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Motivation

• Shape Distributions of [osada]

• Distribution of different functions on 
randomly selected points considered.

• Different dissimilarity measures between 
distributions also considered.



Motivation

• Comparing the distribution of pairwise 
distances w.r.t L1 norm appears to be a 
good classifier.

• This paper provides some reasoning on 
why this might be the case: When the 
distribution of pairwise distances are 
identical, then the points in general position 
are the same up to a rigid transformation.



Preliminaries

• General Position

• Rigid Transformation

• Distribution of Pairwise Distances

• Reconstructibility from Pairwise didstances



General Position

• As defined by Matousek:

• Set of points not in general position has 
measure zero.

Let a set of n points in Rd be specified by a vector t = (t1, t2, . . . , tm) for
m = dn. Then, a general position condition is a condition that can be expressed
as

∧
i pi(t) != 0 for a countable number of polynomials pi.



Rigid Transformation

• Definition:

Let p be a point in Rm. Then a rigid transformation is a function R : Rm →
Rm that can be written as R(p) = Mp + T where M is an orthogonal m-by-m
matrix and T is a column vector in Rm.



Pairwise Distances

• Distribution:

• Reconstructibility:

Given a set of points P , let the distribution of pairwise distances d(P ) be
the multiset {||pi − pj ||}i<j .

We say that p1, . . . , pn ∈ Rm is reconstructible from pairwise distances if for
every q1, . . . , qn ∈ Rm with the same distribution of pairwise distances, there
exists a rigid transformation R and a permutation π of {1, . . . , n}, such that
P (pi) = qπ(i) for every i ∈ 1, . . . , n.



Folklore Lemma

• Tricky to work with rigid transformations 
directly.

• Compare distance matrices instead.

• Folklore Lemma:

Let p1, . . . , pn and q1, . . . , qn be points in Rm. If ||pi − pj || = ||qi − qj ||
for every i, j in 1, . . . , n, then there exists a rigid transformation R such that
R(pi) = qi for all i.



Folklore Lemma

• Proof:
Let xi = pi − pn and yi = qi − qn for i = 1, . . . , n. We claim that 〈xi, xj〉 =

〈yi, yj〉 for all i, j. To see this, we have the following calculation:

〈xi, xj〉 = 〈pi − pn, pj − pn〉

=
〈pi − pn, pi − pn〉 + 〈pj − pn, pj − pn〉 − 〈pi − pj , pi − pj〉

2

=
||pi − pn|| + ||pj − pn|| − ||pi − pj ||

2

=
||qi − qn|| + ||qj − qn|| − ||qi − qj ||

2

=
〈qi − qn, qi − qn〉 + 〈qj − qn, qj − qn〉 − 〈qi − qj , qi − qj〉

2
= 〈qi − qn, qj − qn〉 = 〈yi, yj〉

Now, let X = [x1, · · · , xn] and Y = [y1, · · · , yn]. We have shown above
that XT X = Y T Y . Now, XT X is symmetric and positive semidefinite, and
hence can be written as QΛQT for an orthogonal Q and a non-negative diagonal
matrix Λ. Since Λ, is non-negative, we can write XT X = Y T Y = QΛ1/2Λ1/2QT .
Therefore, using the singular value decomposition, we can write X as UXΛ1/2QT

and Y as UY Λ1/2QT for orthogonal UX and UY . Then, we can write Y = MX
for orthogonal M = UY UT

X . Moreover, it is easy to verify that Mxi = yi

for i = 1, . . . , n. To finish the proof, we note that M(pi − pn) = qi − qn or
qi = Mpi + qn − Mpn so there is a rigid transformation from pi to qi with the
orthogonal matrix M and translation vector qn − Mpn.



Digression: 
Counterexample

• 1D Counterexample:

• 2D Counterexample:

P = {0, 1, 4, 10, 12, 17} Q = {0, 1, 8, 11, 13, 17}

It can be verified that the distribution of distances is the multiset:

d(P ) = d(Q) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17}



Main Idea

• With Folklore Lemma in mind, show that if 
two point sets have the same distribution 
of pairwise distances, they have the same 
distance matrices up to a relabeling of the 
points.



Some Notation

• Convention:

• Corollary:

Let P = {p1, . . . , pn} be a labeled set of n points. Then we let dP : P → R
be defined as dP ({i, j}) = ||pi − pj ||2.

If n-point configurations P and Q have the same distribution of distances,
then there exists a permutation φ of P such that dP (φ({i, j})) = dQ({i, j}) for
all {i, j} ∈ P.



A Weaker Result

• Proof:

Let P be a configuration of n points.Then, there exists neighborhoods of pi

such that if Q if a configuration of n points with qi in the neighborhood of pi

and having the same distribution of distances as P , then P and Q are the same
up to a rigid transformation and a relabeling of the points.

Suppose for the purpose of contradiction that there exists a sequence of
configurations {Qk}∞k=1 converging to P such that none of Qk can be mapped
to P via rigid transformation and relabeling, but there exists a sequence of
permutations {φk}∞k=1 such that dP (φk({i, j})) = dQk({i, j}). Since there are
finitely many permutations φk, we can pick φ1, for instance, and let {Rl}∞l=1 be
the subsequence of {Qk}∞k=1 where φk = φ1. Then, taking the limit |→∞ , we
have dP (φ1({i, j})) = liml→∞ dRl({i, j}). Since {Rl}∞l=1 converges to P , we then
have dP (φ1({i, j})) = dP ({i, j}). But then, we have dP ({i, j}) = dQk({i, j}) and
by the Folklore Lemma, there is a rigid transformation from P to Qk, so we
have a contradiction.



Relabelings

• Corollary:

• We want to show most point sets with the 
same distribution of distances have a 
relabeling.

A permutation φ of P is a relabeling if there exists a permutation π of
{1, . . . , n} such that φ({i, j}) = {π(i), π(j)}.

If there exists a relabeling φ of P such that dP (φ({i, j})) = dQ({i, j}), then
there is a permutation π of {1, . . . , n} such that pπ(1), . . . , pπ(n) has the same
distance matrix as q1, . . . qn, and therefore, by the Folklore Lemma, there is a
rigid transformation from pπ(1), . . . , pπ(n) to q1, . . . qn.



Key Lemma

• Proof:

Suppose n != 4. Then a permutation φ of P is a relabeling if and only if for
all pairwise distinct indices i, j, k we have φ({i, j}) ∩ φ({i, k}) != ∅.

For every n ≤ 3, every φ is a relabeling and φ({i, j})∩φ({i, k}) #= ∅. There-
fore, we may assume that n ≥ 5. The only if part of the statement is clear by
the definition of a relabeling, so we will show the if direction.

Suppose we have φ a permutation of P such that for all pairwise distinct
indices i, j, k we have φ({i, j}) ∩ φ({i, k}) #= ∅. We note that since φ is a
permutation, the intersection must then contain only one element. Then, we
argue that for i, j, k, l pairwise distinct, φ({i, j}) ∩ φ({i, k}) ∩ φ({i, l}) #= ∅.
Suppose otherwise. Then, we can write φ({i, j}) = {a, b}, φ({i, k}) = {a, c},
and φ({i, l}) = {b, c}. Now, since we have more than 4 points, we can choose m
distinct from i, j, k, l. φ({i, m}) must intersect {a, b}, {a, c}, and {b, c}. Since
φ({i, m}) only has two elements, it must be one of the sets {a, b}, {a, c}, and
{b, c}, but then that would violate φ being a permutation. Therefore, φ({i, j})∩
φ({i, k}) ∩ φ({i, l}) #= ∅.

Then if we fix an i and choose any distinct j, k, φ({i, j}) ∩ φ({i, k}) must
contain an distinct element a and the above shows that a belongs to any φ({i, l})
where l is distinct from i, j, k. Therefore

⋂
l !=i φ({i, l}) = a and we can define

the map σ from {1, . . . , n} to itself where σ(i) = a.
To show that σ is a permutation, we simply need to show that it is injective.

To do this, we let Mi be the set of all pairs with i in them. Then, φ(Mi) ⊆ Mσ(i).
But φ is a permutation and |Mi| = |Mσ(i)| so therefore φ(Mi) = Mσ(i). Now
consider i, j with σ(i) = σ(j). Then, Mσ(i) = Mσ(j) so φ(Mi) = φ(Mj). But φ
is a permutation so Mi = Mj and therefore i = j so σ is injective.

Now, consider φ({i, j}). By the above discussion, it contains both σ(i) and
σ(j), so φ({i, j}) must be {σ(i), σ(j)}. Since σ is a permutation, φ is therefore
a relabeling.



4 Points on a Plane
The proof that most point configurations are reconstructible from pair-

wise distances relies on a certain determinant that is zero when four points
pi, pj , pk, pl lie on a plane:

det




a b c
b d e
c e f



 = 0

where a = −2dP ({i, l}), b = dP ({i, j})−dP ({i, l})−dP ({j, l}), c = dP ({i, k})−
dP ({i, l})−dP ({k, l}), d = −2dP ({j, l}), e = dP ({j, k})−dP ({j, l})−dP ({k, l})
and f = −2dP ({k, l}).

This determinant can be expanded as a polynomial:

g(U, V, W, X, Y, Z) = 2U2Z + 2UV X − 2UV Y − 2UV Z − 2UXW − 2UXZ+

2UY W − 2UY Z − 2UWZ + 2UZ2 + 2V 2Y − 2V XY−
2V XW + 2V Y 2 − 2V Y W − 2V Y Z + 2V WZ + 2X2W−
2XY W + 2XY Z + 2XW 2 − 2XWZ

where U = dP ({i, j}), V = dP ({i, k}), W = dP ({i, l}), X = dP ({j, k}),
Y = dP ({j, l}) and Z = dP ({k, l}).



Main Result

• Proof:

Let n ≥ 5 and P be a configuration of n points in R2. Suppose for choices of
indices a, b, c, d, e, f, g, h, i, j, k such that the pairs U = {a, b}, V = {d, e}, W =
{f, g}, X = {h, i}, Y = {j, k}, Z = {a, c} are distinct, we have:

g(dP (U), dP (V ), dP (W ), dP (X), dP (Y ), dP (Z)) "= 0

then P is reconstructible from pairwise distances.

Suppose that Q is an n-point configuration in R2 with the same distribution
of distances as P . Then, there exists a permutation φ such that dQ({i, j}) =
dP (φ({i, j})) for all i != j. We then try to show that φ−1 is a relabeling, and
thus φ is also a relabeling.

Now pick any pairwise distinct indices r, s, t, u. Now since qr, qs, qt, qu lie on
a plane,

g(dQ({r, s}), dQ({r, t}), dQ({r, u}), dQ({s, t}), dQ({s, u}), dQ({t, u})) = 0

But then, it follows that

g(dP (φ({r, s})), dP (φ({r, t})), dP (φ({r, u})), dP (φ({s, t})), dP (φ({s, u})), dP (φ({t, u}))) = 0

Therefore, it follows that φ({r, s}) and φ({t, u}) are disjoint, otherwise the pairs
would satisfy the conditions of the U, V, W, X, Y, Z stated above and

g(dP (U), dP (V ), dP (W ), dP (X), dP (Y ), dP (Z)) != 0

so we have show that φ maps disjoint sets {r, s} and {t, u} to disjoint sets. We
take the contrapositive and note that if φ({r, s}) and φ({t, u}) intersect, then
{r, s} and {t, u} also necessarily intersect. Thus, for all i, j, k we have

φ−1({i, j}) ∩ φ−1({i, k}) != ∅

and hence φ−1 is a relabeling. But then there exists a permutation π of
{1, . . . , n} such that φ−1({i, j}) = {π(i), π(j)}. Then, clearly, φ({i, j}) =
{π−1(i), π−1(j)} and thus φ is also a relabeling. Thus, by Corollary 4.5, there
is a rigid transformation and a relabeling that maps P to Q.



Generalization

• Can be generalized for points in Rm for n 
greater than or equal to m+2.

• Similar method.



Computation

• Experiments testing this general position 
condition are not very fast.

• O(n11) time.



More Extensions

• Oriented rigid transformations.

• Scalings.

• Graphs with edge weights using distribution 
of sub-triangles.



Open Problems

• Complete test for reconstructibility.

• Relate to Gromov-Hausdorff: Point sets are 
close w.r.t GH distance when their pairwise 
distance distributions are close under some 
measure.


