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0 diz2 diz dia
diz2 0 daz daa
diz daog 0 dsyg
dia dosa d3a 0




Shape Contexts

(0 dio diz dia . )
diz2 0 daz daa

diz daog 0 dsyg

dia dosa d3a 0

4 )
IIlIIIl

. J




Shape Contexts

IIlIIIl
4 )
0 d d d
G 0 oy o ) ||I||||
8 Y

diz dos 0  dsqg
dig dog d3zg 0




Hamza-Krim

N

L7
2




Hamza-Krim

N

L7
2




Hamza-Krim

N

L7
2




Shapes as mm-spaces, (MOT (X ; dX y WX )

Remember:
. Specity representation of shapes.
. Identity invariances that you want to mod out.

. Describe notion of isomorphism between shapes (this is going to be the
zero of your metric)

. Come up with a metric between shapes (in the representation of 1.)

Now we are talking of triples (X, dx, ux) where X is a set, dx a metric
on X and px a probability measure on X.

These objects are called measure metric spaces, or mm-spaces for short.

two mm-spaces X and Y are deemed equal or isomorphic whenever there
exists an isometry ® : X — Y s.t. py(B) = ux(®1(B) for all (measur-
able) sets B C Y.




Remember

Now, one works with mm-spaces: triples (X, d,v) where (X, d) is a compact
metric space and v is a Borel probability measure. Two mm-spaces are 1so-
morphic iff there exists isometry @ : X — Y s.t. ux(® 1(B)) = py(B) for all
measurable B C Y.




Shape signatures for mm-spaces Let (X,dx,ux) be an mm-space.

e Shape Distributions [osada]: construct histogram of interpoint dis-
tances,

Fx :R — |0,1]
given by
t— px @ px ({(z,2)dx(z,2") < t})

e Shape Contexts [BK,BK-1]: at each x € X, construct histogram of

dX(ZC,'),
CX : X X R — [0,1]

given by

(#,t) = px ({o'| d(z,2") < t})

¢ Hamza-Krim [HK-01]: Let p € [1,00]. Then, at each z € X compute
mean distance to rest of points,

SX7pIX—>R

T (/X d%(ﬂf,w’)/ix(dw’)y/p




Shape Distributions [osada]: construct histogram of interpoint distances,
Fx :R —[0,1]

given by

to px @ px ({(a, )] dx (2, 2') < 1})

For each t € [0,1] let A; € X x X be given by
Ay = {(,2)|dx (2, 2') < 1},

Then,

Fx(t) = px @ux(A) = >, px(@)px(@).
(x,x")EA

Note that

e Ay = diag(A x X) = {(x,z)|z € X} and thus, Fx(0) = > _x(ux(x))?. For uniform distribution,
Fx(0) = 7%

o ForT > diam (X), A, = XxX. Hence, Fx (T) = >, snexxx #x (@) px (@) = 2., px () 2 px(2') =
1-1=1.




Shape Contexts [BK,BK-1]: at each z € X, construct histogram of dx (x, -),

Cx: X xR —[0,1]

given by

(z,t) — px ({2'|d(z,2") < t}).

Clearly, Cx(z,t) = px (B(z,t)), i.e. Cx(z,t) is combined weights of all the points in X whose distance to
x is less than or equal ¢. In the finite case:

Ox(mt)= 3 pxle)

x'€B(x,t)

o Cx(x,t) =1 for t > diam (X).




Hamza-Krim (a.k.a. eccentricities) [Hamza-Krim| Let p € [1,00]. Then, at each x € X compute
mean distance to rest of points,

and for p = oo (if supp [ux| = X),

r — maxdx(z,z').
z'eX

In the finite case, for each x € X and p € [0, 0],

sx,p(T) = (




GH distance




GH: definition

don(X,Y) = inf dfy(f(X).g(Y)

It is enough to consider Z = X LY and then we obtain
dgr(X,Y) = inf &7 (X,Y)

Recall:

Proposition

Let (X, d) be a compact metric space and A, B C X be compact.
Then

(A, B) RE%A’B)H | 2o (R)




Main Properties

@Let (X,dx), (Y,dy) and (Z,dz) be metric spaces then

dgH(Xa Y) < dgH(X7 Z) T dgH(Yv Z)

2. If dgn(X,Y) =0 and (X,dx), (Y,dy) are compact metric spaces, then
(X,dx) and (Y, dy ) are isometric.

4. For compact metric spaces (X,dx) and (Y, dy):

1
5 [diam (X ) — diam(Y)| < dgn(X,Y)

% max (diam(X ), diam(Y"))




Stability

’dgH(Xa Y) — dQH(Xna Ym)‘ < T(Xn) + T(Ym)

for finite samplings X,, C X and Y,, C Y, where r(X,) and r(Y,,) are the
covering radii.




Critique

e Was not able to show connections with (sufficiently many) pre-existing
appraches

e Computationally hard: currently only two attempts have been made:

— [MS04,MS05] and [BBKO06]| only for surfaces.

— [MSO05] gives probabilistic guarantees for estimator based on sam-
pling parameters.

— Full generality leads to a hard combinatorial optimization prob-

lem: QAP.




Critique

e Was not able to show connections with (sufficiently many) pre-existing
appraches

e Computationally hard: currently only two attempts have been made:

— [MS04,MS05] and [BBKO06]| only for surfaces.

— [MSO05] gives probabilistic guarantees for estimator based on sam-
pling parameters.

— Full generality leads to a hard combinatorial optimization prob-

lem: QAP.

Desiderata

e Obtain an L? version of the GH distance that:

— retains theoretical underpinnings

— its implementation leads to easier (continuous, quadratic, with linear
constraints) optimization problems

— can be related to pre-existing approaches (shape contexts, shape dis-

tributions, Hamza-Krim,..) via lower/upper bounds.
17




goal



Gromov-Hausdorft

|

GGromov-Wasserstein

(Kantorovich, Rubinstein, Earth Mover’s Distance, Mass Transportation)




correspondences
and the Hausdortt distance

Definition [Correspondences]

For sets A and B, a subset R C A x B is a correspondence (between A and B)
if and and only if

o Vace A, there exists b € B s.t. (a,b) € R

e Vb€ B, there exists a € A s.t. (a,b) € R

Let R(A, B) denote the set of all possible correspondences between sets
A and B. Note that in the case ng = npg, correspondences are larger than
bijections.




correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
matrix ((rqp)) € {0,1}"4%"5B s.t.

Zrab21 Vb € B

aEA

ZTQ(,Z 1 Vaec A
beB




correspondences

Note that when A and B are finite, R € R(A, B) can be represented by a
matrix ((rqp)) € {0,1}"4%"5B s.t.

Zrab21 Vb € B

aEA

Y rap>1VacA

beB

s

Proposition
Let (X,d) be a compact metric space and A, B C X be compact. Then

n(AB) = i lldl~r)




correspondences and
measure couplings

Let (A, na) and (B, up) be compact subsets of the compact metric space (X, d)
and u4 and up be probability measures supported in A and B respectively.

Definition [Measure coupling| Is a probability measure ;s on A x B s.t. (in
the finite case this means ((uq)) € [0, 1]7A%"5)

° ZaeA Uab = ,LLB(b) Vbe B

° ZbeB Uab = ,uA(CL) Va € A

Let M(ua,pp) be the set of all couplings of ua and up.
Notice that in the finite case, ((q,5)) must satisfy na + np linear constraints.

23



correspondences and
measure couplings

Proposition [(u < R)]

e Given (A,ua) and (B, ug), and u € M(pa, 1p), then

R(p) := supp(p) € R(A, B).

e Konig’s Lemma. [gives conditions for R — ]




Wasserstein distance

dn (A, B) 36713%2,3) |d|| L= (Rr)

| (R p)

dyw, (A, B) = inf  ||d||re(r()

pneM(pa,ns)

b (L o L17)

B — lnf d P(AX B,
dw (A, B) ueMmA,uB)H | Lr(Ax B,
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correspondences and
GH distance

The GH distance between (X, dx) and (Y, dy ) admits the following expression:

{dg;(x,Y)— inf inf yd\Lm<R)J

deD(dx,dy) RER(X,Y)

where D(dx,dy) is a metric on X LY that reduces to dx and dy on X x X
and Y X Y, respectively.

X Y

X (dx DY _,
Yy \DT dy )~

In other words: you need to glue X and Y in an optimal way. Note that
D consists of nx X ny positive reals that must satisfy ~ nx - C3Y + ny - C5*
linear constraints.




Another expression for
the GH distance

For compact spaces (X,dx) and (Y, dy) let

dg%(X Y) = f max dx (z,7") — dy (y,y")

1.
2 R (z,y),(z",y')ER

We write, compactly,

i6:9) ’
(X

1.
[ A (X,Y) = 5 it fldx — dy L= (rxr) ]




Equivalence thm:

Theorem |Kalton-Ostrovskii, see [BBI]
For all X,Y compact,

(1)
dQH

infy R HdHLOO(R)




Relaxing the notion of
correspondence

d

2)
H

1) (
I \ / dg
dx

? (2)
dQ’W,p




(1) (2)
dgiy dg1

infy g ||d]| o (r) 3 infR |dx — dy || (rxr




(1)
dQH

infy R HdHLOO(R)

Y
infg ,, ||d|| e

(1)
dQW,p




Now, one works with mm-spaces: triples (X, d,v) where (X, d) is a compact
metric space and v is a Borel probability measure. Two mm-spaces are iso-
morphic iff there exists isometry ® : X — Y s.t. ux(® 1(B)) = uy(B) for all
measurable B C Y.

The first option, proposed and analyzed by K.L Sturm [St06], reads

deD(dx ,dy ) peM(px,py)

1/p
dé’lgv,p (X,Y) = inf inf (Z dP (x, y),Lny)
z,y




Now, one works with mm-spaces: triples (X, d,v) where (X, d) is a compact
metric space and v is a Borel probability measure. Two mm-spaces are iso-
morphic iff there exists isometry @ : X — Y s.t. ux(® 1(B)) = py (B) for all
measurable B C Y.

The first option, proposed and analyzed by K.L Sturm [St06], reads

1/p
dg@v’p (X,Y) = inf inf (Z dP (x, y),ux,y>
z,y

deD(dx ,dy ) peM(px py)

The second option reads [MOT]

1/p

2 . ~ ~
Ao (X.Y) = inf (S dx(x,2)) = dy (5,4 )P ey e,y
peEM(pxopy) \ 0 "




The first option,

1/p
AV (XY)=  inf inf a .
ow.p( X, Y) sept et (; (@, y) 1t y>

requires 2(nx X ny) variables and nx + ny plus ~ ny - C5* + nx - C5¥
linear constraints. When p = 1 it yields a bilinear optimization problem.

Our second option,

1/p

A2, (X, Y)= i S5 N (,2) = dy (4.5 P oyt

/ /

£,y T,y

requires nx X ny variables and nx + ny linear constraints. It is a quadratic
(generally non-convex :-( ) optimization problem (with linear and bound con-
straints) for all p.

(2)

Then one would arque for using dgw,p°

36
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Numerical Implementation

The numerical implementation of the second option leads to solving a QOP
with linear constraints:

ming; %UTI‘U
S.t. Uij S [O, 1], UA=Db

where U € R™"X*"Y ig the unrolled version of u, I' € R"x X"y XX XY jg the un-
rolled version of I"x y and A and b encode the linear constrains u € M(ux, py ).

This can be approached for example via gradient descent. The QOP is
non-convex in general!

Initialization is done via solving one of the several lower bounds (discussed
ahead). All these lower bounds lead to solving LOPs.

For details see [MOT7].




Can GW (1) be equal to GW (2)?

e Using the same proof as in the Kalton-Ostrovskii Thm., one can prove

that 0 2
dQW,oo — dQW,oo'

Also, it is obvious that for all p > 1

(1) (2)
di,p > di,p‘

But the equality does not hold in general. One counterexample is as fol-
lows: take X = (A,—1,((di; = 1)), (v; = 1/n)) and Y = ({¢}, ((0)), (1)).
Then, for p € [1, 00)

4D (X V) = L(n—1 1/p—d(2) XY
gW,p( g )_ 5 n — gw,p( ) )

Furthermore, these two (tentative) distances are not equivalent!! This

forces us to analyze them separately. The delicate step is proving that
dist(X,Y) = 0 implies X ~ Y.

K. T. Sturm has analyzed GW (1).

1/3
{A }OO 1 1 1
nJfn=1 A
172 172 13 1 13 1




Properties of dg)z\,’ .

1. Let X,Y and Z mm-spaces then

di,p (X7 Y) < dQW,p (X7 Z) T dQW,p(Yv Z)'

. If dgyw »(X,Y) =0 then X and Y are isomorphic.

. Let X,, ={z1,...,2,} C X be a subset of the mm-space (X,d, ).
Endow X,, with the metric d and a prob. measure ,,, then

dQW,p(Xa Xn) < dW,p( 9 n)

. p>q>1, then D, > D,.

. Do, > dan.




The parameter p is not superfluous

The simplest lower bound one has is based on the triangle inequality plus

2.2, (X {q}) = ( /X XXdX(:U,:E’)V(dx)u(d:n’))l/p = diam, (X)

That is .
Ay (X, Y) > 5 |diam,, (X) — diam,(Y)

For example, when X = S™ (spheres with uniform measure and usual in-
trinsic metric):

e p = o0 gives diam,,(S™) =x for alln € N

e p =1 gives diam;(S") =n/2 for all n € N

e p =2 gives diamy(S?t) = 7/v/3 and diamy(5?) = \/72/2 — 2




Claim: When X = 5% sy (z) =n/2 for all z € S? and d = 1,2,3,.... Let 4;5% — S? be the antipodal
map. Then, for all xg € X and 2’ € X,

dx(zg,z") +dx(A(zg),2') ==

Then, integrating out the variable 2’ w.r.t. to ux,

= f (dx (20, 2") + dx (A(xo), 2)) pix (da’) = f dy (20, 7) pix (dz') + f dy (A(zo). 2') pix (da’)
X X X

and then by definition,
™= SX,1($0) + SX,l(A(iljo)) = T.

But by symmetry/homogeinity, sx 1(xo) is independent of z(, hence the claim.







Gromov’s Box distance

O0,(X,Y) ~ infle>0/3X'CcX, Y CY
S.t. dgH(X,, Y/) <e¢€
and max(ux (X\X'), uy (Y\Y")) < X-¢}

*- '




Discussion

Implementation is easy: Gradient descent or alternate opt.

Solving lower bounds yields a seed for the gradient descent. These lower
bounds are compatible with the metric in the sense that a layered recog-
nition system is possible: given two shapes, (1) solve for a LB (this gives
you a ), if value small enough, then (2) solve for GW using the u as seed
for your favorite iterative algorithm.

Easy extension to partial matching.

Interest in relating GH/GW ideas to other methods in the literature. In-
terrelating methods is important also for applications: when confronted
with N methods, how do they compare to each other? which one is better
for the situation at hand?

Latest developments:

— Partial matching [MO08-partial].
— Euclidean case [M08-euclidean].

— Persistent Topology based methods (Frosini et al., Carlsson et al.)

No difference between continuous and discrete. Probability measures take
care of the 'transition’.

http://math.stanford.edu/"memoli
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Next Class:

e Other properties of D,

e Lower bounds for D, using shape distributions,
eccentricities and shape contexts.




http://math.stanford.edu/"memoli




