GH: definition

$$
d_{\mathcal{G H}}(X, Y)=\inf _{Z, f, g} d_{\mathcal{H}}^{Z}(f(X), g(Y))
$$

The Elad-Kimmel approach

- compare surfaces under invariance to bends.
- MDS, or multidimensional scaling.
- Given D distance matrix of size $n \times n$ find n points \mathbb{Z} in Euclidean space s.t. $\mathbf{D}(\mathbb{Z})$ is as close as possible to D.
- So, given two shapes X and Y (triangulated surfaces), use the triangulations and Dijkstra (or whatever you want, fast marching etc) to obtain an estimate of the geodesic distance matrices d_{X} and d_{Y}.
- Select subsets \mathbb{X} andn \mathbb{Y} of X and Y using \max - \min (a.k.a. FPS, farthest point sampling).

$$
\mathbb{X}_{m}=\left\{x_{1}, \ldots, x_{m}\right\} \subset X
$$

$$
D_{\mathbb{X}_{m}}=\left[d_{X}\left(x_{i}, x_{j}\right)\right]
$$

Using MDS, find $E_{m}=\left\{p_{1}, \ldots, p_{m}\right\} \subset \mathbf{R}^{3}$ such that $\left\|D_{E_{m}}-D_{\mathbb{X}_{m}}\right\|$ is minimal. We can think that we found a $\operatorname{map} \mathbf{F}: \mathbb{X}_{m} \rightarrow \mathbf{R}^{3}$ s.t.
$E_{m}=\mathbf{F}\left(\mathbb{X}_{m}\right) \ldots \mathbf{w}$ will not be an isometry in general..

Do the same for $\mathbb{Y}_{m^{\prime}}$

