Shape Matching: A Metric Geometry Approach Facundo Mémoli. CS 468, Stanford University, Fall 2008.

GH: definition

$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^Z(f(X),g(Y))$

$$\operatorname{dis}(\phi) = \max_{x,x'} |d_X(x,x') - d_Y(\phi(x),\phi(x'))|,$$

$$dis(\psi) = \max_{y,y'} |d_Y(y,y') - d_X(\psi(y),\psi(y'))|$$

and

$$C(\phi, \psi) := \max_{x \in X, y \in Y} |d_X(x, \psi(y)) - d_Y(y, \phi(x))|.$$

Then

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi),C(\phi,\psi))$$

where one minimizes over all choices of ϕ and ψ .

$$\operatorname{dis}(\phi) = \max_{x,x'} |d_X(x,x') - d_Y(\phi(x),\phi(x'))|,$$

$$dis(\psi) = \max_{y,y'} |d_Y(y,y') - d_X(\psi(y),\psi(y'))|$$

and

$$C(\phi, \psi) := \max_{x \in X, y \in Y} |d_X(x, \psi(y)) - d_Y(y, \phi(x))|.$$

Then

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi),C(\phi,\psi))$$

where one minimizes over all choices of ϕ and ψ .

$$\operatorname{dis}(\phi) = \max_{x,x'} |d_X(x,x') - d_Y(\phi(x),\phi(x'))|,$$

$$dis(\psi) = \max_{y,y'} |d_Y(y,y') - d_X(\psi(y),\psi(y'))|$$

and

$$C(\phi, \psi) := \max_{x \in X, y \in Y} |d_X(x, \psi(y)) - d_Y(y, \phi(x))|.$$

Then

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi),C(\phi,\psi))$$

where one minimizes over all choices of ϕ and ψ .

Approximation from [MS05]

- From the algorithmic point of view, we assume we know just
 - A dense point cloud $\mathbb X$ sampled from X
 - A dense point cloud $\mathbb {Y}$ sampled from Y
- Given a metric space (X, d_X) , the discrete subset $N_{X,n}^{(R,s)}$ denotes a set of points $\{x_1, \ldots, x_n\} \subset X$ such that

(1)
$$B_X(N_{X,n}^{(R,s)}, R) = X,$$

(2) $d_X(x_i, x_j) \ge s$ whenever $i \ne j.$

In other words, the set constitutes a R-covering and the points in the set are not too close to each other.

- In practice, one constructs $N_{X,n}^{R,s}$ from X!
- To fix ideas, say that $\#\mathbb{X} = 20,000$ and n = 100.

X is in blue, $N_{X,n}^{(R,s)}$ is in red.

So, the plan would be as follows:

• Given \mathbb{X} and \mathbb{Y} obtain $N_{\mathbb{X},n}^{(R,s)}$ and $N_{\mathbb{X},n}^{(R',s')}$.

• Write
$$N_{\mathbb{X},n}^{(R,s)} = \{x_i, i = 1, \dots, n\}$$
 and $N_{\mathbb{Y},n}^{(R',s')} = \{y_i, i = 1, \dots, n\}.$

• Compute

$$A := \min_{\bar{y}_1, \dots, \bar{y}_n \in \mathbb{Y}} \max_{i,j} \left| d_X(x_i, x_j) - d_Y(\bar{y}_i, \bar{y}_j) \right|$$

$$B := \min_{\bar{x}_1, \dots, \bar{x}_n \in \mathbb{X}} \max_{i,j} \left| d_Y(y_i, y_j) - d_X(\bar{x}_i, \bar{x}_j) \right|$$

- and let $d_{\mathcal{F}}(\mathbb{X}, \mathbb{Y}) := \max(A, B)$.
- Can we relate $d_{\mathcal{F}}(\mathbb{X}, \mathbb{Y})$ to $d_{\mathcal{GH}}(\mathbb{X}, \mathbb{Y})$?

$$\operatorname{dis}(\phi) = \max_{x,x'} |d_X(x,x') - d_Y(\phi(x),\phi(x'))|,$$

$$dis(\psi) = \max_{y,y'} |d_Y(y,y') - d_X(\psi(y),\psi(y'))|$$

and

$$C(\phi, \psi) := \max_{x \in X, y \in Y} |d_X(x, \psi(y)) - d_Y(y, \phi(x))|.$$

Then

 $d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi), C(\phi,\psi))$ where one minimizes over all choices of ϕ and ψ .

$$\operatorname{dis}(\phi) = \max_{x,x'} |d_X(x,x') - d_Y(\phi(x),\phi(x'))|,$$

$$dis(\psi) = \max_{y,y'} |d_Y(y,y') - d_X(\psi(y),\psi(y'))|$$

and

$$C(\phi, \psi) := \max_{x \in X, y \in Y} |d_X(x, \psi(y)) - d_Y(y, \phi(x))|.$$

Then

 $d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi), C(\phi,\psi))$ where one minimizes over all choices of ϕ and ψ .

$$\operatorname{dis}(\phi) = \max_{x,x'} |d_X(x,x') - d_Y(\phi(x),\phi(x'))|,$$

$$dis(\psi) = \max_{y,y'} |d_Y(y,y') - d_X(\psi(y),\psi(y'))|$$

and

$$C(\phi, \psi) := \max_{x \in X, y \in Y} |d_X(x, \psi(y)) - d_Y(y, \phi(x))|.$$

Then

 $d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi), C(\phi,\psi))$ where one minimizes over all choices of ϕ and ψ . **Proposition.** Let (X, d_X) and (Y, d_Y) be compact metric spaces and let $\eta = d_{\mathcal{GH}}(X, Y)$. Also, let $N_{X,n}^{(R,s)} = \{x_1, \ldots, x_n\}$ be given. Then, given $\alpha > 0$ there exist points $\mathbb{Y}^{\alpha} = \{y_1^{\alpha}, \ldots, y_n^{\alpha}\} \subset Y$ such that

1.
$$|d_X(x_i, x_j) - d_Y(y_i^{\alpha}, y_j^{\alpha})| \le 2(\eta + \alpha)$$
 for all

2. \mathbb{Y}^{α} is a $R + 2(\eta + \alpha)$ covering of Y:

$$B_Y\left(\{y_1^\alpha,\ldots,y_n^\alpha\},R+2(\eta+\alpha)\right)=Y$$

3. Separation of \mathbb{Y}^{α} is $\geq s - 2(\eta + \alpha)$:

$$d_Y(y_i^{\alpha}, y_j^{\alpha}) \ge s - 2(\eta + \alpha)$$

for $i \neq j$.

- This proposition tells us that if the metric spaces happen to be sufficiently close in a metric sense, then given a (s-separated) R-covering on one of them, one can find a (s'-separated) R'-covering in the other metric space such that the metric distorsion between those coverings (point clouds) is also small.
- Since by Tychonoff's Theorem the *n*-fold product space $Y \times \ldots \times Y$ is compact, if $s-2 \geq c > 0$ for some positive constant *c*, by passing to the limit along the subsequences of $\{y_1^{\alpha}, \ldots, y_n^{\alpha}\}_{\{\alpha>0\}}$ (if needed) above one can assume the existence of a set of **different** points $\{\bar{y}_1, \ldots, \bar{y}_n\} \subset Y$ such that

1.
$$|d_X(x_i, x_j) - d_Y(\bar{y}_i, \bar{y}_j)| \le 2$$
, all i, j
2. $\min_{i \ne j} d_Y(\bar{y}_i, \bar{y}_j) \ge s - 2 > 0$, and
3. $B_Y(\{\bar{y}_1, \dots, \bar{y}_n\}, R + 2) = Y.$

• But there's no reason to expect that $\bar{y}_i \in \mathbb{Y}!!$ (we only have access to $\mathbb{Y}..$)

So, the plan would be as follows:

• Given X and Y obtain $N_{X,n}^{(R,s)}$ and $N_{X,n}^{(R',s')}$.

• Write
$$N_{\mathbb{X},n}^{(R,s)} = \{x_i, i = 1, \dots, n\}$$
 and $N_{\mathbb{Y},n}^{(R',s')} = \{y_i, i = 1, \dots, n\}.$

• Compute

$$A := \min_{\bar{y}_1, \dots, \bar{y}_n \in \mathbb{Y}} \max_{i, j} |d_X(x_i, x_j) - d_Y(\bar{y}_i, \bar{y}_j)|$$

$$B := \min_{\bar{x}_1, \dots, \bar{x}_n \in \mathbb{X}} \max_{i,j} \left| d_Y(y_i, y_j) - d_X(\bar{x}_i, \bar{x}_j) \right|$$

- and let $d_{\mathcal{F}}(\mathbb{X}, \mathbb{Y}) := \max(A, B)$.
- Can we relate $d_{\mathcal{F}}(\mathbb{X}, \mathbb{Y})$ to $d_{\mathcal{GH}}(\mathbb{X}, \mathbb{Y})$?

Theorem 1 ([MS05]). Let X and Y be compact sub-manifolds of \mathbb{R}^d , and let $\eta = d_{\mathcal{GH}}(X,Y)$. Let $N_{X,n}^{(R,s)}$ be s.t. for some c > 0

$$s > 2\eta + c.$$

Then, given $p \in (0,1)$ there exist $m = m(c,p) \in s.t.$ if \mathbb{Y} is formed by sampling *i.i.d.* uniformly m points from Y, then,

 $\mathbf{P}\left(A \le 3\eta + R\right) \ge p$

Theorem 1 ([MS05]). Let X and Y be compact sub-manifolds of \mathbb{R}^d , and let $\eta = d_{\mathcal{GH}}(X,Y)$. Let $N_{X,n}^{(R,s)}$ be s.t. for some c > 0

$$s > 2\eta + c.$$

Then, given $p \in (0,1)$ there exist $m = m(c,p) \in s.t.$ if \mathbb{Y} is formed by sampling *i.i.d.* uniformly m points from Y, then,

$$\mathbf{P}\left(A \le 3\eta + R\right) \ge p$$

Remark. • This essentially gives control over $d_{\mathcal{F}}(\mathbb{X}, \mathbb{Y})$. We obtain that for some constants A, B, α, β , $(\alpha, \beta \text{ can be controlled to zero})$

$$A(d_{\mathcal{GH}}(X,Y) - \alpha) \le d_{\mathcal{F}}(\mathbb{X},\mathbb{Y}) \le B(d_{\mathcal{GH}}(X,Y) - \beta)$$

with controllable probability.

- The proof is based on using the Coupon collector problem: each Voronoi cell defined by {\$\overline{y}_i\$} wants to collect a coupon (a point from \$\mathbb{Y}\$). How many times do I have to go to the store until I get all coupons?
- This particular instance of the CCP has to deal with unequal probabilities for each coupon: the areas of the Voronoi cells are different.
- We impose that c > 0 so that we have non-zero probability of getting all coupons.

What do I need to compute?

You are given \mathbb{X} and \mathbb{Y} .

- Construct $N_{X,n}^{(R,s)}$ and $N_{Y,n}^{(R',s')}$.
- Compute A and B: for A, you fix $N_{X,n}^{(R,s)}$ and find the n points in \mathbb{Y} that match the distance matrix of $N_{X,n}^{(R,s)}$ as closely as possible:

$$A = \min_{\{\bar{y}_i\}} \max_{i,j} |d_X(x_i, x_j) - d_Y(\bar{y}_i, \bar{y}_j)|$$

- Do the same for B. These are combinatorial problems. There are no exact algorithms to my knowledge. Have heuristic.
- **Problem:** can anything be proved for these heuristics?

- Computations are combinatorial in nature
- Assumed shapes are smooth surfaces so that I could talk about uniform probability distribution.
- The proofs do not depend on this fact, so arguments and guarantees carry over to measure metric spaces.
- Again, ugly combinatorial problems..

Approximation from [BBK06]

- Remember $d_{\mathcal{GH}}(X,Y) = \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi),C(\phi,\psi)).$
- Concentrate on minimizing $dis(\phi)$ alone:

$$\min_{\phi} \max_{i,j} |d_X(x_i, x_j) - d_Y(\phi(x_i), \phi(x_j))|.$$

• In review of [MS05] we wrote this as

$$\min_{y_1,...,y_m \in \mathbb{Y}} \max_{i,j} |d_X(x_i, x_j) - d_Y(y_i, y_j)|.$$

- The reason the problem is combinatorial is that y_i are constrained to lie on \mathbb{Y} .
- Think for one second of 'moving' the y_i continuously. In other words, I'd like to think that I am allowed to change points infinitesimally: $y_i \rightarrow y_i + \delta_i$.
- This requires being able to compute $d_Y(y_i + \delta_i, y_j + \delta_j)$.

- This requires having a smooth underlying structure: smooth surfaces.
- need to create a local parameterization using for instance the meshes.
- then, one can use standard interpolation algorithms for computing $d_Y(y_i + \delta_i, y_j + \delta_j)$.
- Then, in order to find approximation to $\min_{\phi} \operatorname{dis}(\phi)$ one minimizes the functional $F(\mathbf{y}_i, \ldots, \mathbf{y}_j) := \max_{ij} |d_X(x_i, x_j) d_Y(\mathbf{y}_i, \mathbf{y}_j)|.$
- Proposed method uses gradient descent. Need to compute numerical derivatives of $d_Y(y_i + \delta_i, y_j + \delta_j)$.
- Now, if you want to use these ideas for estimating the GH distance, you need to solve three **coupled problems**:

$$d_{\mathcal{GH}}(\mathbb{X},\mathbb{Y}) = \frac{1}{2} \min_{\phi,\psi} \max(\operatorname{dis}(\phi),\operatorname{dis}(\psi), C(\phi,\psi)).$$

• the resulting problem is highly nonlinear, the number of variables is $\#\mathbb{X} + \#\mathbb{Y} + 1$ and the number of *nonlinear* constraints is $\sim (\#X + \#Y)^2$.

- Authors cope with the problem of having so many nonlinear constraints by using the *penalty barrier*.
- The L^{∞} aspect of the GH distance complicates the numerical computations, they apply an L^p relaxation
- all in all they end up solving a *unconstrained* nonlinear problem.
- What is the relationship between the result and the GH distance? If this is hard to answer then..
- What are the properties of the thing they minimize? does that measure something like a metric on the class of shapes that you set out to study?

These questions are difficult to answer.

Better alternative: write down a notion of metric between metric spaces that translates directly into what you should compute in practice!

Critique

- Was not able to show connections with (sufficiently many) pre-existing approaches
- Computationally hard: currently only two attempts have been made:
 - [MS04,MS05] and [BBK06] only for surfaces.
 - [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
 - Full generality leads to a hard combinatorial optimization problem: QAP.

Critique

- Was not able to show connections with (sufficiently many) pre-existing approaches
- Computationally hard: currently only two attempts have been made:
 - [MS04,MS05] and [BBK06] only for surfaces.
 - [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
 - Full generality leads to a hard combinatorial optimization problem: QAP.

Desiderata

- Obtain an L^p version of the GH distance that:
 - retains theoretical underpinnings
 - its implementation leads to easier (continuous, quadratic, with linear constraints) optimization problems
 - can be related to pre-existing approaches (shape contexts, shape distributions, Hamza-Krim,..) via lower/upper bounds.

remember: Naive relaxation

Another expression for the GH distance

A theorem, [BuBuIv]

For compact metric spaces (X, d_X) and (Y, d_Y) ,

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{\substack{(\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}') \in R}} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|$$

First attempt: naive relaxation

Remember that

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{(\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')\in R} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|$$

where $R \in \mathcal{R}(X, Y)$. Using the matricial representation of R one can write

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{x,x',y,y'} |d_X(x,x') - d_Y(y,y')| r_{x,y} r_{x',y'}$$

where $R = ((r_{x,y})) \in \{0,1\}^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation

Remember that

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{(\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')\in R} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|$$

where $R \in \mathcal{R}(X, Y)$. Using the matricial representation of R one can write

$$d_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \max_{\substack{x,x',y,y' \\ x,x',y,y'}} |d_X(x,x') - d_Y(y,y')| r_{x,y}r_{x',y'}$$

where $R = ((r_{x,y})) \in \{0,1\}^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation (continued)

- The idea would be to use L^p norm instead of L^{∞} (max max)
- relax $r_{x,y}$ to be in [0,1] (!)

Then, the idea would be to compute (for some $p \ge 1$):

$$\widehat{d}_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \left(\sum_{\boldsymbol{x},\boldsymbol{x'},\boldsymbol{y},\boldsymbol{y'}} |d_X(\boldsymbol{x},\boldsymbol{x'}) - d_Y(\boldsymbol{y},\boldsymbol{y'})|^{\mathbf{p}} r_{\boldsymbol{x},\boldsymbol{y}} r_{\boldsymbol{x'},\boldsymbol{y'}} \right)^{1/\mathbf{p}}$$

where $R = ((r_{x,y})) \in [\mathbf{0},\mathbf{1}]^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation (continued)

- The idea would be to use L^p norm instead of L^{∞} (max max)
- relax $r_{x,y}$ to be in [0,1] (!)

Then, the idea would be to compute (for some $p \ge 1$):

$$\widehat{d}_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \left(\sum_{\boldsymbol{x},\boldsymbol{x}',\boldsymbol{y},\boldsymbol{y}'} |d_X(\boldsymbol{x},\boldsymbol{x}') - d_Y(\boldsymbol{y},\boldsymbol{y}')|^{\mathbf{p}} r_{\boldsymbol{x},\boldsymbol{y}} r_{\boldsymbol{x}',\boldsymbol{y}'} \right)^{1/\mathbf{p}}$$

where $R = ((r_{x,y})) \in [0, 1]^{n_X \times n_B}$ s.t.

$$\sum_{x \in X} r_{xy} \ge 1 \ \forall y \in Y$$

$$\sum_{y \in Y} r_{xy} \ge 1 \ \forall x \in X$$

First attempt: naive relaxation (continued)

- The idea would be to use L^p norm instead of L^{∞} (max max)
- relax $r_{x,y}$ to be in [0,1] (!)

Then, the idea would be to compute (for some $p \ge 1$):

$$\widehat{d}_{\mathcal{GH}}(X,Y) = \frac{1}{2} \inf_{R} \left(\sum_{\substack{x,x',y,y' \\ x,x',y,y'}} |d_X(x,x') - d_Y(y,y')|^{\mathbf{p}} \underbrace{r_{x,y}r_{x',y'}}_{x,y'} \right)^{1/\mathbf{p}}$$

where $R = ((r_{x,y})) \in [\mathbf{0},\mathbf{1}]^{n_X \times n_B}$ s.t.
$$\sum_{x \in X} r_{xy} \ge 1 \quad \forall y \in Y$$
$$\sum_{y \in Y} r_{xy} \ge 1 \quad \forall x \in X$$

• The resulting problem is a continuous variable QOP with linear constraints, but..

• there is no limit problem.. this discretization cannot be connected to the GH distance..

we need to identify the **correct** relaxation of the GH distance. More precisely, the correct notion of *relaxed correspondence*.

Quick review of other methods for shape matching

- Shape distributions
- Shape contexts
- Hamza-Krim

Assignment: write a 1/2 page summary of each of those approaches. Papers are posted on course webpage.

 $\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} \\ d_{12} & 0 & d_{23} & d_{24} \\ d_{13} & d_{23} & 0 & d_{34} \\ d_{14} & d_{24} & d_{34} & 0 \\ \vdots & \vdots & \vdots & \vdots \\ \end{pmatrix}$

Connections with other approaches

- Shape Distributions [Osada-et-al]
- Shape contexts **[SC]**
- $\bullet\,$ Hamza-Krim, Hilaga et al approach $[\mathbf{HK}]$
- Rigid isometries invariant Hausdorff [Goodrich]
- \bullet Gromov-Hausdorff distance $[\mathbf{MS04}]$ $[\mathbf{MS05}]$
- Elad-Kimmel idea **[EK]**
- Topology based methods

What lies ahead: mm-spaces

Shapes as mm-spaces, [M07]

Remember:

 (X, d_X, μ_X)

- 1. Specify representation of shapes.
- 2. Identify invariances that you want to mod out.
- 3. Describe notion of isomorphism between shapes (this is going to be the zero of your metric)
- 4. Come up with a *metric* between shapes (in the representation of 1.)
- Now we are talking of triples (X, d_X, μ_X) where X is a set, d_X a metric on X and μ_X a probability measure on X.
- These objects are called *measure metric spaces*, or mm-spaces for short.
- two mm-spaces X and Y are deemed equal or isomorphic whenever there exists an isometry $\Phi: X \to Y$ s.t. $\mu_Y(B) = \mu_X(\Phi^{-1}(B))$ for all (measurable) sets $B \subset Y$.

http://math.stanford.edu/~memoli