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dGH(X, Y ) = inf
Z,f,g

dZ
H(f(X), g(Y ))

GH: definition
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Remember the expression:
For maps φ : X → Y , and = ψ : Y → X compute

dis(φ) = max
x,x′

|dX(x, x′)− dY (φ(x), φ(x′))|,

dis(ψ) = max
y,y′

|dY (y, y′)− dX(ψ(y), ψ(y′))|

and
C(φ, ψ) := max

x∈X,y∈Y
|dX(x, ψ(y))− dY (y, φ(x))|.

Then

dGH(X, Y ) =
1
2

min
φ,ψ

max(dis(φ),dis(ψ), C(φ, ψ))

where one minimizes over all choices of φ and ψ.
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Approximation from [MS05]



• From the algorithmic point of view, we assume we know just

– A dense point cloud X sampled from X

– A dense point cloud Y sampled from Y

• Given a metric space (X, dX), the discrete subset N (R,s)
X,n denotes a set of

points {x1, . . . , xn} ⊂ X such that

(1) BX(N (R,s)
X,n , R) = X,

(2) dX(xi, xj) ≥ s whenever i #= j.

In other words, the set constitutes a R-covering and the points in the set
are not too close to each other.

• In practice, one constructs NR,s
X,n from X!

• To fix ideas, say that #X = 20, 000 and n = 100.



X is in blue, N (R,s)
X,n is in red.



So, the plan would be as follows:

• Given X and Y obtain N (R,s)
X,n and N (R′,s′)

X,n .

• Write N (R,s)
X,n = {xi, i = 1, . . . , n} and N (R′,s′)

Y,n = {yi, i = 1, . . . , n}.

• Compute
A := min

ȳ1,...,ȳn∈Y
max

i,j
|dX(xi, xj)− dY (ȳi, ȳj)|

B := min
x̄1,...,x̄n∈X

max
i,j

|dY (yi, yj)− dX(x̄i, x̄j)|

• and let dF (X, Y) := max(A, B).

• Can we relate dF (X, Y) to dGH(X, Y)?
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Proposition. Let (X, dX) and (Y, dY ) be compact metric spaces and let η =
dGH(X, Y ). Also, let N (R,s)

X,n = {x1, . . . , xn} be given. Then, given α > 0 there
exist points Yα = {yα

1 , . . . , yα
n} ⊂ Y such that

1. |dX(xi, xj)− dY (yα
i , yα

j )| ≤ 2(η + α) for all

2. Yα is a R + 2(η + α) covering of Y :

BY ({yα
1 , . . . , yα

n}, R + 2(η + α)) = Y

3. Separation of Yα is ≥ s− 2(η + α):

dY (yα
i , yα

j ) ≥ s− 2(η + α)

for i %= j.



• This proposition tells us that if the metric spaces happen to be sufficiently
close in a metric sense, then given a (s-separated) R-covering on one of
them, one can find a (s′-separated) R′-covering in the other metric space
such that the metric distorsion between those coverings (point clouds) is
also small.

• Since by Tychonoff’s Theorem the n-fold product space Y × . . . × Y is
compact, if s− 2 ! ≥ c > 0 for some positive constant c, by passing to the
limit along the subsequences of {yα

1 , . . . , yα
n}{α>0} (if needed) above one

can assume the existence of a set of different points {ȳ1, . . . , ȳn} ⊂ Y
such that

1. |dX(xi, xj)− dY (ȳi, ȳj)| ≤ 2 ! , all i, j

2. mini "=j dY (ȳi, ȳj) ≥ s− 2! > 0, and
3. BY ({ȳ1, . . . , ȳn}, R + 2 ! ) = Y .

• But there’s no reason to expect that ȳi ∈ Y!! (we only have access to Y..)



N (R,s)
X,n

Y in red, and {ȳi} in blue.





So, the plan would be as follows:
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• and let dF (X, Y) := max(A, B).

• Can we relate dF (X, Y) to dGH(X, Y)?



Theorem 1 ([MS05]). Let X and Y be compact sub-manifolds of Rd, and let
η = dGH(X, Y ). Let N (R,s)

X,n be s.t. for some c > 0

s > 2η + c.

Then, given p ∈ (0, 1) there exist m = m(c, p) ∈ s.t. if Y is formed by sampling
i.i.d. uniformly m points from Y , then,

P (A ≤ 3η + R) ≥ p

Remark. • This essentially gives control over dF (X, Y). We obtain that
for some constants A, B, α, β, (α,β can be controlled to zero)

A(dGH(X, Y )− α) ≤ dF (X, Y) ≤ B(dGH(X, Y )− β)

with controllable probability.

• The proof is based on using the Coupon collector problem: each Voronoi
cell defined by {ȳi} wants to collect a coupon (a point from Y). How many
times do I have to go to the store until I get all coupons?

• This particular instance of the CCP has to deal with unequal probabilities
for each coupon: the areas of the Voronoi cells are different.

• We impose that c > 0 so that we have non-zero probability of getting all
coupons.
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What do I need to compute?

You are given X and Y.

• Construct N (R,s)
X,n and N (R′,s′)

Y,n .

• Compute A and B: for A, you fix N (R,s)
X,n and find the n points in Y that

match the distance matrix of N (R,s)
X,n as closely as possible:

A = min
{ȳi}

max
i,j

|dX(xi, xj)− dY (ȳi, ȳj)|

• Do the same for B. These are combinatorial problems. There are no exact
algorithms to my knowledge. Have heuristic.

• Problem: can anything be proved for these heuristics?



! "  #$%&

• Computations are combinatorial in nature

• Assumed shapes are smooth surfaces so that I could talk about uniform
probability distribution.

• The proofs do not depend on this fact, so arguments and guarantees carry
over to measure metric spaces.

• Again, ugly combinatorial problems..



Approximation from [BBK06]



• Remember dGH(X, Y ) = minφ,ψ max(dis(φ),dis(ψ), C(φ, ψ)).

• Concentrate on minimizing dis(φ) alone:

min
φ

max
i,j

|dX(xi, xj)− dY (φ(xi), φ(xj))|.

• In review of [MS05] we wrote this as

min
y1,...,ym∈Y

max
i,j

|dX(xi, xj)− dY (yi, yj)|.

• The reason the problem is combinatorial is that yi are constrained to lie
on Y.

• Think for one second of ’moving’ the yi continuously. In other words,
I’d like to think that I am allowed to change points infinitesimally: yi →
yi + δi.

• This requires being able to compute dY (yi + δi, yj + δj).



• This requires having a smooth underlying structure: smooth surfaces.

• need to create a local parameterization using for instance the meshes.

• then, one can use standard interpolation algorithms for computing dY (yi+
δi, yj + δj).

• Then, in order to find approximation to minφ dis(φ) one minimizes the
functional F (yi, . . . ,yj) := maxij |dX(xi, xj)− dY (yi,yj)|.

• Proposed method uses gradient descent. Need to compute numerical
derivatives of dY (yi + δi, yj + δj).

• Now, if you want to use these ideas for estimating the GH distance, you
need to solve three coupled problems:

dGH(X, Y) =
1
2

min
φ,ψ

max(dis(φ),dis(ψ), C(φ, ψ)).

• the resulting problem is highly nonlinear, the number of variables is #X+
#Y + 1 and the number of nonlinear constraints is ∼ (#X + #Y )2.



• Authors cope with the problem of having so many nonlinear constraints
by using the penalty barrier.

• The L∞ aspect of the GH distance complicates the numerical computa-
tions, they apply an Lp relaxation

• all in all they end up solving a unconstrained nonlinear problem.

• What is the relationship between the result and the GH distance? If this
is hard to answer then..

• What are the properties of the thing they minimize? does that measure
something like a metric on the class of shapes that you set out to study?

These questions are difficult to answer.
Better alternative: write down a notion of metric between metric spaces that
translates directly into what you should compute in practice!
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Critique

• Was not able to show connections with (sufficiently many) pre-existing
approaches

• Computationally hard: currently only two attempts have been made:

– [MS04,MS05] and [BBK06] only for surfaces.
– [MS05] gives probabilistic guarantees for estimator based on sampling

parameters.
– Full generality leads to a hard combinatorial optimization prob-

lem: QAP.
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Desiderata

• Obtain an Lp version of the GH distance that:

– retains theoretical underpinnings

– its implementation leads to easier (continuous, quadratic, with linear
constraints) optimization problems

– can be related to pre-existing approaches (shape contexts, shape dis-
tributions, Hamza-Krim,..) via lower/upper bounds.

Critique

• Was not able to show connections with (sufficiently many) pre-existing
approaches

• Computationally hard: currently only two attempts have been made:

– [MS04,MS05] and [BBK06] only for surfaces.
– [MS05] gives probabilistic guarantees for estimator based on sampling

parameters.
– Full generality leads to a hard combinatorial optimization prob-

lem: QAP.



remember: Naive 
relaxation



Another expression for 
the GH distance
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A theorem, [BuBuIv]

For compact metric spaces (X, dX) and (Y, dY ),

dGH(X, Y ) =
1
2

inf
R

max
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|



First attempt: naive relaxation

Remember that

dGH(X, Y ) =
1
2

inf
R

max
(x,y),(x′,y′)∈R

|dX(x, x′)− dY (y, y′)|

where R ∈ R(X,Y ). Using the matricial representation of R one can write

dGH(X, Y ) =
1
2

inf
R

max
x,x′,y,y′

|dX(x, x′)− dY (y, y′)| rx,y rx′,y′

where R = ((rx,y)) ∈ {0, 1}nX×nB s.t.
∑

x∈X

rxy ≥ 1 ∀y ∈ Y

∑

y∈Y

rxy ≥ 1 ∀x ∈ X
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First attempt: naive relaxation (continued)

• The idea would be to use Lp norm instead of L∞ (max max)

• relax rx,y to be in [0, 1] (!)

Then, the idea would be to compute (for some p ≥ 1):

d̂GH(X, Y ) =
1
2

inf
R




∑

x,x′,y,y′

|dX(x, x′)− dY (y, y′)|p rx,y rx′,y′




1/p
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we need to identify the correct relaxation of the GH distance. More precisely,
the correct notion of relaxed correspondence.

• The resulting problem is a continuous variable QOP with linear con-
straints, but..

• there is no limit problem.. this discretization cannot be connected to the
GH distance..



Quick review of other methods for shape match-
ing

• Shape distributions

• Shape contexts

• Hamza-Krim

Assignment: write a 1/2 page summary of each of those approaches. Pa-
pers are posted on course webpage.
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Shape Distributions [Osada-et-al]
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Shape Contexts







0 d12 d13 d14 . . .
d12 0 d23 d24 . . .
d13 d23 0 d34 . . .
d14 d24 d34 0 . . .
...

...
...

...
. . .





Shape Contexts







0 d12 d13 d14 . . .
d12 0 d23 d24 . . .
d13 d23 0 d34 . . .
d14 d24 d34 0 . . .
...

...
...

...
. . .





Shape Contexts



Connections with other approaches

• Shape Distributions [Osada-et-al]

• Shape contexts [SC]

• Hamza-Krim, Hilaga et al approach [HK]

• Rigid isometries invariant Hausdorff [Goodrich]

• Gromov-Hausdorff distance [MS04] [MS05]

• Elad-Kimmel idea [EK]

• Topology based methods



What lies ahead: mm-spaces



(X, dX , µX)Shapes as mm-spaces, [M07]

Remember:

1. Specify representation of shapes.

2. Identify invariances that you want to mod out.

3. Describe notion of isomorphism between shapes (this is going to be the
zero of your metric)

4. Come up with a metric between shapes (in the representation of 1.)

• Now we are talking of triples (X, dX , µX) where X is a set, dX a metric
on X and µX a probability measure on X.

• These objects are called measure metric spaces, or mm-spaces for short.

• two mm-spaces X and Y are deemed equal or isomorphic whenever there
exists an isometry Φ : X → Y s.t. µY (B) = µX(Φ−1(B) for all (measur-
able) sets B ⊂ Y .



http://math.stanford.edu/~memoli


