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General stuff:

• class attendance is mandatory

• will post possible projects soon

• a couple of days prior to each class i will update the webpage and post
materials you should read on your own, before the class.

• you should read the papers so as to gain basic understanding of the idea
proposed by the authors

• in my slides i will use the following tags for the materials listed under
the”resources” section of the class webpage:

– [BBI] will refer to the AMS book by Burago, Burago and Ivanov.
– [Villani] AMS book by Cedric Villani.
– [M07] my PBG07 paper.



The Problem of Shape/Object Matching

• databases of objects

• objects can be many things:

– proteins
– molecules
– 2D objects (imaging)
– 3D shapes: as obtained via a 3D scanner
– 3D shapes: modeled with CAD software
– 3D shapes: coming from design of bone protheses
– text documents
– more complicated structures present

in datasets (things you can’t visualize)





3D objects: examples

• cultural heritage (Michelangelo project:
http://www-graphics.stanford.edu/projects/mich/)

• search of parts in a factory of, say, cars

• face recognition: the face of an individual is a 3D shape...

• proteins: the shape of a protein reflects its function..
protein data bank: http://www.rcsb.org



Typical situation: classification

• assume you have database D of objects.

• assume D is composed by several objects, and that each
of these objects belongs to one of n classes C1, . . . , Cn.

• imagine you are given a new object o, not in your
database, and you are asked to determine whether o belongs
to one of the classes. If yes, you also need to point to the class.

• One simple procedure is to say that you will assign object
o the class of the closest object in D:

class(o) = class(z)

where z ∈ D minimizes dist(o, z)

• in order to do this, one first needs to define a notion
dist of distance or dis-similarity between objects.
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Another important point: invariances

Are these two objects the same?
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this is called invariance to rigid transformations

Another important point: invariances

Are these two objects the same?



Another important points: invariances

what about these two?

roughly speaking, this corresponds to invariance to bending transformations..



Bending transformations

the distance, as measured by an ant, does not change



Bending transformations

the distance, as measured by an ant, does not change

Important: this distance is different from the Euclidean distance!!





Geodesic distance vs Euclidean distance



Geodesic/intrinsic distance

Let S be a (compact, path connected) a surface in R3. Given two points x, y ∈ S
let Γ[x, y] := {γ : [0, 1] → S} s.t. γ(0) = x and γ(1) = y. For each Lipschitz
curve γ let L(γ) :=

∫ 1
0 ‖γ̇(t)‖ dt.

Then, let
dS(x, y) = inf

γ∈Γ[x,y]
L(γ)



invariances...

The measure of dis-similarity dist must capture the
type of invariance you want to encode in your classification system.

= ?
dist( , ) = 0 ?



Background concepts

• Metric Space. A metric space is a pair (X, d) where
X is a set and d : X ×X → R+, called the metric, s.t.

1. For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

2. For all x, y ∈ X, d(x, y) = d(y, x).

3. d(x, y) = 0 if and only if x = y.

Remark 1. One example is Rd with the Euclidean metric. Spheres Sn endowed
with the spherical metric provide another example.



• Induced intrinsic metric [BBI, §2.3.3] Given a (path connected) compact
metric space (X, d) we consider a new metric on X, denoted by L(d) given by
the following construction

L(d)(x, y) = inf
γ∈Γ[x,y]

L(γ).

This new metric, is called the induced intrinsic metric, or intrinsic metric for
short. We will sometimes call it geodesic metric too.

• Compare with idea behind Dijkstra algorithm on Graphs.

• L(d) != d in general...think of case of the plane without a circle:



• ε-net. Given a metric space (X, d) and A ⊂ X we
say that A is an ε-net of X if for all x ∈ X there exists
a ∈ A s.t. d(x, a) ≤ ε.

• Ball

• An open ball of radius r centered at x ∈ X is the set
BX(x, r) = {x′ ∈ X| d(x, x′) < r}.

• A closed ball of radius r centered at x ∈ X is the set
BX(x, r) = {x′ ∈ X| d(x, x′) ≤ r}.



(X, d)

Aε = ∪a∈ABX(a, ε)

A is composed by the 4 points in red
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Hence, if X ⊂ Aε, then A is an ε-net for X.

a couple of facts: Let (X, d) be a compact metric space

• Given A ⊂ X there exists finite ε > 0 s.t. X ⊂ Aε.

• Given ε > 0 there exists finite A ⊂ X s.t. X ⊂ Aε.

Note: ε-nets are also often referred to as ε-coverings.

this brings us to the Hausdorff distance between subsets
of a metric space..



Fix a metric space (X, d).The intuition is that an object is a collection or a set
of points in X.

Given a compact metric space (X, d), I will denote by C(X) the set of all compact
subsets of X. I will say that C(X) is the collection of objects that live in X.

The leitmotiv of this class is that we will be looking at the set of all objects in
a fixed ambient space, as a metric space itself!! This means that we will need
to specify a way of measuring distance between objects. We do this in the next
slide:

(X, d) !→ (C(X),dist).



• Hausdorff distance. For (compact) subsets A, B of a (compact) metric
space (Z, d), the Hausdorff distance between them, dZ

H(A, B), is defined
to be the infimal ε > 0 s.t.

A ⊂ Bε and B ⊂ Aε

Equivalently,

dZ
H(A, B) = max(max

b∈B
min
a∈A

d(a, b),max
a∈A

min
b∈B

d(a, b)).

For a subset A of a metric space (X, d) we will use the notation
d(x, A) := infa∈A d(x, a).

Theorem ([BBI], Proposition 7.7.3). The Hausdorff distance
is a metric on the set of all objects (i.e. compact subsets) of X, C(X).



correspondences
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Definition [Correspondences]

For sets A and B, a subset R ⊂ A×B is a correspondence (between A and B)
if and and only if

• ∀ a ∈ A, there exists b ∈ B s.t. (a, b) ∈ R

• ∀ b ∈ B, there exists a ∈ A s.t. (a, b) ∈ R

Let R(A, B) denote the set of all possible correspondences between sets A
and B.

Remark. Note that R(A, B) %= ∅. Indeed, A×B is always in R(A, B).



correspondences
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Note that when A and B are finite, R ∈ R(A, B) can be represented by a
matrix ((ra,b)) ∈ {0, 1}nA×nB s.t.

∑

a∈A

rab ≥ 1 ∀b ∈ B

∑

b∈B

rab ≥ 1 ∀a ∈ A

0 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 0 1 1 0

0 0 0 0 0 0 0

1 0 1 1 0 1 0

B

A
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Examples and remarks

The proof of the results below is an exercise.

• If A = {a1, . . . , an} and B = {p}, then, R(A, B) = {R}, where R =
{(xi, p), 1 ≤ i ≤ n}..

• If A = {a1, . . . , an} and B = {b1, . . . , bn}, then for all π ∈ Πn (permuta-
tions of {1, . . . , n}), {(ai, bπi), 1 ≤ i ≤ n} ∈ R(A, B). Hence, correspon-
dences include bijections (when these exist).

• Composition of correspondences. If A, B, C are sets and R ∈ R(A, B)
and S ∈ R(B, C), then

T := {(a, c)| ∃b ∈ B s.t. (a, b) ∈ R and (b, c) ∈ S}

belongs to R(A, C).

• Let f : A → B and g : B → A be given. Then,

{(a, f(a)), a ∈ A} ∪{ (g(b), b), b ∈ B} ∈ R(A, B).



Theorem (An important observation, [M07]). Let (X, d) be a compact metric
space. Then, for all compact A, B ⊂ X,

dX
H(A, B) = inf

R∈R(A,B)
sup

(a,b)∈R
d(a, b).

Proof. Exercise.

Remark. We will use the following notation: for a function f : Z → R and
C ⊂ Z, we let

‖f‖L∞(C) := sup
z∈C

|f(c)|.

Remark. Then, we can write in a somewhat abbreviated way that will be used
for reasoning about potential candidates for dist,

dX
H(A, B) = inf

R∈R(A,B)
‖d‖L∞(R).

Exercise. Using the expression for the H-distance above and the remark on
composition of correspondences prove the triangle inequality for the H-distance.
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• Probability Measures. Consider a finite set A = {a1, . . . , an}. A set of
weights, W = {w1, . . . , wn} on A is called a probability measure on A if wi ≥ 0
and

∑
i w1 = 1.

Probability measures can be interpreted as a way of assigning (relative) impor-
tance to different points.

There is a more general definition that we do not need (today). But you should
become familiar with it for general culture, see [BBI, Def. 1.7.1].



0 2 4 8

• Support of a measure. Given a metric space (X, d) and a probability
measure ν on X, the support of ν consists of the points of X with non-zero
mass. We use the notation supp(ν) for the support of a probability measure ν
on X.

Example. Consider for example the case of X = R with the usual metric. Let
ν be the probability measure on the real line that assigns mass 1/4, 5/12, 1/12
and 1/4 to points 0, 2, 4 and 8, respectively. Then, there is no mass anywhere
else and supp(ν) = {0, 2, 4, 8}.



correspondences and 
measure couplings

27

Let A and B be compact subsets of the compact metric space (X, d) and µA

and µB be probability measures supported in A and B respectively.

Definition [Measure coupling] Is a probability measure µ on A×B s.t. (in
the finite case this means ((µa,b)) ∈ [0, 1]nA×nB , i.e. µ is a matrix.)

•
∑

a∈A µab = µB(b) ∀b ∈ B

•
∑

b∈B µab = µA(a) ∀a ∈ A

Let M(µA, µB) be the set of all couplings of µA and µB .
Notice that in the finite case, ((µa,b)) must satisfy nA + nB linear constraints.
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Example. In this example,

supp(µ) = {(x1, y1), (x2, y2), (x2, y3), (x3, y2), (x3, y3), (x4, y1), (x4, y2), (x4, y3)}.

Example. Assume X = {x1, . . . , xn} and Y = {p}, together with an arbitrary
µX supported on X and µY s.t. µY (p) = 1 (all the mass is in p). Prove that

M(µX , µY ) = {µX}.

(compare with exercise for correspondences)
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• Composition of measure couplings. Can you guess what is the construc-
tion in this setting? Cf. with ”composition of correspondences”.

Remark. You should gain some intuition about the duality between correspon-
dences and measure couplings. Think about this on your own.

• Product measure. Assume A and B are finite sets and µA and µB are
probability measures on A and B, respectively. We define a probability measure
on A×B, called the product measure and denoted µA ⊗ µB s.t.

µA ⊗ µB(a, b) = µA(a)× µB(b).

Remark. It is then clear that M(µA, µB) #= ∅ as (exercise!!) µA ⊗ µB ∈
M(µX , µY ).
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Proposition (µ↔ R). Let A, B be sets.

• Given (A, µA) and (B, µB), and µ ∈M(µA, µB), then

R(µ) := supp(µ) ∈ R(A, B).

• König’s Lemma. [gives conditions for R → µ] [We don’t need precise
statement.]

Proof. Omitted!

Remark. Let f : X → be a function and ν a probability measure on X. Then,
for p ≥ 1 the Lp norm of f w.r.t. to ν is (in the case of X finite)

‖f‖Lp(ν) :=
(∫

X
|f(x)|pν. (x)

)1/p

=

(
∑

x∈X

ν(x)|f(x)|p
)1/p



Remark. • Correspondences and measure couplings provide two different
ways of putting objects in correspondence. This is necessary whenever one
tries to compare two objects.

• correspondence are combinatorial gadgets. They pairings they encode are
hard as opposed to the soft or relaxed notion provided by measure cou-
plings.

• Measure couplings are continous gadgets. As a general, imprecise rule,
using them instead will lead to continuous optimization problems instead
of combinatorial optimization problems. ”CnOPs are easier to deal with
than CbOPs ”.



Wasserstein distance
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dH(A, B) = inf
R∈R(A,B)

‖d‖L∞(R)

⇓ (R ↔ µ)

dW,∞(A, B) = inf
µ∈M(µA,µB)

‖d‖L∞(R(µ))

⇓ (L∞ ↔ Lp)

dW,p(A, B) = inf
µ∈M(µA,µB)

‖d‖Lp(A×B,µ)
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Remark. When A and B are finite, a more explicit expression for the W-
distance is

dX
W,p(A, B) := min

µ




∑

a,b

d(a, b)p µ(a, b)




1/p

where µ ∈M(µA, µB).

Remark. Notice that computing the W-distance leads to solving an LOP with
linear and bound constraints.

Remark. We will see that dX
H ≤ dX

W,∞. Can you prove this?
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Remark. • The Wasserstein distance is a.k.a. EMD (Eart Mover’s Dis-
tance) a.k.a. Kantorovich-Rubinstein.

• there is a very nice physical interpretation: µA represent a certain source
profile of nA bricks that must be moved from a certain location to another.
The target profile at the destination, represented by µB, is such that the
total number of bricks used is equal to nA.

• The cost of moving a brick from location x to location y is d(x, y), the
horizontal distance between x and y.

• A measure coupling, in a first approximation, is a integer valued matrix
that tells you how to distribute bricks in a source pile to the destination.



x1 x2 x3 x4 y1 y2 y3

3 2 5
3 3 0 0
1 0 0 1
4 0 0 4
2 0 2 0

cost(µ) =
∑

x,y

d(x, y)µx,y

0   1   2   3   4   5   6   7

cost(µ) = (3 · 5 + 1 · 6 + 4 · 5 + 2 · 3) = 47
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For a compact metric space (X, d) let

Cw(X) := {(A, µA), A ∈ C(X) and supp(µA) = A}.

This is the collection of all weighted objects in X.

Theorem ([Villani], see [M07]). Let (X, d) be a compact metric space. The
Wasserstein distance is a metric on Cw(X).



• Isometries. Let (X, dX) and (Y, dY ) be two (compact) metric spaces. We
say that a map φ : X → Y is distance preserving if for all x, x′ ∈ X,

dX(x, x′) = dY (φ(x), φ(x′)).

If in addition, φ is bijective, then we say that φ is an isometry. We say that two
metric spaces are isometric if there exists an isometry between them.

• δ-Isometries. Given a map φ : X → Y , we define its distorsion to be

dis(φ) := max
x,x′∈X

|dX(x, x′)− dY (φ(x), φ(x′))| = ‖dX − dY ◦ (φ, φ)‖L∞(X×X).

If φ : X → Y is s.t. dis(φ) ≤ δ, and φ(X) is a δ-net for Y , then we say that φ
is a δ-isometry.

Remark. Note that if φ is a δ-isometry for δ = 0, then φ is distance preserving.
We will prove later on that this also forces φ to be a bijection. Then, 0-isometries
are just isometries.



Remark. Recall bending transformations. We can now use the more appropri-
ate term: isometries. We still need to specify what are the metric spaces we are
talking about, though. So, in the example of the sheet of paper and the ant, the
metric is the intrinsic metric.
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Remark. Let φ : X → Y and ψ : Y → X be given. Consider

D(φ, ψ) := max(dis(φ), dis(ψ)).

Question: if you have maps φ and ψ s.t. D(φ, ψ) is small, do you think this
will tell you something about how different X and Y are?

• Distance matrix. Given a metric space (X, d) and a finite subset X of X,
we form the matrix D(X) of all pairwise distances between points in X. D(X)
is called the distance matrix of X.



• Isometries in Euclidean space. In Rd, a map Φ : Rd → Rd s.t. ‖x− x′‖ =
‖Φ(x)−Φ(x′)‖ for all x, x′ ∈ Rd is called a rigid isometry. We denote the group
of these transformations by E(d). Note that translations, reflections, rotations
and compositions of these are in E(d).

• Folklore Lemma. Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn} be points
in Rk. If

‖xi − xj‖ = ‖yi − yj‖

for all i, j, then there exists a rigid isometry T : Rk → Rk s.t.

T (xi) = yi, for all i

Remark. Note that this means that we can detect whether two objects in Rd are
the same up to rigid isometries by comparing their associated distance matrices.
This lemma is not trivial!. From information about finitely many points you are
able to prove the existence of an ambient space isometry that maps one set into
the other.



Summary

• When dealing with databases of objects, one needs a notion of dis-similarity
between objects.

• This notion must take into account desired invariance (we saw two kinds,
bendings and rigid isometries).

• Whenever comparing two objects, one needs to establish a pairing between
points, one in object A, one in object B. We saw correspondences and
measure couplings.

• We discussed two notions of dis-similarity suited for objects in say R3: the
Hausdorff distance and the Wasserstein distance.

• Reading assignment for next class: start with [M07], first 4 sections.

• We will start by looking into how to incorporate invariances into our no-
tions of distance between objects.


