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1 Summary of first Lecture and some proofs

• For a compact metric space pX, dq, dZHp, q is a metric on CpZq. I gave as an exercise proving that
dZHp, q satisfies the triangle inequality. For this, I suggested you use the expression dZHpA,Bq �
infRPRpA,Bq }d}L8pRq and then the composition of correspondences.

• We saw another class of objects: weighted objects that were specified thru a probability measure on Z.
These weights can be interpreted as signaling the relative importance of different points in the object.
The weights can come from a sampling process. When you don’t have a good reason to assign a larger
weight to a point, just assign all points the same weight: uniform distribution.

• Recall the classification problem that I used as a motivation. The goal is to define a notion dist of
dissimilarity between objects in a certain class OpZq to be specified as well. We will be using the
following construction, all the time:

pZ, dq ÞÑ pOpZq,distq.

We’ve seen two possible choices, compact subsets of Z endowed with Hausdorff distance on the one
hand, and weighted-compact subset endowed with Wasserstein metric on the other.

• For a compact metric space pX, dq, dZW,pp, q is a metric on CwpZq. In this case, we have that dZW,ppA,Bq �
minµPMpµA,µBq }d}Lppµq. We will prove the triangle inequality. This technique will be used in later
lectures. Consider µ1 PMpµA, µBq and µ2 PMpµB , µCq. Consider the measure

µpa, cq :�
¸
bPB

µ1pa, bq � µ2pb, cq
µBpbq .

This works if we assume that supp rµBs � B (so that denominator doesn’t gives us trouble.)
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1. By definition µpa, cq ¥ 0.

2. Notice that
°
aPA µpa, cq � µCpcq and that similarly

°
cPC µpa, cq � µApaq.

3. Then, µ PMpµA, µCq.
So we have something that we can call composition of measure couplings. Now, proving the triangle
inequality for the Wasserstein metric is a matter of using inequalities, in a manner similar to the
proof of the triangle inequality above.

• Notice that W pµq :� }d}pLppµq �
°
a,b d

ppa, bqµpa, bq is a continuous function of µ P MpµA, µBq and
sinceMpµA, µBq is compact, then we can always find a minimizer and in effect then inf can be replaced
by min in the definition of the Wasserstein distance. Arguing compactness in the general case of non-
necessarily finitely supported probability measures takes more work.

• So, the proof of the triangle inequality for the Wasserstein distance.

• How is dZHp, q related to dZW,pp, q? We have that for all A,B P CpZq and µA and µB s.t. supp rµAs � A
and supp rµBs � B:

dZHpA,Bq ¤ dZW,8pA,Bq.
• Why insist on having a metric on objects? First of all, one must have a notion of equality

between objects. This is where the invariances enter the game. When Z � Rd, if you want to admit
invariance to Euclidean isometries, then you’d say that A � B whenever DT P Epdq s.t. A � T pBq.

1. distpA,Bq � 0 if and only if A � B. You require this so that your metric will declare that two
points are at zero distance iff they are the same according to your notion of invariance.

2. The triangle inequality. This property is important for more than one reason. A very important
reason is that it guarantees stability. To fix ideas assume that OpZq � CpZq and dist � dZHp, q.
Assume A � A and B � B are ε-nets for A and B respectively. Then,

|dZHpA,Bq � dZHpA,Bq| ¤ dZHpA,Aq � dZHpB,Bq ¤ 2ε.

What you’d like to compute is dZHpA,Bq, but if you have access only to A and B, then
your error is bounded above by the error of approximation of the objects by their samples,
ε. In other words, if you sample more finely, your error will become smaller. This is
stability.

The triangle inequality can be replaced by other structurally similar conditions, such as distpA,Bq ¤
K � pdistpA,Cq � distpC,Bqq, distpA,Bq ¤ K �maxpdistpA,Cq,distpC,Bqq, etc.

2 Introducing invariances

• Assume Z � Rd and that objects are those in CpZq. Further, assume that your notion of equality is
that given by the existence of a Euclidean isometry between the objects. A choice of dist compatible
with these assumtptions is

dRd,rigid
H pA,Bq :� inf

TPEpdq
dZHpA, T pBqq.

• Assume Z � Rd and that objects are those in CwpZq. Assume that your notion of equality is that
given by the existence of a Euclidean isometry between the objects. A choice of dist compatible with
these assumtptions is

dRd,rigid
W,p pA,Bq :� inf

TPEpdq
dZW,ppA, T pBqq.

• These family of ideas work well when one has an embedding space, Euclidean space in this case, but
roughly the same applies to any compact metric space.
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• But what can we do in order to define a reasonable dist, which is a true metric that accounts for
invariances to bends? The papers by Elad and Kimmel, Hamza and Krim, Hilaga et al. all provide
partial answers to this question, central to this course.

• This answers are partial in that the notions of dissimilarity they propose are not metrics. They fail
to be metrics because they do not satisfy neither triangle inequality nor the property that two shapes
will be at zero ”distance” if they are bend-isometric.

• The idea of using the Gromov-Hausdorff distance between metric spaces takes care of this difficulty,
[MS05].

• We now argue about this, But let’s go back to Euclidean subsets for a while. Remember the Folklore
Lemma. If A,B � Rd are finite sets of points with the same cardinality n are s.t. there exist a
permutation π P Πpnq s.t. }ai � aj} � }bπpiq � bπpjq} for all i, j, then there exists T P Epdq s.t.
A � T pBq.

• We use the following intuition. Let A and B be two finite sets of points in Rd. In order to ascertain how
close these points are to being isometric in the Euclidean sense (existence of T P Epdq s.t. A � T pBq),
we try to measure how different are the distance matrices

DpAq and DpBq.

• Then one may think of computing an L2 measure

min
π

¸
ij

p}ai � aj} � }bπpiq � bπpj}q2,

or a worst case kind of measure

min
π

max
ij

��}ai � aj} � }bπpiq � bπpj}
��

or something of the sort.

• In general, A and B may have different cardinality. So, we can extend the above to that case by
considering correspondences instead of permutations. We will keep track only of the worst case measure
above. The corresponding generalization would be

DEpA,Bq :� min
RPRpA,Bq

fpRq

where
fpRq :� max

pa,bq,pa1,b1qPR

��}a� a1} � }b� b1}�� .
• A couple of questions are in order, (1) does DEpA,Bq above define a metric, (2) how does it compare

to dRd,rigid
H pA,Bq.

• We will see that the same idea can be generalized, and we will prove the triangle inequality for it.
Regarding (2), we can make the following argument. Fix T P Epdq. Then, }T pb � b1q} � }b � b1} and
hence, for all pa, bq, pa1, b1q P R

��}a� a1} � }b� b1}�� � ��}a� a1} � }T pbq � T pb1q}�� ¤ }a� T pbq} � }a1 � T pb1q}.
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Then,

fpRq ¤ max pa, bq, pa1, b1q P R �}a� T pbq} � }a1 � T pb1q}�
� max

pa,bqPR
}a� T pbq} � max

pa1,b1qPR
}a1 � T pb1q}

� 2 max
pa,bqPR

}a� T pbq}.

Then, DEpA,Bq ¤ 2dRd

H pA, T pBqq. Since, T was arbitrary in Epdq, we conclude that

p�q DEpA,Bq ¤ 2 � dRd,rigid
H pA,Bq.

• Note that the inequality will not hold in general. In fact, consider A equal to an equilateral triangle
with side length 1 and B � tpu. Then, dRd,rigid

H pA,Bq � 1{?3 but DEpA,Bq � 1 and 1   2{?3.

• We will se later how one can obtain an upper bound for dRd,rigid
H pA,Bq in terms of DEpA,Bq. This

and related material can be read in [M08-euclidean].

• Let’s look into (�) above. DEpA,Bq is to be regarded as an intrinsic quantity as it depends on the
ambient space Z � Rd only via the metric. In fact, one can compute the same expression for any pair
of metric spaces!

• dRd,rigid
H pA,Bq on the other hand, is an extrinsic quantity since it’s computation depends on being

able to perform ambient space isometries. This is a drawback when optimizing over Epdq is expensive,
think of a very large d. So, developing methods for computing intrinsic (as opposed to extrinsic)
dissimilarity measures is interesting.

• For (compact) metric spaces pX, dXq and pY, dY q define

dist1pX,Y q :� 1
2

min
RPRpX,Y q

max
px,yq,px1,y1qPR

|dXpx, x1q � dY py, y1q|.

Risking being tremendously obvious, notice that when X,Y � Rd are endowed with the Euclidean
metric, then DEpX,Y q � 2 � dist1pX,Y q.

• Another idea for defining a reasonable dist is the following. Imagine that out of DpAq and DpBq you
try to construct a bigger matrix D that has DpAq and DpBq as submatrices as follows:

D �
�

DpAq p�q
p�q1 DpBq



.

Assume that in addition you impose that D be a distance matrix, namely, that is has zeros along
the diagonal and that is satisfies all triangle inequalities. If you managed to do this, you would have
constructed D that is a metric on AYB! We call all such choices of D admissible for A and B.

• One can then view pAYB,Dq as a metric space inside which A and B sit isometrically, since Dpa, a1q �
DApa, a1q and Dpb, b1q � DBpb, b1q, for all a, a1 P A and b, b1 P B, by construction. One says that D
glues pA, dAq and pB, dBq together.

• Then, one can compute
gpDq :� d

pAYB,Dq
H pA,Bq

and eventually minimize over all choices of admissible D.(!) So, let

dist2pA,Bq :� min
D

gpDq.
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• A few comments are in order.

1. Note that dist2 is intrinsic, so it can be defined for every pair of compact metric spaces.

2. Let DpdA, dBq denote the set of all metrics on AYB admissible for A and B. We must check that

DpdA, dBq � H

in order for all this to make sense. But, in fact, for a P A and b P B, let d P DpdA, dBq be given
by

dpa, bq � maxpdiam pXq ,diam pY qq
2

.

3. is dist2 really a metric?

4. how does dist2 relate to dist1?

• Finally, a more abstract approach is the following. Assume pZ, dZq is a sufficiently rich metric space
inside which one can find A1, B1 � Z s.t. A1 is isometric to A and B1 is isometric to B. Then, compute

hpZ,A1, B1q � dZHpA1, B1q

and finally choose the Z,A1, B1 that minimize hpZ,A1, B1q. This is the definition of the Gromov-
Hausdorff distance between metric spaces, [Gromov]. We will denote the infimal value of h by
dist3pA,Bq and also, by dGHpA,Bq.

• The same comments apply to dist3.

1. Is this construction feasible, that is, can I always find Z, A1 and B1 in Z with the property that
A �iso A1 and B �iso B1? The answer is yes! Clearly, the construction of dist2 yields Z � AYB
and a metric that reduces to dA and dB on A�A and B �B.

2. It follows from the previous item that therefore,

dist3 ¤ dist2.

3. Does dist3 yield a metric for compact metric spaces?

4. How are all the disti related?

• From now on, let M denote the collection of all compact metric spaces. We have the following

Proposition 1. For all A,B P M,

dist1pA,Bq � dist2pA,Bq � dist3pA,Bq p� dGHpA,Bqq .

3 Assignment for next class

1. Finish the proof of the triangle inequality for dZW,pp, q.
2. Finish [Elad-Kimmel] in order to get a good idea of the algorithm they proposed. You must under-

stand this!

3. Read all the theory sections of [MS05].

4. Next class: we delve into the GH distance and its properties.
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