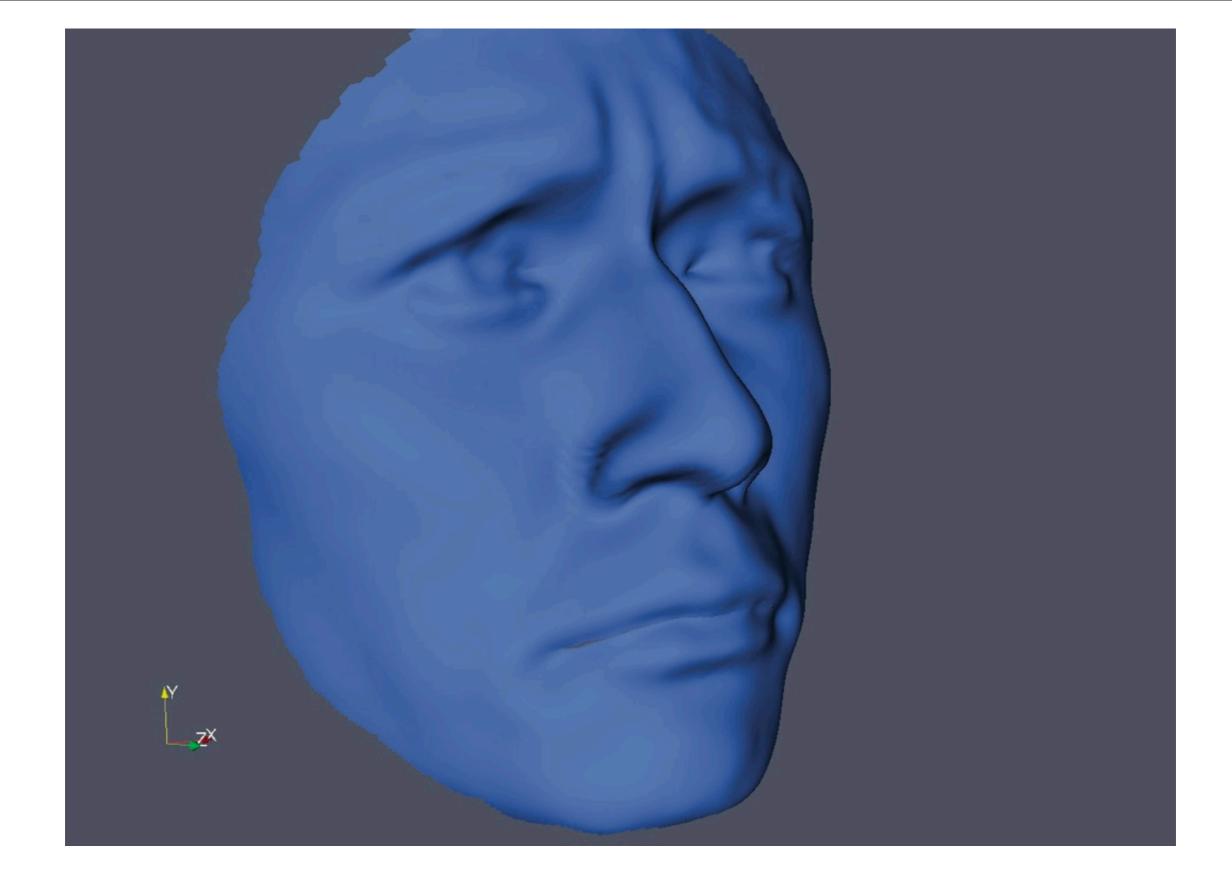
Shape Matching: A Metric Geometry Approach

Facundo Mémoli. CS 468, Stanford University, Fall 2008.



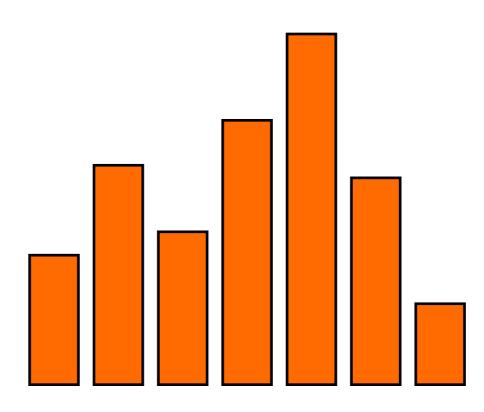
$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

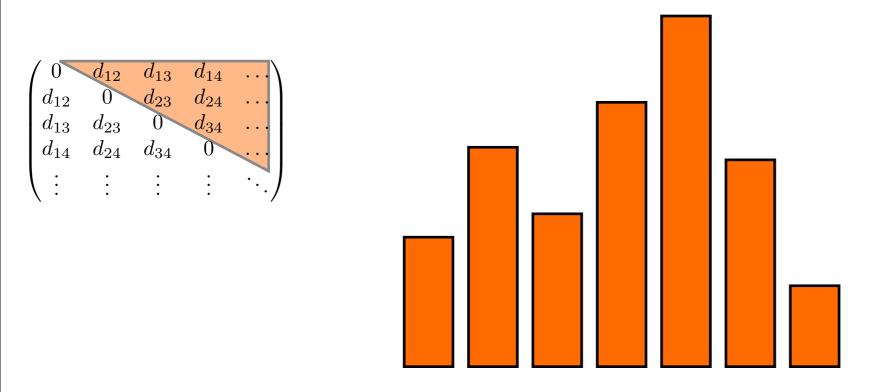
```
\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
```

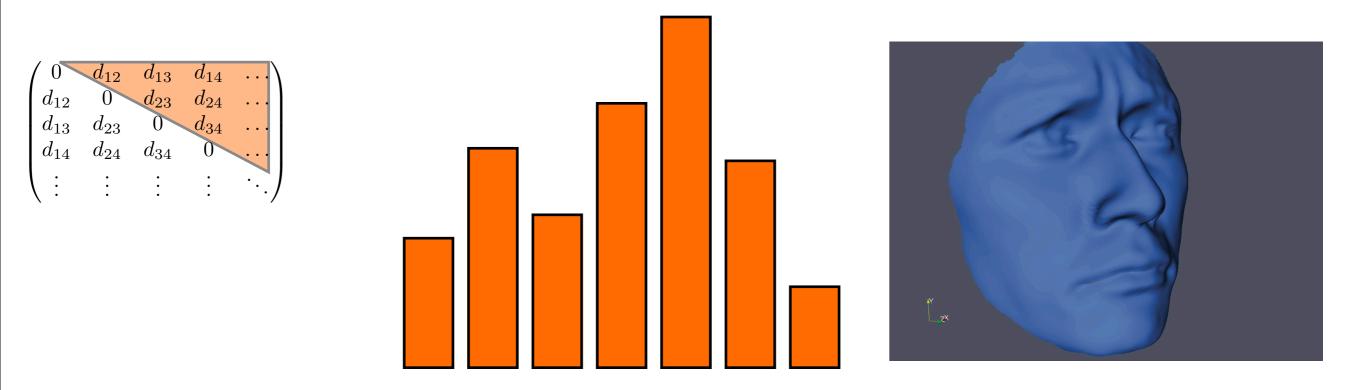
```
\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
```

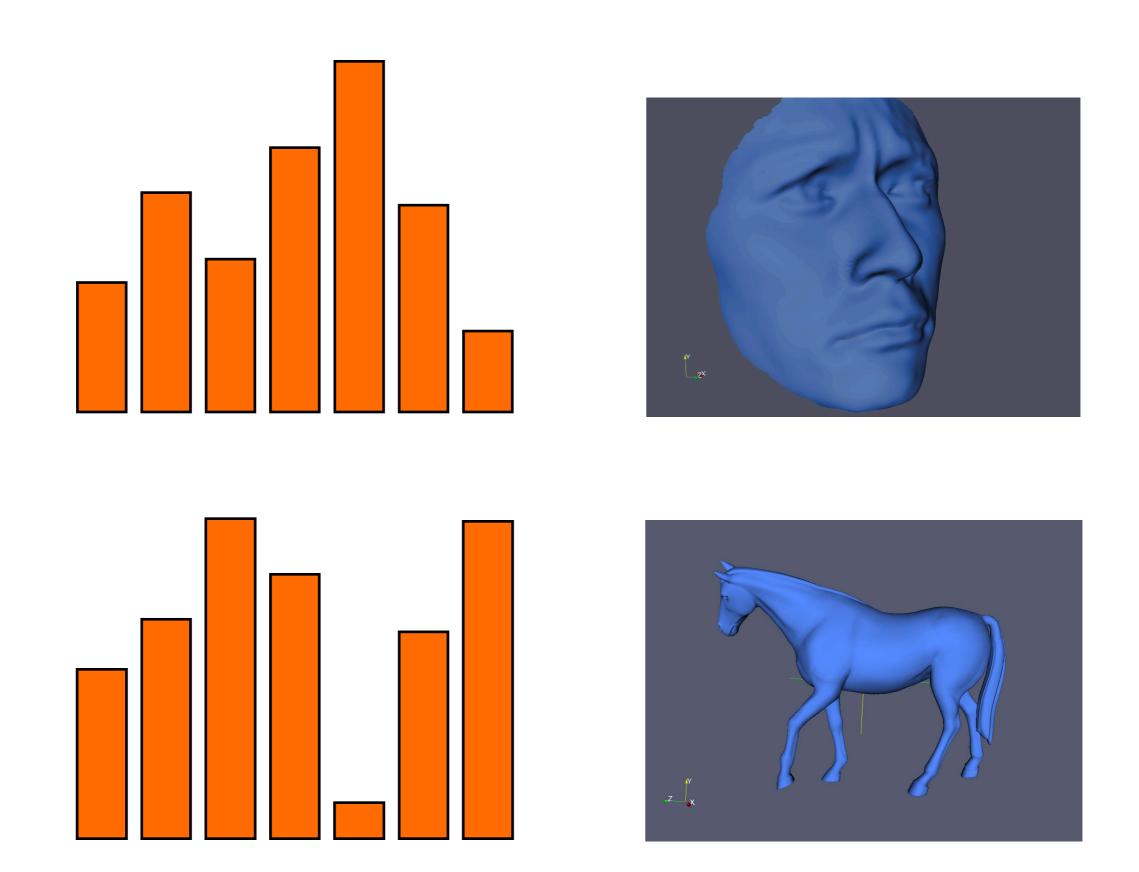
```
\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
```

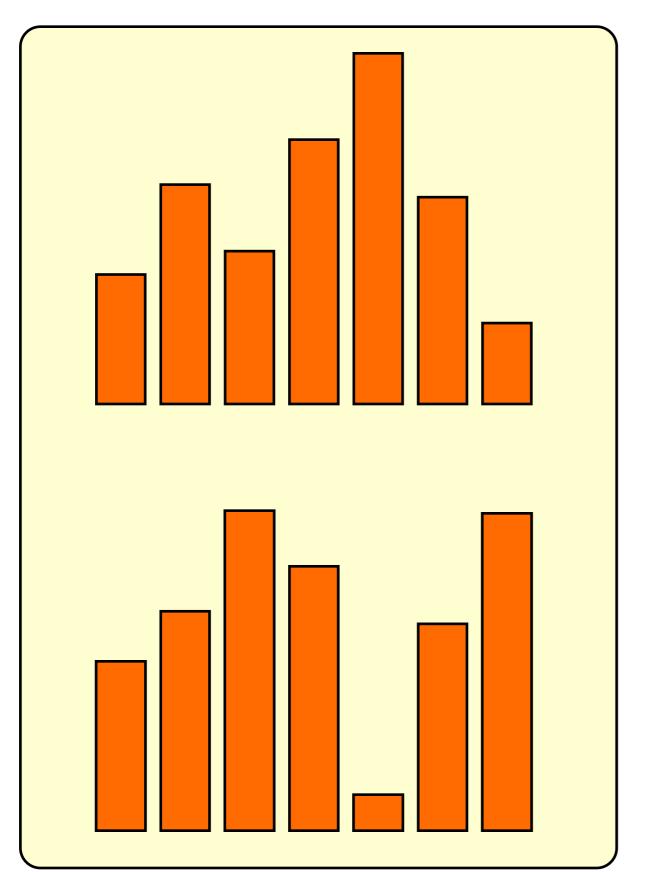
```
\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}
```

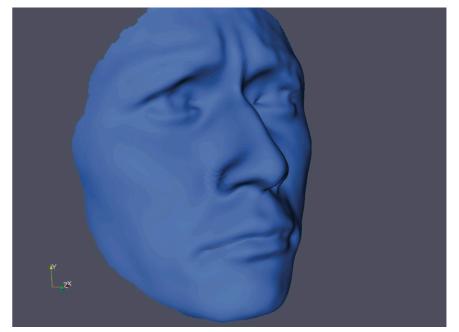


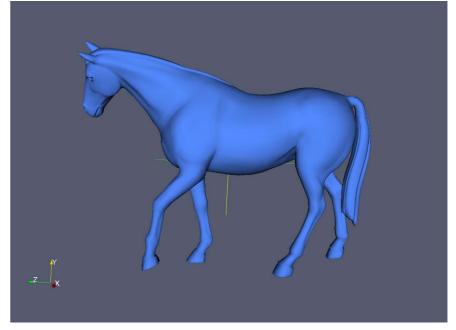






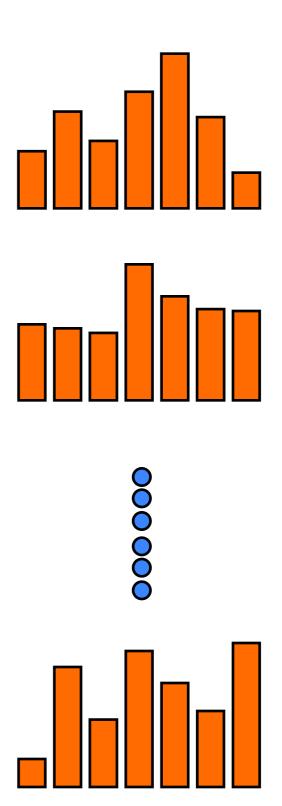






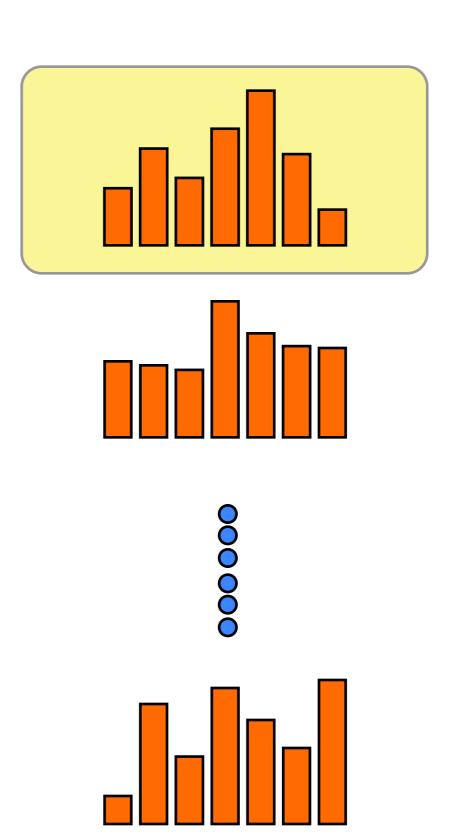
Shape Contexts

$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$



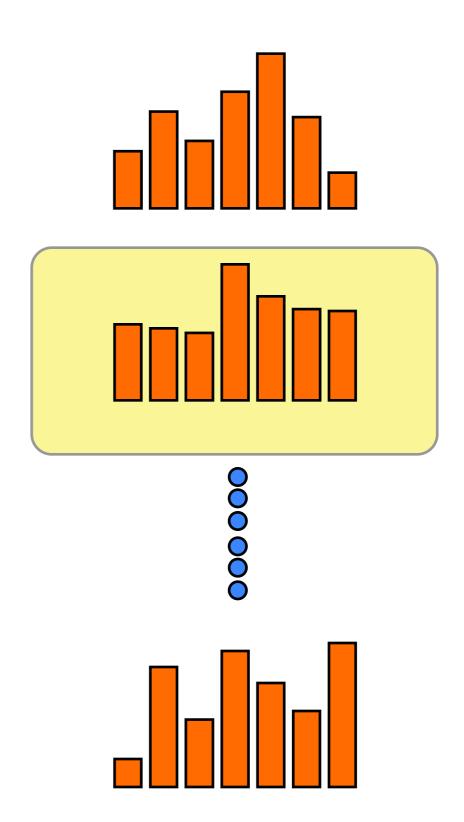
Shape Contexts

$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$



Shape Contexts

$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

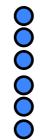


Hamza-Krim

$$\frac{\sum_{j} d_{1,j}}{N}$$

$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\frac{\sum_{j} d_{2,j}}{N}$$



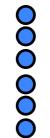
$$\sum_{j}$$
 N,j

Hamza-Krim

$$\frac{\sum_{j} d_{1,j}}{N}$$

$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\frac{\sum_j d_{2,j}}{N}$$



$$\underline{\sum_{j} \ \ N,j}$$

Hamza-Krim

$$\frac{\sum_{j} d_{1,j}}{N}$$

$$\begin{pmatrix} 0 & d_{12} & d_{13} & d_{14} & \dots \\ d_{12} & 0 & d_{23} & d_{24} & \dots \\ d_{13} & d_{23} & 0 & d_{34} & \dots \\ d_{14} & d_{24} & d_{34} & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\frac{\sum_{j} d_{2,j}}{N}$$

$$\sum_{j}$$
 N,j

Shapes as mm-spaces, [M07]

Remember:

 (X, d_X, μ_X)

- 1. Specify representation of shapes.
- 2. Identify invariances that you want to mod out.
- 3. Describe notion of isomorphism between shapes (this is going to be the zero of your metric)
- 4. Come up with a *metric* between shapes (in the representation of 1.)
- Now we are talking of triples (X, d_X, μ_X) where X is a set, d_X a metric on X and μ_X a probability measure on X.
- These objects are called *measure metric spaces*, or mm-spaces for short.
- two mm-spaces X and Y are deemed equal or isomorphic whenever there exists an isometry $\Phi: X \to Y$ s.t. $\mu_Y(B) = \mu_X(\Phi^{-1}(B))$ for all (measurable) sets $B \subset Y$.

Remember

Now, one works with **mm-spaces**: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are *iso-morphic* iff there exists isometry $\Phi: X \to Y$ s.t. $\mu_X(\Phi^{-1}(B)) = \mu_Y(B)$ for all measurable $B \subset Y$.



Shape signatures for mm-spaces Let (X, d_X, μ_X) be an mm-space.

• Shape Distributions [osada]: construct histogram of interpoint distances,

$$F_X: \mathbb{R} \to [0,1]$$

given by

$$t \mapsto \mu_X \otimes \mu_X \left(\left\{ (x, x') | d_X(x, x') \le t \right\} \right)$$

• Shape Contexts [BK,BK-1]: at each $x \in X$, construct histogram of $d_X(x,\cdot)$,

$$C_X: X \times \mathbb{R} \to [0,1]$$

given by

$$(x,t) \mapsto \mu_X (\{x' | d(x,x') \le t\})$$

• **Hamza-Krim** [HK-01]: Let $p \in [1, \infty]$. Then, at each $x \in X$ compute mean distance to rest of points,

$$s_{X,p}:X\to\mathbb{R}$$

$$x \mapsto \left(\int_X d_X^p(x, x') \mu_X(dx')\right)^{1/p}$$

Shape Distributions [osada]: construct histogram of interpoint distances,

$$F_X:\mathbb{R}\to[0,1]$$

given by

$$t \mapsto \mu_X \otimes \mu_X \left(\{ (x, x') | d_X(x, x') \leqslant t \} \right).$$

For each $t \in [0,1]$ let $A_t \subset X \times X$ be given by

$$A_t = \{(x, x') | d_X(x, x') \le t\}.$$

Then,

$$F_X(t) = \mu_X \otimes \mu_X(A_t) = \sum_{(x,x') \in A_t} \mu_X(x) \,\mu_X(x').$$

Note that

- $A_0 = \operatorname{diag}(A \times X) = \{(x, x) | x \in X\}$ and thus, $F_X(0) = \sum_{x \in X} (\mu_X(x))^2$. For uniform distribution, $F_X(0) = \frac{1}{\#X}$.
- For $T \ge \operatorname{diam}(X)$, $A_t = X \times X$. Hence, $F_X(T) = \sum_{(x,x') \in X \times X} \mu_X(x) \mu_X(x') = \sum_x \mu_X(x) \sum_{x'} \mu_X(x') = 1 \cdot 1 = 1$.

Shape Contexts [BK,BK-1]: at each $x \in X$, construct histogram of $d_X(x,\cdot)$,

$$C_X: X \times \mathbb{R} \to [0,1]$$

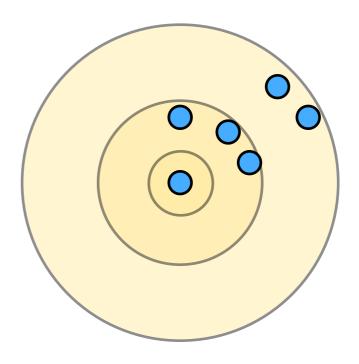
given by

$$(x,t) \mapsto \mu_X \left(\{x' | d(x,x') \leqslant t\} \right).$$

Clearly, $C_X(x,t) = \mu_X(\overline{B}(x,t))$, i.e. $C_X(x,t)$ is combined weights of all the points in X whose distance to x is less than or equal t. In the finite case:

$$C_X(x,t) = \sum_{x' \in \overline{B}(x,t)} \mu_X(x').$$

- $\bullet \ C_X(x,0) = \mu_X(x)$
- $C_X(x,t) = 1$ for $t \ge \operatorname{diam}(X)$.



Hamza-Krim (a.k.a. eccentricities) [Hamza-Krim] Let $p \in [1, \infty]$. Then, at each $x \in X$ compute mean distance to rest of points,

$$s_{X,p}:X\to\mathbb{R}$$

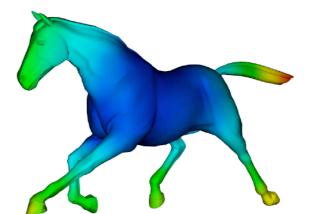
$$x \mapsto \left(\int_X d_X^p(x, x') \mu_X(dx') \right)^{1/p}$$

and for $p = \infty$ (if supp $[\mu_X] = X$),

$$x \mapsto \max_{x' \in X} d_X(x, x').$$

In the finite case, for each $x \in X$ and $p \in [0, \infty]$,

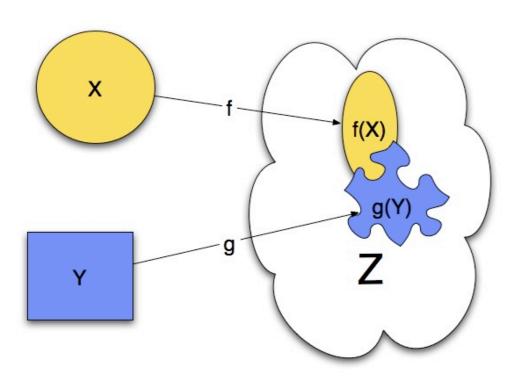
$$s_{X,p}(x) = \left(\sum_{x' \in X} d_X^p(x, x')\right)^{1/p}$$



GH distance

GH: definition

$$d_{\mathcal{GH}}(X,Y) = \inf_{Z,f,g} d_{\mathcal{H}}^{Z}(f(X),g(Y))$$



It is enough to consider $Z = X \sqcup Y$ and then we obtain

$$d_{\mathcal{GH}}(X,Y) = \inf_{d} d_{\mathcal{H}}^{(Z,d)}(X,Y)$$

Recall:

Proposition

Let (X, d) be a compact metric space and $A, B \subset X$ be compact. Then

$$d_{\mathcal{H}}(A,B) = \inf_{R \in \mathcal{R}(A,B)} ||d||_{L^{\infty}(R)}$$

Main Properties

1. Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces then

$$d_{\mathcal{GH}}(X,Y) \le d_{\mathcal{GH}}(X,Z) + d_{\mathcal{GH}}(Y,Z).$$

- 2. If $d_{\mathcal{GH}}(X,Y) = 0$ and (X,d_X) , (Y,d_Y) are compact metric spaces, then (X,d_X) and (Y,d_Y) are isometric.
- 3. Let $\mathbb{X}_n = \{x_1, \dots, x_n\} \subset X$ be a finite subset of the compact metric space (X, d_X) . Then,

$$d_{\mathcal{GH}}(X, \mathbb{X}_n) \leq d_{\mathcal{H}}(X, \mathbb{X}_n).$$

4. For compact metric spaces (X, d_X) and (Y, d_Y) :

$$\frac{1}{2} |\operatorname{diam}(X) - \operatorname{diam}(Y)| \leq d_{\mathcal{GH}}(X, Y)
\leq \frac{1}{2} \max (\operatorname{diam}(X), \operatorname{diam}(Y))$$

Stability

$$|d_{\mathcal{GH}}(X,Y) - d_{\mathcal{GH}}(X_n, Y_m)| \le r(X_n) + r(Y_m)$$

for finite samplings $X_n \subset X$ and $Y_m \subset Y$, where $r(X_n)$ and $r(Y_m)$ are the covering radii.

Critique

- Was not able to show connections with (sufficiently many) pre-existing appraches
- Computationally hard: currently only two attempts have been made:
 - [MS04,MS05] and [BBK06] only for surfaces.
 - [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
 - Full generality leads to a hard combinatorial optimization problem: QAP.

Critique

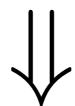
- Was not able to show connections with (sufficiently many) pre-existing appraches
- Computationally hard: currently only two attempts have been made:
 - [MS04,MS05] and [BBK06] only for surfaces.
 - [MS05] gives probabilistic guarantees for estimator based on sampling parameters.
 - Full generality leads to a hard combinatorial optimization problem: QAP.

Desiderata

- Obtain an L^p version of the GH distance that:
 - retains theoretical underpinnings
 - its implementation leads to easier (continuous, quadratic, with linear constraints) optimization problems
 - can be related to pre-existing approaches (shape contexts, shape distributions, Hamza-Krim,...) via lower/upper bounds.

goal

Gromov-Hausdorff



Gromov-Wasserstein

(Kantorovich, Rubinstein, Earth Mover's Distance, Mass Transportation)

correspondences and the Hausdorff distance

Definition [Correspondences]

For sets A and B, a subset $R \subset A \times B$ is a correspondence (between A and B) if and and only if

- $\forall a \in A$, there exists $b \in B$ s.t. $(a, b) \in R$
- $\forall b \in B$, there exists $a \in A$ s.t. $(a, b) \in R$

Let $\mathcal{R}(A, B)$ denote the set of all possible correspondences between sets A and B. Note that in the case $n_A = n_B$, correspondences are larger than bijections.

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $((r_{a,b})) \in \{0,1\}^{n_A \times n_B}$ s.t.

$$\sum_{a \in A} r_{ab} \ge 1 \ \forall b \in B$$

$$\sum_{b \in B} r_{ab} \ge 1 \ \forall a \in A$$

correspondences

Note that when A and B are finite, $R \in \mathcal{R}(A, B)$ can be represented by a matrix $((r_{a,b})) \in \{0,1\}^{n_A \times n_B}$ s.t.

$$\sum_{a \in A} r_{ab} \ge 1 \ \forall b \in B$$

$$\sum_{b \in B} r_{ab} \ge 1 \ \forall a \in A$$

Proposition

Let (X,d) be a compact metric space and $A,B\subset X$ be compact. Then

$$d_{\mathcal{H}}(A,B) = \inf_{R \in \mathcal{R}(A,B)} ||d||_{L^{\infty}(R)}$$

correspondences and measure couplings

Let (A, μ_A) and (B, μ_B) be compact subsets of the compact metric space (X, d) and μ_A and μ_B be **probability measures** supported in A and B respectively.

Definition [Measure coupling] Is a probability measure μ on $A \times B$ s.t. (in the finite case this means $((\mu_{a,b})) \in [0,1]^{n_A \times n_B}$)

- $\sum_{a \in A} \mu_{ab} = \mu_B(b) \ \forall b \in B$
- $\sum_{b \in B} \mu_{ab} = \mu_A(a) \ \forall a \in A$

Let $\mathcal{M}(\mu_A, \mu_B)$ be the set of all couplings of μ_A and μ_B . Notice that in the finite case, $((\mu_{a,b}))$ must satisfy $n_A + n_B$ linear constraints.

correspondences and measure couplings

Proposition $[(\mu \leftrightarrow R)]$

• Given (A, μ_A) and (B, μ_B) , and $\mu \in \mathcal{M}(\mu_A, \mu_B)$, then

$$R(\mu) := \operatorname{supp}(\mu) \in \mathcal{R}(A, B).$$

• König's Lemma. [gives conditions for $R \to \mu$]

$$d_{\mathcal{H}}(A, B) = \inf_{R \in \mathcal{R}(A, B)} ||d||_{L^{\infty}(R)}$$

$$\downarrow (R \leftrightarrow \mu)$$

$$d_{\mathcal{W},\infty}(A,B) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\infty}(R(\boldsymbol{\mu}))}$$

$$\Downarrow (L^{\infty} \leftrightarrow L^p)$$

$$d_{\mathcal{W},\mathbf{p}}(A,B) = \inf_{\mu \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\mathbf{p}}(A \times B,\mu)}$$

$$d_{\mathcal{H}}(A, B) = \inf_{R \in \mathcal{R}(A, B)} ||d||_{L^{\infty}(R)}$$

$$\Downarrow (R \leftrightarrow \mu)$$

$$d_{\mathcal{W},\infty}(A,B) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\infty}(R(\boldsymbol{\mu}))}$$

$$\Downarrow (L^{\infty} \leftrightarrow L^p)$$

$$d_{\mathcal{W},\mathbf{p}}(A,B) = \inf_{\mu \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\mathbf{p}}(A \times B,\mu)}$$

$$d_{\mathcal{H}}(A, B) = \inf_{R \in \mathcal{R}(A, B)} ||d||_{L^{\infty}(R)}$$

$$\Downarrow (R \leftrightarrow \mu)$$

$$d_{\mathcal{W},\infty}(A,B) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\infty}(R(\boldsymbol{\mu}))}$$

$$\Downarrow (L^{\infty} \leftrightarrow L^p)$$

$$d_{\mathcal{W},\mathbf{p}}(A,B) = \inf_{\mu \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\mathbf{p}}(A \times B,\mu)}$$

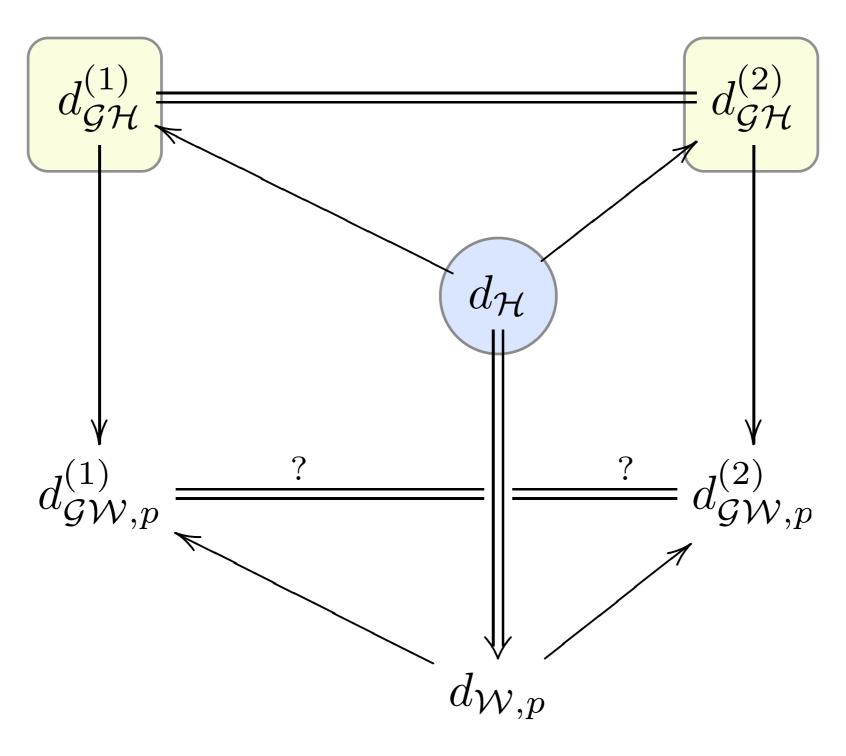
$$d_{\mathcal{H}}(A, B) = \inf_{R \in \mathcal{R}(A, B)} ||d||_{L^{\infty}(R)}$$

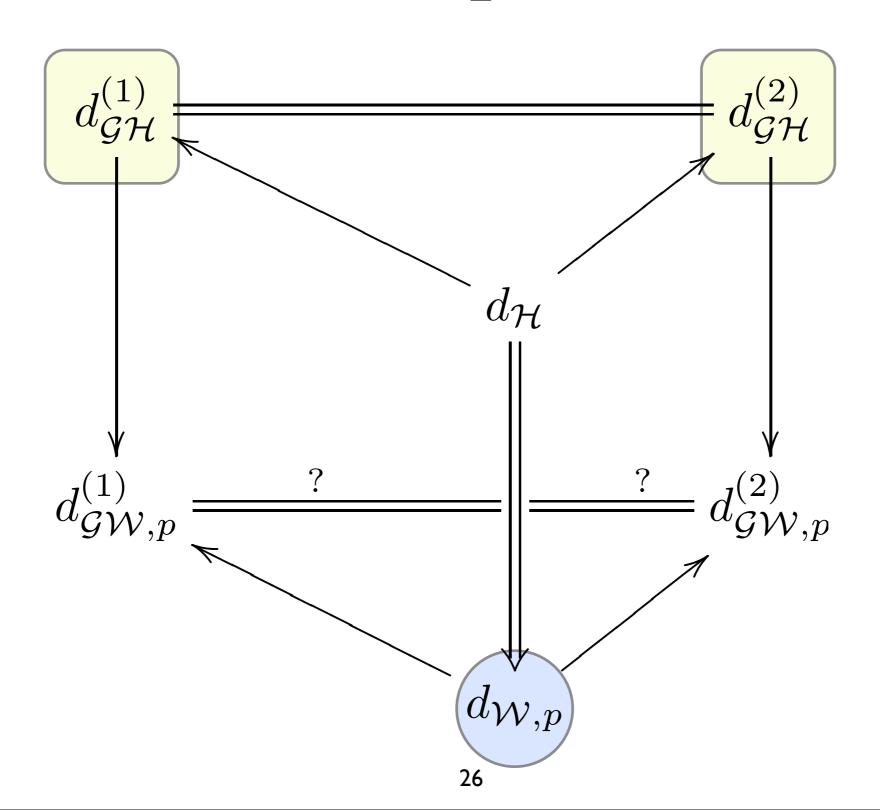
$$\downarrow (R \leftrightarrow \mu)$$

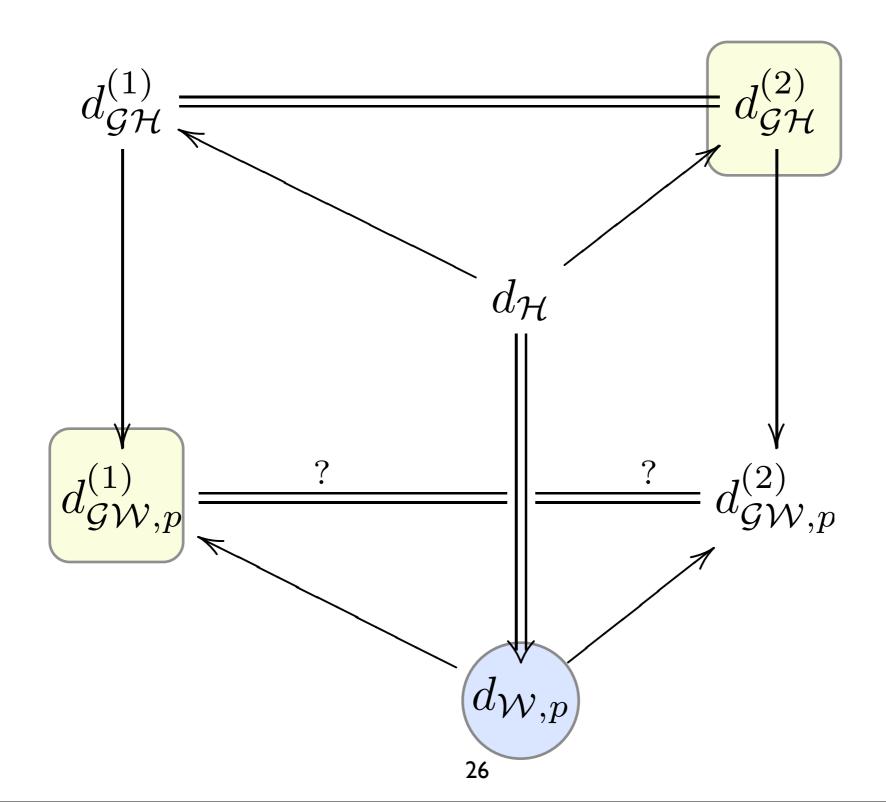
$$d_{\mathcal{W},\infty}(A,B) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\infty}(R(\boldsymbol{\mu}))}$$

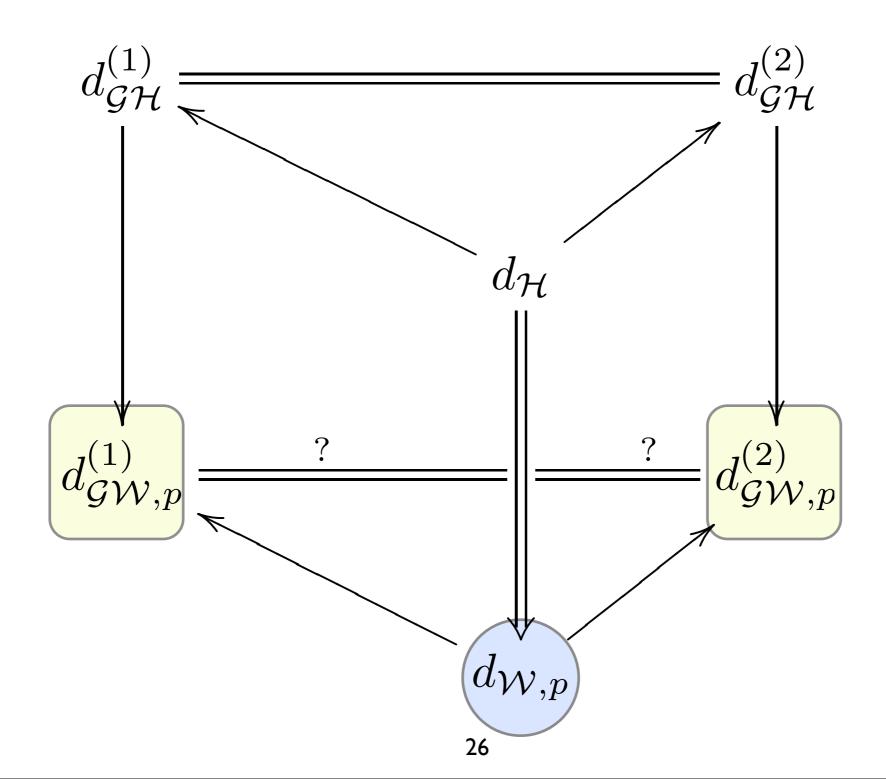
$$\Downarrow (L^{\infty} \leftrightarrow L^p)$$

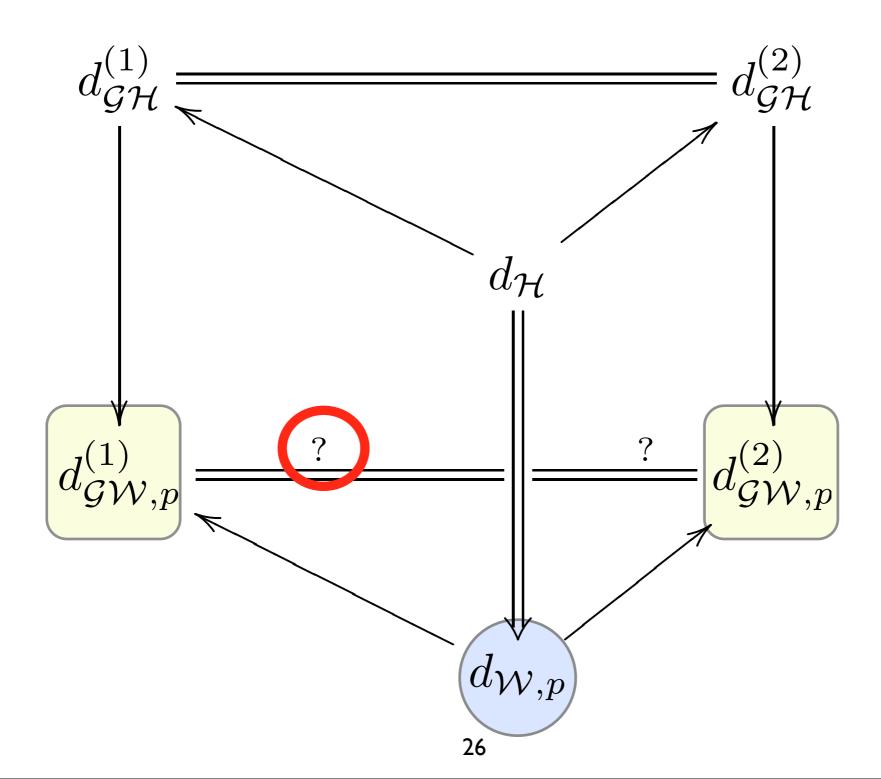
$$d_{\mathcal{W},\mathbf{p}}(A,B) = \inf_{\mu \in \mathcal{M}(\mu_A,\mu_B)} \|d\|_{L^{\mathbf{p}}(A \times B,\mu)}$$











$rac{\mathbf{GH}}{\mathbf{H}} = rac{\mathbf{GW}}{\mathbf{W}}$

correspondences and GH distance

The GH distance between (X, d_X) and (Y, d_Y) admits the following expression:

$$\left(\begin{array}{c} d_{\mathcal{GH}}^{(1)}(X,Y) = \inf_{d \in \mathcal{D}(d_X,d_Y)} \inf_{R \in \mathcal{R}(X,Y)} \|d\|_{L^{\infty}(R)} \end{array} \right)$$

where $\mathcal{D}(d_X, d_Y)$ is a metric on $X \sqcup Y$ that reduces to d_X and d_Y on $X \times X$ and $Y \times Y$, respectively.

$$\begin{array}{ccc}
X & Y \\
X & \left(\begin{array}{cc} d_X & \mathbf{D} \\ \mathbf{D}^T & d_Y \end{array}\right) = d
\end{array}$$

In other words: you need to **glue** X and Y in an optimal way. Note that **D** consists of $n_X \times n_Y$ positive reals that must satisfy $\sim n_X \cdot C_2^{n_Y} + n_Y \cdot C_2^{n_X}$ linear constraints.

Another expression for the GH distance

For compact spaces (X, d_X) and (Y, d_Y) let

$$d_{\mathcal{GH}}^{(2)}(X,Y) = \frac{1}{2} \inf_{R} \max_{(\mathbf{x},\mathbf{y}),(\mathbf{x'},\mathbf{y'})\in R} |d_X(\mathbf{x},\mathbf{x'}) - d_Y(\mathbf{y},\mathbf{y'})|$$

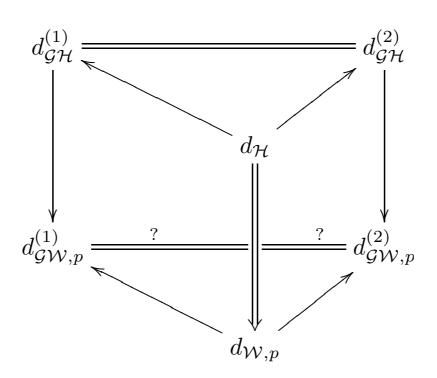
We write, compactly,

$$d_{\mathcal{GH}}^{(2)}(X,Y) = \frac{1}{2} \inf_{R} \|d_X - d_Y\|_{L^{\infty}(R \times R)}$$

Equivalence thm:

Theorem [Kalton-Ostrovskii, see [**BBI**]] For all X, Y compact,

Relaxing the notion of correspondence



$$d_{\mathcal{GH}}^{(1)} = d_{\mathcal{GH}}^{(2)}$$

$$\parallel$$

$$\inf_{d,R} \|d\|_{L^{\infty}(R)} \qquad \frac{1}{2} \inf_{R} \|d_X - d_Y\|_{L^{\infty}(R \times R)}$$

$$d_{\mathcal{GH}}^{(1)} = d_{\mathcal{GH}}^{(2)}$$

$$\parallel \qquad \qquad \parallel$$

$$\inf_{d,R} \|d\|_{L^{\infty}(R)} \qquad \frac{1}{2} \inf_{R} \|d_{X} - d_{Y}\|_{L^{\infty}(R \times R)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\inf_{d,\mu} \|d\|_{L^{p}(\mu)} \qquad \frac{1}{2} \inf_{\mu} \|d_{X} - d_{Y}\|_{L^{p}(\mu \otimes \mu)}$$

$$\parallel \qquad \qquad \parallel$$

$$d_{\mathcal{GW},p}^{(1)} \qquad d_{\mathcal{GW},p}^{(2)}$$

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are isomorphic iff there exists isometry $\Phi: X \to Y$ s.t. $\mu_X(\Phi^{-1}(B)) = \mu_Y(B)$ for all measurable $B \subset Y$.

The first option, proposed and analyzed by K.L Sturm [St06], reads

$$d_{\mathcal{GW},p}^{(1)}(X,Y) = \inf_{\mathbf{d} \in \mathcal{D}(d_X,d_Y)} \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \mathbf{d}^p(x,y) \boldsymbol{\mu}_{x,y} \right)^{1/p}$$

Now, one works with mm-spaces: triples (X, d, ν) where (X, d) is a compact metric space and ν is a Borel probability measure. Two mm-spaces are isomorphic iff there exists isometry $\Phi: X \to Y$ s.t. $\mu_X(\Phi^{-1}(B)) = \mu_Y(B)$ for all measurable $B \subset Y$.

The first option, proposed and analyzed by K.L Sturm [St06], reads

$$d_{\mathcal{GW},p}^{(1)}(X,Y) = \inf_{\mathbf{d} \in \mathcal{D}(d_X,d_Y)} \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \mathbf{d}^p(x,y) \boldsymbol{\mu}_{x,y} \right)^{1/p}$$

The second option reads [M07]

$$d_{\mathcal{GW},p}^{(2)}(X,Y) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \sum_{x',y'} |d_X(x,x') - d_Y(y,y')|^p \mu_{x,y} \mu_{x',y'} \right)^{1/p}$$

The **first** option,

$$d_{\mathcal{GW},p}^{(1)}(X,Y) = \inf_{\mathbf{d} \in \mathcal{D}(d_X,d_Y)} \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \mathbf{d}^p(x,y) \boldsymbol{\mu}_{x,y} \right)^{1/p}$$

requires $2(\mathbf{n_X} \times \mathbf{n_Y})$ variables and $\mathbf{n_X} + \mathbf{n_Y}$ plus $\sim \mathbf{n_Y} \cdot \mathbf{C_2^{n_X}} + \mathbf{n_X} \cdot \mathbf{C_2^{n_Y}}$ linear constraints. When p = 1 it yields a bilinear optimization problem.

Our **second** option,

$$d_{\mathcal{GW},p}^{(2)}(X,Y) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \sum_{x',y'} |d_X(x,x') - d_Y(y,y')|^p \boldsymbol{\mu}_{x,y} \boldsymbol{\mu}_{x',y'} \right)^{1/p}$$

requires $\mathbf{n_X} \times \mathbf{n_Y}$ variables and $\mathbf{n_X} + \mathbf{n_Y}$ linear constraints. It is a quadratic (generally non-convex :-() optimization problem (with linear and bound constraints) for all p.

Then one would argue for using $d_{\mathcal{GW},p}^{(2)}$.

The **first** option,

$$d_{\mathcal{GW},p}^{(1)}(X,Y) = \inf_{\mathbf{d} \in \mathcal{D}(d_X,d_Y)} \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \mathbf{d}^p(x,y) \boldsymbol{\mu}_{x,y} \right)^{1/p}$$

requires $2(\mathbf{n_X} \times \mathbf{n_Y})$ variables and $\mathbf{n_X} + \mathbf{n_Y}$ plus $\sim \mathbf{n_Y} \cdot \mathbf{C_2^{n_X}} + \mathbf{n_X} \cdot \mathbf{C_2^{n_Y}}$ linear constraints. When p = 1 it yields a *bilinear* optimization problem.

Our **second** option,

$$d_{\mathcal{GW},p}^{(2)}(X,Y) = \inf_{\boldsymbol{\mu} \in \mathcal{M}(\mu_X,\mu_Y)} \left(\sum_{x,y} \sum_{x',y'} |d_X(x,x') - d_Y(y,y')|^p \boldsymbol{\mu}_{x,y} \boldsymbol{\mu}_{x',y'} \right)^{1/p}$$

requires $\mathbf{n_X} \times \mathbf{n_Y}$ variables and $\mathbf{n_X} + \mathbf{n_Y}$ linear constraints. It is a quadratic (generally non-convex :-() optimization problem (with linear and bound constraints) for all p.

Then one would argue for using $d_{\mathcal{GW},p}^{(2)}$.

$$d_{\mathcal{GW},p}^{(2)} = \mathbf{D}_p$$

Numerical Implementation

The numerical implementation of the second option leads to solving a **QOP** with linear constraints:

$$\min_{U} \frac{1}{2} U^T \mathbf{\Gamma} U$$
s.t. $U_{ij} \in [0, 1], U\mathbf{A} = \mathbf{b}$

where $U \in \mathbb{R}^{n_X \times n_Y}$ is the *unrolled* version of μ , $\Gamma \in \mathbb{R}^{n_X \times n_Y \times n_X \times n_Y}$ is the unrolled version of $\Gamma_{X,Y}$ and \mathbf{A} and \mathbf{b} encode the <u>linear</u> constrains $\mu \in \mathcal{M}(\mu_X, \mu_Y)$.

This can be approached for example via gradient descent. The QOP is non-convex in general!

Initialization is done via solving one of the several *lower bounds* (discussed ahead). All these lower bounds lead to solving **LOP**s.

For details see [M07].

Can GW (1) be equal to GW (2)?

• Using the same proof as in the Kalton-Ostrovskii Thm., one can prove that

$$d_{\mathcal{GW},\infty}^{(1)} = d_{\mathcal{GW},\infty}^{(2)}.$$

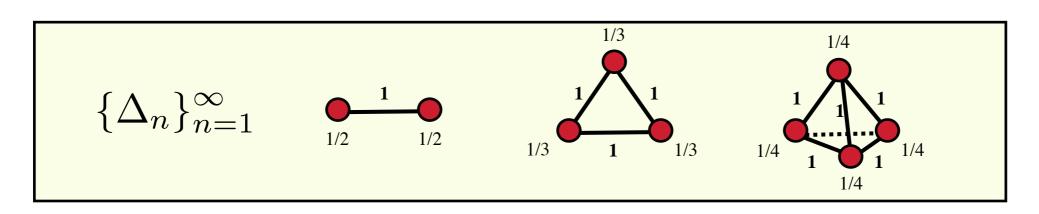
• Also, it is obvious that for all $p \ge 1$

$$d_{\mathcal{GW},p}^{(1)} \ge d_{\mathcal{GW},p}^{(2)}.$$

• But the equality does not hold in general. One counterexample is as follows: take $X = (\Delta_{n-1}, ((d_{ij} = 1)), (\nu_i = 1/n))$ and $Y = (\{q\}, ((0)), (1))$. Then, for $p \in [1, \infty)$

$$d_{\mathcal{GW},p}^{(1)}(X,Y) = \frac{1}{2} > \frac{1}{2} \left(\frac{n-1}{n}\right)^{1/p} = d_{\mathcal{GW},p}^{(2)}(X,Y)$$

- Furthermore, these two (tentative) distances are **not equivalent**!! This forces us to analyze them separately. The delicate step is proving that dist(X,Y) = 0 implies $X \simeq Y$.
- K. T. Sturm has analyzed GW (1).



Properties of $d_{\mathcal{GW},p}^{(2)}$

1. Let X, Y and Z mm-spaces then

$$d_{\mathcal{GW},p}(X,Y) \leq d_{\mathcal{GW},p}(X,Z) + d_{\mathcal{GW},p}(Y,Z).$$

- 2. If $d_{\mathcal{GW},p}(X,Y)=0$ then X and Y are isomorphic.
- 3. Let $\mathbb{X}_n = \{x_1, \dots, x_n\} \subset X$ be a subset of the mm-space (X, d, \cdot) . Endow \mathbb{X}_n with the metric d and a prob. measure n, then

$$d_{\mathcal{GW},p}(X,\mathbb{X}_n) \le d_{\mathcal{W},p}(\ ,\ _n).$$

- 4. $p \ge q \ge 1$, then $\mathbf{D}_p \ge \mathbf{D}_q$.
- 5. $\mathbf{D}_{\infty} \geq d_{\mathcal{GH}}$.

The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

$$2 \cdot d_{\mathcal{GW},p}^{(2)}(X,\{q\}) = \left(\int_{X \times X} d_X(x, x') \, \nu(dx) \nu(dx') \right)^{1/p} := \mathbf{diam}_p(X)$$

That is

$$d_{\mathcal{GW},p}^{(2)}(X,Y) \ge \frac{1}{2}|\mathbf{diam}_p(X) - \mathbf{diam}_p(Y)|$$

For example, when $X = S^n$ (spheres with uniform measure and usual intrinsic metric):

- $p = \infty$ gives $\operatorname{diam}_{\infty}(S^n) = \pi$ for all $n \in \mathbb{N}$
- p=1 gives $\operatorname{diam}_1(S^n)=\pi/2$ for all $n\in\mathbb{N}$
- p = 2 gives $diam_2(S^1) = \pi/\sqrt{3}$ and $diam_2(S^2) = \sqrt{\pi^2/2 2}$

Claim: When $X = S^d$, $s_{X,1}(x) = \pi/2$ for all $x \in S^d$ and $d = 1, 2, 3, \ldots$ Let $A; S^d \to S^d$ be the antipodal map. Then, for all $x_0 \in X$ and $x' \in X$,

$$d_X(x_0, x') + d_X(A(x_0), x') = \pi$$

•

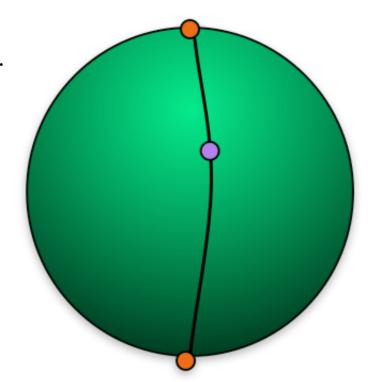
Then, integrating out the variable x' w.r.t. to μ_X ,

$$\pi = \int_X \left(d_X(x_0, x') + d_X(A(x_0), x') \right) \, \mu_X(dx') = \int_X d_X(x_0, x') \, \mu_X(dx') + \int_X d_X(A(x_0), x') \, \mu_X(dx')$$

and then by definition,

$$\pi = s_{X,1}(x_0) + s_{X,1}(A(x_0)) = \pi.$$

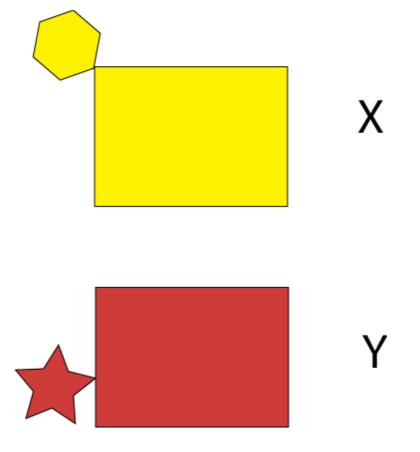
But by symmetry/homogeinity, $s_{X,1}(x_0)$ is independent of x_0 , hence the claim.



$rac{\mathbf{GH}}{\mathbf{H}} = rac{\mathbf{GW}}{\mathbf{W}}$

Gromov's Box distance

$$\underline{\square}_{\lambda}(X,Y) \simeq \inf\{\varepsilon > 0 | \exists X' \subset X, Y' \subset Y
\text{s.t.} \quad d_{\mathcal{GH}}(X',Y') \leq \varepsilon
\text{and} \quad \max(\mu_X(X\backslash X'), \mu_Y(Y\backslash Y')) \leq \lambda \cdot \varepsilon\}$$



Discussion

- Implementation is easy: Gradient descent or alternate opt.
- Solving lower bounds yields a seed for the gradient descent. These lower bounds are compatible with the metric in the sense that a layered recognition system is possible: given two shapes, (1) solve for a LB (this gives you a μ), if value small enough, then (2) solve for GW using the μ as seed for your favorite iterative algorithm.
- Easy extension to partial matching.
- Interest in relating GH/GW ideas to other methods in the literature. Interrelating methods is important also for applications: when confronted with N methods, how do they compare to each other? which one is better for the situation at hand?
- Latest developments:
 - Partial matching [M08-partial].
 - Euclidean case [M08-euclidean].
 - Persistent Topology based methods (Frosini et al., Carlsson et al.)
- No difference between continuous and discrete. Probability measures take care of the 'transition'.

http://math.stanford.edu/~memoli

Next Class:

- Other properties of \mathbf{D}_p
- Lower bounds for \mathbf{D}_p using shape distributions, eccentricities and shape contexts.

