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1 Properties of the GH distance

From now on, let M denote the collection of all compact metric spaces. We have the following

Proposition 1. For all A,B P M,

dist1pA,Bq � dist2pA,Bq � dist3pA,Bq p� dGHpA,Bqq .

• The GH distance satisfies other desirable properties. In particular, it is a metric.

Theorem 1 (See [BBI] for a full proof of item 1.). 1. The GH distance is a metric on M.

2. For all X P M and X � X,

dGHppX, dXq, pX, dX |X�Xqq ¤ dXHpX,Xq

3. Bonus from triangle inequality: For all X,Y P M

– 1
2 |diam pXq � diam pY q | ¤ dGHpX,Y q.1

– Let X � X and Y � Y be ε-coverings of X and Y , respectively. Then,

|dGHpX,Y q � dGHpX,Yq| ¤ 2ε.
1This is the most basic lower bound for the GH distance.
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• Stability? Consistency?

• An expression for the GH distance involving maps. This expression is at the foundations of the
computational ideas in [MS05] and then also [BBK06].

• Remember from Lecture-1 that given for some φ : X Ñ Y and ψ : Y Ñ X, a correspondence
R P RpX,Y q can be constructed as

R � tpx, φpxqq, x P Xu
¤
tpψpyq, yq y P Y u.

• Let RpX,Y q be the set of all correspondences that can be formed via such construction. Then (Exer-
cise!), it is enough to consider R in this class in dist1.

• Expanding expression of the GH distance given by dist1, for this map-based correspondences we find

p�q dGHpX,Y q �
1
2

inf
φ,ψ

maxpdispφq,dispψq, Cpφ, ψqq

where dispφq :� }dX � dY � pφ, φq}L8pX�Xq, dispψq :� }dX � pψ,ψq � dY }L8pY�Y and

Cpφ, ψq � max
xPX,yPY

|dXpx, ψpyqq � dXpy, φpxqq|.

• What does the term Cpφ, ψq mean?

• Notice that dGHpX,Y q   η means that there exist φ : X Ñ Y and ψ : Y Ñ X s.t. in particular,
Cpφ, ψq   η. This means that for all x P X, y P Y ,

|dXpx, ψpyqq � dY py, φpxqq|   η.

Fix x P X. Then the above holds for y � φpxq. This means that

dXpx, ψ � φpxqq   η for all x P X.

• Similarly, we obtain
dY py, φ � ψpyqq   η for all y P Y .

• This can be interpreted as expressing the fact that φ and ψ are η-almost inverses of eachother.

• What about connections with the concept of ε-isometry? Remember: A map f : X Ñ Y is called an
ε-isometry between X and Y if (1) dispfq   ε and (2) fpXq is a ε-net for Y .

Proposition 2 ([BBI]). Let X,Y P M.

1. Assume dGHpX,Y q   ε. Then there exist a 2ε-isometry between X and Y .

2. Assume that there exist an ε-isometry between X and Y . Then, dGHpX,Y q   2ε.

• Let NR,s
X,n denote a set of n-points tx1, . . . , xnu in X, which are an R-net for X and are s-separated:

minα�β dXpxα, xβq � s.

• For finite metric spaces X and Y with the same cardinality n, let

dIpX,Yq :�
1
2

min
πPΠn

}ΓX,Y}L8pRπ�Rπq

where for a permutation π (lecture-1), Rπ P RpX,Yq is given by Rπ � tpxi, yπiq, i � 1, . . . , nu.
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• Obviously, dGHpX,Yq ¤ dIpX,Yq.

• We can obtain the following (proof is Exercise):

Corollary 1 (check [MS05]). Let pX, dXq and pY, dY q be in M s.t. dGHpX,Y q � η. Let txiu � N
pR,sq
X,n

be given. Then, for all γ ¡ 0, there exist points Yγ :� tyγ1 , . . . , y
γ
nu � Y s.t.

1. dI
�
N

pR,sq
X,n ,Yγ

	
¤ η � γ.

2. Yγ is a R� 2pη � γq cover of Y .

3. seppYγq ¥ s� 2pη � γq.

2 A relationship with the Elad-Kimmel approach

• The [EK] approach can be (loosely) interpreted as an attempt to compute something like the GH
distance.

• See slides.

3 Computational ideas

• There are two approaches, to the best of my knowledge.

• Both of them assume X and Y are smooth Riemannian manifolds.

• The approach in the original papers [MS04], [MS05] and then the MDS-like approach of [BBK06].

• They both hinge on expression p�q.

• [MS05] provides probabilisitic bounds for a certain estimate of the GH distance. These bounds can be
extended to more general metric spaces. The underlying algorithmic procedure is a search over points
in each metric space.

• [BBK06] uses the same idea, but they use the smooth structure of X and Y to define a (potentially
large) continuous optimization problem. The quantity being estimated is not the GH distance. No
bounds relating to the GH distance are given nor desirable properties of this quantity are established.

• Neither method has theoretical guarantees for the estimate they ultimately compute in practice.

• This is a problem in all the methods I know. Either you have to solve a hard combinatorial problem,
or you have a huge continuous (non-convex) optimization problem.

• But before discussing them let’s think of possible approaches based on dist1.

Throughout this section X and Y are finite metric spaces.

3.1 Brute force (?)

• Fix n P N. Assume you have N pR,sq
X,n and N

pR1,s1q
Y,n .

• We can then estimate the GH distance from above:

dGHpX,Y q ¤ R�R1 � dIpNX , NY q.
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• This could work in principle. But there may be obstructions!! Burago and Kleiner, and also McCullen
(see references in [MS05]) constructed two nets in R2 such that when you force a bijective mapping
between them, then dI is infinity!.

• What is OK, is fixing one of them, say NX , and then searching for Y in Y that minimizes

dIpY, NXq.

Indeed, Corollary 1 guarantees this. We see more about this later.

3.2 A connection with the QAP

Recall the dist1 expression for the GH distance:

dGHpX,Y q �
1
2

min
R

max
px,yq,px1,y1qPR

|dXpx, x
1q � dY py, y

1q| (1)

Remark 1. We want to argue that expression (1) is reminiscent of the QAP (Quadratic Assignment Prob-
lem). This will let us loosely infer something about the inherent complexity of computing the Gromov-
Hausdorff distance. Let’s restrict ourselves to the case of finite metric spaces, X � tx1, . . . , xnu and
Y � ty1, . . . , ymu. For R P RpX,Yq let δRij equal 1 if pxi, yjq P R and 0 otherwise. Then we have:

dGHpX,Y q �
1
2

min
R

max
i,k,j,l

Γijkl δRijδ
R
kl

where Γijkl :� |dXpxi, xkq � dY pyj , ylq|. Now, one can obtain a family of related problems by relaxing the
max to a sum as follows: Fix p ¥ 1, then one can also consider the problem:

pPpq min
R

¸
ij

¸
kl

pΓikjlq
p
δRijδ

R
kl.

Note that one can recast the above problem as follows. Let ∆ � Rn�m denote the set of matrices defined by
the constraints below:

1. δij P t0, 1u for all i, j

2.
°
i δij ¥ 1 for all j

3.
°
j δij ¥ 1 for all i

and let Kppδq :�
°
ij

°
klpΓijklq

pδijδkl. then pPpq is equivalent to

min
δP∆

Kppδq

which can be regarded as a generalized version of the QAP. In the standard QAP ([?]) n � m and the
inequalities 2. and 3. defining ∆ above are actually equalities, what forces each δ to be a permutation
matrix.

Actually, we argue next that, when n � m, pPpq reduces to a QAP. It is known that the QAP is an
NP-hard problem, see references in [M07].

Indeed, it is clear that for any δ P ∆ there exist π P Πn (n � n permutations matrices) such that
δij ¥ πij for all 1 ¤ i, j ¤ n. Then, since pΓijklqp is non negative for all 1 ¤ i, j, k, l ¤ n, it follows that
Kppδq ¥ Kppπq. Therefore the minimal value of Kppδq is attained at some δ P Πn.
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3.3 A naive relaxation

Recall problem pPq in Remark 1. We now relax condition 1 in the definition of ∆ to read

δij P r0, 1s.

We let ∆1 be the new set of matrices we obtain. Consider the problem given by

pP 1q min
δP∆1

Kppδq.

A few comments are in order:

• Problem pP 1q is a QOP with linear and bound constraints. It is however not necessarily convex.

• One can directly attempt to solve this problem using off the shelf tools for continuous variable opti-
mization, e.g. gradient descent. One may, however, only converge to local minima.

• It is obvious that minδP∆Kppδq ¥ minδP∆1 Kppδq. However, it is unclear whether a bound can be
obtained in the reverse direction, that is, can one relate dGH with minδP∆1 Kppδq?

• Assume that X and Y are sample sets from certain underlying “nice” metric spaces X and Y , respec-
tively. It is unclear what is the behaviour of minδP∆1 Kppδq when both X Ñ X and Y Ñ Y (sampling
consistency). It is clear that by imposing that δ be a finite measure on X � Y one could hope for a
notion of limit problem.2 This is basically the feature of the approach we’ll see later on teh course
(Gromov-Wasserstein or Lp GH distances)

3.4 The approach of [MS05]

• This approach did not try to compute the GH directly.

• The main observation was that (�) can be simplified if one can drop the cross-term Cpφ, ψq. Indeed,
if one does that, then, what one obtaines in a lower bound for the GH distance, and more imprtantly,
the two problems (optimize over φ and ψ) become decoupled :

dF pX,Y q :� maxpinf
φ

dispφq, inf
ψ

dispψqq.

• The challenge was, roughly, to build an upper bound for dGHpX,Y q using dF (and some more stuff).

4 Assignment for next class

1. Finish [MS05], get a good idea fo the computation of GH distance.

2. Read [BBK], get a good idea of their proposed computation of the GH distance.

3. Next class: Implementation details of [MS05] and [BBK06]. Critiques for the GH distance. Shape
Contexts, Shape Distributions and other approaches. The Gromov-Wasserstein (or Lp GH distances).

2Namely, that “sums converge to integrals.”
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