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Motivation

® Shape Distributions of [osada]

® Distribution of different functions on
randomly selected points considered.

® Different dissimilarity measures between
distributions also considered.




Motivation

® Comparing the distribution of pairwise
distances w.r.t L| nhorm appears to be a
good classifier.

This paper provides some reasoning on
why this might be the case:When the
distribution of pairwise distances are
identical, then the points in general position
are the same up to a rigid transformation.
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General Position

® As defined by Matousek:

Let a set of n points in R? be specified by a vector t = (¢1,ta,...,t,) for
m = dn. Then, a general position condition is a condition that can be expressed
as \, pi(t) # 0 for a countable number of polynomials p;.

® Set of points not in general position has
measure zero.




Rigid Transformation

® Definition:

Let p be a point in R™. Then a rigid transformation is a function R : R™ —
R™ that can be written as R(p) = Mp+ T where M is an orthogonal m-by-m
matrix and 7" is a column vector in R™.




Pairwise Distances

® Distribution:

Given a set of points P, let the distribution of pairwise distances d(P) be
the multiset {||p; — pj||}i<j-

Reconstructibility:

We say that pq1,...,p, € R™ is reconstructible from pairwise distances if for
every ¢i,...,q, € R™ with the same distribution of pairwise distances, there
exists a rigid transformation R and a permutation m of {1,...,n}, such that
P(p;) = qr@) for every i € 1,...,n.




Folklore Lemma

® Tricky to work with rigid transformations
directly.

® Compare distance matrices instead.

® Folklore Lemma:

Let p1,...,pn and ¢1,...,¢, be points in R™. If ||p; — p;i|| = ||¢i — ¢l

for every 7,7 in 1,...,n, then there exists a rigid transformation R such that
R(p;) = q; for all i.




Folklore Lemma

® Proof:

Let v; =p; —pn and y; = ¢; — @, for i = 1,...,n. We claim that (x;,z,) =
(yi,y;) for all 4, j. To see this, we have the following calculation:

(i, i) = (Di — DnsDj — Pn)
(i — PnsDi — Pn) + (P — Pn,Pj — Pn) — (Di — Dj, Di — Dj)
2

_ lpi = pall +1Ip; = pnll = [Ipi — pjll
2

s = aull + llgs — gull = lla: — gl
2

{6 = @i — ) {4t — s @ — an) — (G — 45, G — 45)
2
= (& = an, 45 — an) = (i, Y)

Now, let X = [z1,---,2,] and Y = [y1,- - ,yn]. We have shown above
that X7X = YTY. Now, X7 X is symmetric and positive semidefinite, and
hence can be written as QAQ” for an orthogonal @ and a non-negative diagonal
matrix A. Since A, is non-negative, we can write X7 X = YTY = QA/2A1/2QT
Therefore, using the singular value decomposition, we can write X as Ux A/2QT
and Y as Uy AY2QT for orthogonal Ux and Uy. Then, we can write Y = M X
for orthogonal M = UyUZ%. Moreover, it is easy to verify that Mxz; = y;
for i = 1,...,n. To finish the proof, we note that M(p; — p») = ¢; — g, or
q; = Mp; + q, — Mp,, so there is a rigid transformation from p; to g; with the
orthogonal matrix M and translation vector q,, — Mp,.




Digression:
Counterexample

® |D Counterexample:

P=10,1,4,10,12,17} @ ={0,1,8,11,13,17}
It can be verified that the distribution of distances is the multiset:

d(P) = d(Q) = {1,2,3,4,5,6,7,8,9,10,11,12,13,16, 17}

® 2D Counterexample:
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Main ldea

® With Folklore Lemma in mind, show that if
two point sets have the same distribution
of pairwise distances, they have the same

distance matrices up to a relabeling of the
points.




Some Notation

® Convention:

Let P = {p1,...,pn} be a labeled set of n points. Then we let dp : P — R
be defined as dp({i,7}) = |lpi — p;l|*

® Corollary:

If n-point configurations P and () have the same distribution of distances,
then there exists a permutation ¢ of P such that dp(¢({i,75})) = do({i,7}) for
all {i,j} € P.




A Weaker Result

Let P be a configuration of n points.Then, there exists neighborhoods of p;
such that if () if a configuration of n points with ¢; in the neighborhood of p;
and having the same distribution of distances as P, then P and () are the same
up to a rigid transformation and a relabeling of the points.

® Proof:

Suppose for the purpose of contradiction that there exists a sequence of
configurations {Qy}72; converging to P such that none of QJx can be mapped
to P via rigid transformation and relabeling, but there exists a sequence of
permutations {¢y}72, such that dp(or({i,5})) = dg, ({¢,5}). Since there are
finitely many permutations ¢, we can pick ¢, for instance, and let {R;}72, be
the subsequence of {Qr}72; where ¢, = ¢1. Then, taking the limit | —oo , we
have dp(¢1({7,7})) = lim;—oo dr, ({7, 5}). Since { R; };2, converges to P, we then
have dp(¢1({7,7})) = dp({?,5}). But then, we have dp({¢,j}) = dg, ({¢,5}) and
by the Folklore Lemma, there is a rigid transformation from P to (Jx, so we
have a contradiction.




Relabelings

A permutation ¢ of P is a relabeling if there exists a permutation 7w of
{1,...,n} such that ¢({¢,j}) = {7 (i), 7(4)}.
® Corollary:

If there exists a relabeling ¢ of P such that dp(¢({i,5})) = do({,5}), then
there is a permutation 7 of {1,...,n} such that Pr(1)s- - - > Px(n) has the same
distance matrix as qi,...q,, and therefore, by the Folklore Lemma, there is a
rigid transtormation from pr(1y,...,Prm) t0 q1,.. . qn.

® VWe want to show most point sets with the
same distribution of distances have a
relabeling.




Key Lemma

Suppose n # 4. Then a permutation ¢ of P is a relabeling if and only if for
all pairwise distinct indices 4, j, k we have ¢({i,j}) No({i, k}) # 0.

. For every n < 3, every ¢ is a relabeling and ¢({i,j}) N ¢({i, k}) # (0. There-
® Proof:

fore, we may assume that n > 5. The only if part of the statement is clear by
the definition of a relabeling, so we will show the if direction.

Suppose we have ¢ a permutation of P such that for all pairwise distinct
indices 1, j,k we have ¢({i,j}) N ¢({i,k}) # 0. We note that since ¢ is a
permutation, the intersection must then contain only one element. Then, we
argue that for 4,7, k,[ pairwise distinct, ¢({i,7}) N o({i,k}) N o({i,1}) # 0.
Suppose otherwise. Then, we can write ¢({i,j}) = {a,b}, ¢({i,k}) = {a,c},
and ¢({i,1}) = {b, c}. Now, since we have more than 4 points, we can choose m
distinct from i, j, k,l. ¢({i,m}) must intersect {a,b}, {a,c}, and {b,c}. Since
®({i,m}) only has two elements, it must be one of the sets {a, b}, {a,c}, and
{b, c}, but then that would violate ¢ being a permutation. Therefore, ¢({i,5})N
o({i,k}) N o({i,1}) # 0.

Then if we fix an ¢ and choose any distinct j, k, ¢({i,7}) N ¢({i, k}) must
contain an distinct element a and the above shows that a belongs to any ¢({7,1})
where [ is distinct from 4, j, k. Therefore [, #({i,{}) = a and we can define
the map o from {1,...,n} to itself where o(2) = a.

To show that o is a permutation, we simply need to show that it is injective.
To do this, we let M; be the set of all pairs with ¢ in them. Then, ¢(M;) C My ;).
But ¢ is a permutation and |M;| = |M,;| so therefore ¢(M;) = M,;y. Now
consider 4, j with o(i) = o(j). Then, M,y = M,;) so ¢(M;) = ¢(M;). But ¢
is a permutation so M; = M; and therefore ¢ = j so o is injective.

Now, consider ¢({i,j}). By the above discussion, it contains both ¢ (i) and
a(j), so ¢({i,j}) must be {o(i),o(j)}. Since o is a permutation, ¢ is therefore
a relabeling.




4 Points on a Plane

The proof that most point configurations are reconstructible from pair-
wise distances relies on a certain determinant that is zero when four points

Di, Dj, Dk, p1 lie on a plane:

det =0

where a = —2dp({i,1}), b = dp({i, j})—dp({i,1})—dp({j,1}), c = dp({i, k})—
dp({i,1}) —dp({k,1}), d = =2dp({j,1}), e = dp({), k}) —dp({J,1}) —dp({k,1})
and f = —2dp({k,l}).

This determinant can be expanded as a polynomial:

gUV.W,X,Y,Z) =2U?Z +2UVX —2UVY —2UVZ —2UXW — 2UX Z+
QUYW —2UY Z —2UWZ +2UZ% +2V?Y — 2V XY —
VXW +2VY2 —2VYW —2VY Z +2VW Z + 2X°W —
XYW +2XYZ +2XW? —2XWZ

where U = dP({iaj})v V= dP({ivk})a W = dp({i,l}), X = dP({jv k})v
Y =dp({j,1}) and Z = dp({k,}).




Main Result

Let n > 5 and P be a configuration of n points in R?. Suppose for choices of
indices a, b, c,d, e, f, g, h,i,j, k such that the pairs U = {a,b}, V ={d,e}, W =
{f,9}, X ={h,i},Y ={j,k}, Z = {a, c} are distinct, we have:

g(dp(U),dp(V),dp(W),dp(X),dp(Y),dp(Z)) # 0

then P is reconstructible from pairwise distances.

. P ro Of' Suppose that Q) is an n-point configuration in R? with the same distribution
® of distances as P. Then, there exists a permutation ¢ such that dg({i,j}) =

dp(¢({i,j})) for all i # j. We then try to show that ¢! is a relabeling, and
thus ¢ is also a relabeling.

Now pick any pairwise distinct indices r, s,t,u. Now since ¢, qs, q¢, ¢, lie on
a plane,

gldo({r,s}),do({r;1}), do({r,u}), do({s,t}), do({s, u}), dq({t,u})) = 0

But then, it follows that

g(dp(¢({r,s})),dp(o({r,t})),dp(¢({r, u})),dp(¢({s,t})),dp(¢({s,u})),dp(¢({t,u}))) = 0

Therefore, it follows that ¢({r, s}) and ¢({t,u}) are disjoint, otherwise the pairs
would satisfy the conditions of the U, V, W, XY, Z stated above and

g(dP(U)7 dP(V)a dP(W)7 dP(X)7 dP(Y)7 dP(Z)) 7£ 0

so we have show that ¢ maps disjoint sets {r, s} and {t,u} to disjoint sets. We
take the contrapositive and note that if ¢({r,s}) and ¢({t,u}) intersect, then
{r,s} and {t,u} also necessarily intersect. Thus, for all i, j, k we have

o~ ({i.gh) no~ ({i,k}) # 0

and hence ¢! is a relabeling. But then there exists a permutation 7 of

{1,...,n} such that ¢~1({i,j}) = {m(i),x(j)}. Then, dlearly, ¢({i,j}) —
{m=1(i),771(j)} and thus ¢ is also a relabeling. Thus, by Corollary 4.5, there
is a rigid transformation and a relabeling that maps P to Q.




Generalization

® Can be generalized for points in R™ for n
greater than or equal to m+2.

® Similar method.




Computation

® Experiments testing this general position
condition are not very fast.

e O(n'") time.




More Extensions

® Oriented rigid transformations.
® Scalings.

® Graphs with edge weights using distribution
of sub-triangles.




Open Problems

® Complete test for reconstructibility.

® Relate to Gromov-Hausdorff: Point sets are
close w.r.t GH distance when their pairwise
distance distributions are close under some
measure.




