical situation: classification

assume you have database D of objects.

assume D is composed by several objects, and that each
of these objects belongs to one of n classes C,...,C,.

imagine you are given a new object o, not in your
database, and you are asked to determine whether o belongs
to one of the classes. If yes, you also need to point to the class.

One simple procedure is to say that you will assign object
o the class of the closest object in D:
class(o) = class(z)

where z € D minimizes dist(o, z)

in order to do this, one first needs to define a notion
dist of distance or dis-similarity between objects.



Another important point: invariances

Are these two objects the same?




Another important point: invariances

Are these two objects the same?

this is called invariance to rigid transformations



Another important points: invariances

what about these two?

roughly speaking, this corresponds to invariance to bending transformations..



invariances...

The measure of dis-similarity dist must capture the
type of invariance you want to encode in your classification system.




What we proposed in the course:

1. Decide what invariances you wish to incorporate. It is OK if you don’t
have invariances (Hausdorff + Wasserstein)

2. Represent shapes as metric spaces (or mm-spaces):

e Identify what metric is preserved by the notion of invariance you
chose to consider.

e Endow shapes with that metric

e Choose weights that are meaningful for your application (if you don’t

have any reason to choose: then set them to be equal)

3. Define a metric on your class of objects.

We studied the case of no invariances first.




No 1nvariances..

e You start out with a compact metric space (Z,d) (called ambient space,
typically Z = RF).

e We saw two constructions:

(C(2),dy)  and  (Cu(Z),dy,)

where C(Z) stands for all compact subsets of Z and C,,(Z) for all weighted
subsets of Z: that is, pairs (A, ua) where 14 is a probability measure on
Z s.t. supp [pa] = A.




Ambient space isometries..(Extrinsic approach)

Fix a compact metric space (Z,d). Let I(Z) denote the isometry group of Z
(when Z = R*, I(Z) = E(k), that is, all Euclidean isometries.)

e In this case, we considered either objects in C(Z) or in C,,(Z). Let O(Z)
denote your choice.

e Let dist be the corresponding metric (Hausdorff or Wasserstein).

e Then, we constructed distances between objects in O(Z) that were blind to isometries:

dist”*°(X,Y) := . ei?(fz) dist(X,T(Y))

for all X,Y € O(2).




Ambient space isometries..(Extrinsic approach)

Fix a compact metric space (Z,d). Let I(Z) denote the isometry group of Z
(when Z = R*, I(Z) = E(k), that is, all Euclidean isometries.)

e In this case, we considered either objects in C(Z) or in C,,(Z). Let O(Z)
denote your choice.

e Let dist be the corresponding metric (Hausdorff or Wasserstein).

e Then, we constructed distances between objects in O(Z) that were blind to isometries:

dist”*°(X,Y) := . gl(fz) dist(X,T(Y))
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Ambient space isometries..(Extrinsic approach)

Let I(Z) denote the isometry group of Z
ries.)

Fix a compact metric space (Z,d)
(when Z = R*, I(Z) = E(k), th

e In this case, we ¢

to 1sometries:

but this was not general enough...
remember BENDS

for all







The intrinsic approach...

e Regard shapes as metric spaces in themselves: no reference to any ambient
space.

That is, objects/shapes now are metric spaces or mm-spaces (X,dx) or
(Xa dX7 :uX)

Let M denote collection of all metric spaces and M, the collections of all
mm-spaces.

Endow M and/or M,, with a metric.
We saw the following constructions:

— On M we put the Gromov-Hausdorff distance dg(, ).

— On M,, we put two metrics, G, and ©,. These metrics could be
called Gromov-Wasserstein metrics.







-

Extrinsic approach

J




\_

Extrinsic approach

-

\_

Intrinsic approach




What is the relationship between the Intrinsic
and Extrinsic Approaches?

e Answer known for Z = R*, [MO08-euclidean].

e In class we saw the case of dgyy vs. d%joz for all X,Y e R¥,

dgr (X 1), (V-1 - 1) < fnf - di (X, T(Y)) < C (dgre((X, |- D, (Y - )2 a2

where M = max(diam (X ) ,diam (Y)).

e There is a similar claim valid for 6p VS. d%j{,op.




Main points

Define notion of distance on shapes. Get sampling consistency + stability
for free.

GH distance leads to hard combinatorial optimization problems.
Relaxations of these do not appear to be correct.

Gromov-Wasserstein distances are better. Both ®, and &, yield quadratic
optimization probs. with linear constraints.

Sturm’s &, requires large nbr. of constraints, then we argue for ©,,.

Many lower bounds for ®, are possible. These employ invariants previ-
ously used in the literature:

— Shape Distributions

— Eccentricities (Hamza-Krim)

— Shape contexts




Main Technical concepts

e Metric spaces, mm-spaces, isometries, approximate isometries, probability
measures.

Correspondences, measure couplings, metric couplings.
Hausdorff distance. Wasserstein distance. Mass transportation.

Gromov-Hausdortl distance. Gromov-Wasserstein distances.

Invariants of mm-spaces




correspondences
and the Hausdortt distance

Definition [Correspondences]

For sets A and B, a subset R C A x B is a correspondence (between A and B)
if and and only if

o Vace A, there exists b € B s.t. (a,b) € R

e Vb€ B, there exists a € A s.t. (a,b) € R

Let R(A, B) denote the set of all possible correspondences between sets
A and B. Note that in the case ng = npg, correspondences are larger than
bijections.




correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
matrix ((rqp)) € {0,1}"4%"5B s.t.

Zrab21 Vb € B

aEA

ZTQ(,Z 1 Vaec A
beB




correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
matrix ((rqp)) € {0,1}"4%"5B s.t.

Zrab21 Vb € B

aEA

Y rap>1VacA

beB

s

Proposition
Let (X,d) be a compact metric space and A, B C X be compact. Then

n(AB) = i lldl~r)




correspondences and
measure couplings

Let (A, na) and (B, up) be compact subsets of the compact metric space (X, d)
and u4 and up be probability measures supported in A and B respectively.

Definition [Measure coupling| Is a probability measure ;s on A x B s.t. (in
the finite case this means ((uq)) € [0, 1]7A%"5)

° ZaeA Uab = ,LLB(b) Vbe B

° ZbeB Uab = ,uA(CL) Va € A

Let M(ua,pp) be the set of all couplings of ua and up.
Notice that in the finite case, ((q,5)) must satisfy na + np linear constraints.

20



correspondences and
measure couplings

Proposition [(u < R)]

e Given (A,ua) and (B, ug), and u € M(pa, 1p), then

R(p) := supp(p) € R(A, B).

e Konig’s Lemma. [gives conditions for R — ]




Wasserstein distance

WA B) = it dloen

| (R p)

dyw, (A, B) = inf  ||d||re(r()

pneM(pa,ns)

b (L o L17)

d A,B — lnf d P
W,p( ) LM (pa pin) H HL (AX B,u)
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Wasserstein distance
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GH distance




GH: definition

dogn(X,Y) = inf dZ(f(X).g(Y))

Z,f,g




correspondences and
GH distance

The GH distance between (X, dx) and (Y, dy ) admits the following expression:

{dg;(x,Y)— inf inf yd\Lm<R)J

deD(dx,dy) RER(X,Y)

where D(dx,dy) is a metric on X LY that reduces to dx and dy on X x X
and Y X Y, respectively.

X Y

X (dx DY _,
Yy \DT dy )~

In other words: you need to glue X and Y in an optimal way. Note that
D consists of nx X ny positive reals that must satisfy ~ nx - C3Y + ny - C5*
linear constraints.




Another expression for
the GH distance

For compact spaces (X,dx) and (Y, dy) let

dg%(X Y) = f max dx (z,7") — dy (y,y")

1.
2 R (z,y),(z",y')ER

We write, compactly,

i6:9) ’
(X

1.
[ A (X,Y) = 5 it fldx — dy L= (rxr) ]




Equivalence thm:

Theorem |Kalton-Ostrovskiil
For all X,Y compact,

(1) (2)
dQH dQH

infq, g [|dl| L~ (r) 5 infg |[dx — dy ||L=(rxR)




Relaxing the notion of

correspondence
from GH to GW

B 2)

1) (
I \ / dgH
dx

? (2)
dQ’W,p




Shapes as mm-spaces, (MOT (X ; dX y WX )

Remember:
. Specity representation of shapes.
. Identity invariances that you want to mod out.

. Describe notion of isomorphism between shapes (this is going to be the
zero of your metric)

. Come up with a metric between shapes (in the representation of 1.)

Now we are talking of triples (X, dx, ux) where X is a set, dx a metric
on X and px a probability measure on X.

These objects are called measure metric spaces, or mm-spaces for short.

two mm-spaces X and Y are deemed equal or isomorphic whenever there
exists an isometry ® : X — Y s.t. py(B) = ux(®1(B) for all (measur-
able) sets B C Y.




Remember

Now, one works with mm-spaces: triples (X, d,v) where (X, d) is a compact
metric space and v is a Borel probability measure. Two mm-spaces are 1so-
morphic iff there exists isometry @ : X — Y s.t. ux(® 1(B)) = py(B) for all
measurable B C Y.

* 00




The plan




The plan
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The plan




(1) (2)
doiy dg1

infg g ||d|| Lo (r) 5 infR |Tx v |2 (rx R)




(1)
dQH

infy R ||dHL<>o(R)

Y
inty , HdHLP(u)

(1)
dQW,p

2)
dQH

1 -
sinfRr [|[I'x, v | Lo (rRxR)

Y
1 .
sinf, |IDx v e uep)

(2)
dQW,p
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(1) (2)
Aoy dg

infg g ||d|| Lo (r) 5 infr [Ty L~ (rxR)




(1) (2)
Aoy dg

infg g ||d|| Lo (r) %iﬂfRiuiXwabw(Rfo




Can G, be equal to 9,7

Using the same proof as in the Kalton-Ostrovskii Thm., one can prove
that
Coo = Do

Also, it is easy to see that for all p > 1

S, >D,

But the equality does not hold in general. One counterexample is as fol-
lows: take X = (A,—1,((dij =1)),(v; = 1/n)) and Y = ({¢}, ((0)), (1)).
Then, for p € [1, 00)

SUXY) == > - (”_1>1/p:@1(x,y)

272\ n
Furthermore, these two (tentative) distances are not Lipschitz equiv-
alent!! This forces us to analyze them separately. The delicate step is

proving that dist(X,Y) = 0 implies X ~ Y.
K. T. Sturm has analyzed &,. Analysis of ©,, is in [MO7].

1/3
{A }OO 1 1 1
nJfn=1 A
172 172 13 1 13 1




Properties of »,

Theorem 1 ([MO7]). 1. Let X,Y and Z mm-spaces then
D,(X,Y) <D,(X,2)+9,(, 7).

2. If ©,(X,Y) =0 then X and Y are isomorphic.

3. Let X,, ={z1,...,x,} < X be a subset of the mm-space (X,d,v).
Endow X,, with the metric d and a prob. measure v,,, then

@p(Xa Xn) < dW,p(V7 Vn)'

4. p=zq=1, then®, >29,.
5




The parameter p is not superfluous

For p € [1,00] let diam,, (X) = ||dx | 1r (ux®pux)-

The simplest lower bound for ®, one has is based on the triangle inequality
plus the observation that

@P((Xa dX7 :uX)v ({Q}v 07 1)) — diam]? (X)

1
D,(X,Y) > §‘diamp(X) — diam,, (V)|

For example, when X = S™ (spheres with uniform measure
and usual intrinsic metric):

e p = o0 gives diam,, (5") =7 for all n e N

e p =1 gives diam;(S") =n/2 for allne N

e p =2 gives diamy(S!) = n//3 and diamy(S?) = /7m2/2 — 2




Lower bounds for D, in terms of invariants

. Recall the invariants we defined before. Fix X € G, and p > 1.

e distribution of distances: Fx : [0,00) — [0, 1],
b (nx @ px)({(w,2")| dx (z,2") < t}).
local distribution of distances: C'x : X x [0,00) — [0, 1],
b px ({2 dx (z, 2") <t}).
eccentricities: sy, : X - R™,

z = [ dx (2, )| Le(ux)-

There are explicit lower bounds for ®,, in terms of these invariants, [MO07].

These lower bounds are important in practice: yield LOPs, easy opti-
mization problems.
Solution can be used as initial condition for solving ©,,.




Shape Distributions [Osada-et-al ]

0 dig diz dyg
dio 0 ~do3 day

diz dos 0 dsg
dig dog dzg 0O




Shape Distributions [Osada-et-al ]

diz do3 d3s ..
dia dos d3g .

K .




Shape Distributions [Osada-et-al ]

diz do3 d3s ..
dia dos d3g
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Shape Distributions [Osada-et-al ]

diz do3 d3s ..
dia dos d3g
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Shape Contexts

0 diz2 diz dia
diz2 0 daz daa
diz daog 0 dsyg
dia dosa d3a 0




Shape Contexts

(0 dio diz dia . )
diz2 0 daz daa

diz daog 0 dsyg

dia dosa d3a 0

4 )
IIlIIIl

. J




Shape Contexts

IIlIIIl
4 )
0 d d d
G 0 oy o ) ||I||||
8 Y

diz dos 0  dsqg
dig dog d3zg 0




Hamza-Krim
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The discrete case.

The option proposed and analyzed by K.L Sturm [St06], reads

1/p
G,(X,Y) = inf inf <Z dP (x, y),uxy)
T,y

deD(dx ,dy ) peM(px,py)

The second option reads [MOT7]

1/p

0,(X,Y)= inf ¥ N dx(x,2') = dy (y,y) P ray ey
peEM(px,py) P




The first option,

1/p
6 — lnf Hlf dp .CB, X
D dED(andY) MEM(MXa,UY) <xzy: ( y)lu ’y>

requires 2(nx X ny) variables and nx + ny plus ~ ny - C5* + nx - C5¥
linear constraints. When p = 1 it yields a bilinear optimization problem.

Our second option,

1/p

D,(X,Y) = inf SN ldx (@, at) = dy (4, )Pty i

MEM(,LLX,,UY) x,y z’ .y’
requires nx X ny variables and nx + ny linear constraints. It is a quadratic
(generally non-convex :-( ) optimization problem (with linear and bound con-
straints) for all p.




Future

-

e Study families of shapes.

e Statistic of families of shapes.

e Partial shape matching.

Connections with Persistent topology invariants (Frosini+others... Yi will
describe Frosini’s work)

Comparison/matching of animated geometries (Peter will talk about this)
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Future

e Study families of shapes.
e Statistic of families of shapes.

e Partial shape matching.

Connections with Persistent topology invariants (Frosini+others... Yi will
describe Frosini’s work)

Comparison/matching of animated geometries (Peter will talk about this)




and more

e Explain/relate more methods using these ideas: what about eigenvalue
based methods?

— Shape signatures [Reuter-et-al]: associate to each shape the sorted
list of eigenvalues of the Laplacian on the shape.
— Leordaneau... from matching of pairs of points to matching of points.
e The GH distance and related Metric Geometry ideas are very powerful

and can probably help uniformizing the treatment of many algorithmic
procedure out there.
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