Point Sets up to Rigid Transformations are Determined by the Distribution of their Pairwise Distances

Daniel Chen Survey of results of M. Boutin and G. Kemper

Outline

- Motivation
- Preliminaries
- Folklore Lemma
- Main Result
- Computation
- Extensions and Open Problems

Motivation

- Shape Distributions of [osada]
- Distribution of different functions on randomly selected points considered.
- Different dissimilarity measures between distributions also considered.

Motivation

- Comparing the distribution of pairwise distances w.r.t L₁ norm appears to be a good classifier.
- This paper provides some reasoning on why this might be the case: When the distribution of pairwise distances are identical, then the points in general position are the same up to a rigid transformation.

Preliminaries

- General Position
- Rigid Transformation
- Distribution of Pairwise Distances
- Reconstructibility from Pairwise didstances

General Position

• As defined by Matousek:

Let a set of n points in \mathbb{R}^d be specified by a vector $t = (t_1, t_2, \ldots, t_m)$ for m = dn. Then, a general position condition is a condition that can be expressed as $\bigwedge_i p_i(t) \neq 0$ for a countable number of polynomials p_i .

• Set of points not in general position has measure zero.

Rigid Transformation

• Definition:

Let p be a point in \mathbb{R}^m . Then a rigid transformation is a function $R : \mathbb{R}^m \to \mathbb{R}^m$ that can be written as R(p) = Mp + T where M is an orthogonal m-by-m matrix and T is a column vector in \mathbb{R}^m .

Pairwise Distances

• Distribution:

Given a set of points P, let the distribution of pairwise distances d(P) be the multiset $\{||p_i - p_j||\}_{i < j}$.

• Reconstructibility:

We say that $p_1, \ldots, p_n \in \mathbb{R}^m$ is reconstructible from pairwise distances if for every $q_1, \ldots, q_n \in \mathbb{R}^m$ with the same distribution of pairwise distances, there exists a rigid transformation R and a permutation π of $\{1, \ldots, n\}$, such that $P(p_i) = q_{\pi(i)}$ for every $i \in 1, \ldots, n$.

Folklore Lemma

- Tricky to work with rigid transformations directly.
- Compare distance matrices instead.
- Folklore Lemma:

Let p_1, \ldots, p_n and q_1, \ldots, q_n be points in \mathbb{R}^m . If $||p_i - p_j|| = ||q_i - q_j||$ for every i, j in $1, \ldots, n$, then there exists a rigid transformation R such that $R(p_i) = q_i$ for all i.

Folklore Lemma

• Proof:

Let $x_i = p_i - p_n$ and $y_i = q_i - q_n$ for i = 1, ..., n. We claim that $\langle x_i, x_j \rangle = \langle y_i, y_j \rangle$ for all i, j. To see this, we have the following calculation:

$$\begin{split} x_{i}, x_{j} \rangle &= \langle p_{i} - p_{n}, p_{j} - p_{n} \rangle \\ &= \frac{\langle p_{i} - p_{n}, p_{i} - p_{n} \rangle + \langle p_{j} - p_{n}, p_{j} - p_{n} \rangle - \langle p_{i} - p_{j}, p_{i} - p_{j} \rangle}{2} \\ &= \frac{||p_{i} - p_{n}|| + ||p_{j} - p_{n}|| - ||p_{i} - p_{j}||}{2} \\ &= \frac{||q_{i} - q_{n}|| + ||q_{j} - q_{n}|| - ||q_{i} - q_{j}||}{2} \\ &= \frac{\langle q_{i} - q_{n}, q_{i} - q_{n} \rangle + \langle q_{j} - q_{n}, q_{j} - q_{n} \rangle - \langle q_{i} - q_{j}, q_{i} - q_{j} \rangle}{2} \\ &= \langle q_{i} - q_{n}, q_{j} - q_{n} \rangle = \langle y_{i}, y_{j} \rangle \end{split}$$

Now, let $X = [x_1, \dots, x_n]$ and $Y = [y_1, \dots, y_n]$. We have shown above that $X^T X = Y^T Y$. Now, $X^T X$ is symmetric and positive semidefinite, and hence can be written as $Q\Lambda Q^T$ for an orthogonal Q and a non-negative diagonal matrix Λ . Since Λ , is non-negative, we can write $X^T X = Y^T Y = Q\Lambda^{1/2}\Lambda^{1/2}Q^T$. Therefore, using the singular value decomposition, we can write X as $U_X\Lambda^{1/2}Q^T$ and Y as $U_Y\Lambda^{1/2}Q^T$ for orthogonal U_X and U_Y . Then, we can write Y = MXfor orthogonal $M = U_Y U_X^T$. Moreover, it is easy to verify that $Mx_i = y_i$ for $i = 1, \dots, n$. To finish the proof, we note that $M(p_i - p_n) = q_i - q_n$ or $q_i = Mp_i + q_n - Mp_n$ so there is a rigid transformation from p_i to q_i with the orthogonal matrix M and translation vector $q_n - Mp_n$.

Digression: Counterexample

• ID Counterexample:

 $P = \{0, 1, 4, 10, 12, 17\} \quad Q = \{0, 1, 8, 11, 13, 17\}$

It can be verified that the distribution of distances is the multiset:

 $d(P)=d(Q)=\{1,2,3,4,5,6,7,8,9,10,11,12,13,16,17\}$

• 2D Counterexample:

Main Idea

 With Folklore Lemma in mind, show that if two point sets have the same distribution of pairwise distances, they have the same distance matrices up to a relabeling of the points.

Some Notation

Convention:

Let $P = \{p_1, \ldots, p_n\}$ be a labeled set of n points. Then we let $d_P : \mathcal{P} \to \mathbb{R}$ be defined as $d_P(\{i, j\}) = ||p_i - p_j||^2$.

• Corollary:

If *n*-point configurations P and Q have the same distribution of distances, then there exists a permutation ϕ of \mathcal{P} such that $d_P(\phi(\{i, j\})) = d_Q(\{i, j\})$ for all $\{i, j\} \in \mathcal{P}$.

A Weaker Result

Let P be a configuration of n points. Then, there exists neighborhoods of p_i such that if Q if a configuration of n points with q_i in the neighborhood of p_i and having the same distribution of distances as P, then P and Q are the same up to a rigid transformation and a relabeling of the points.

• Proof:

Suppose for the purpose of contradiction that there exists a sequence of configurations $\{Q_k\}_{k=1}^{\infty}$ converging to P such that none of Q_k can be mapped to P via rigid transformation and relabeling, but there exists a sequence of permutations $\{\phi_k\}_{k=1}^{\infty}$ such that $d_P(\phi_k(\{i, j\})) = d_{Q_k}(\{i, j\})$. Since there are finitely many permutations ϕ_k , we can pick ϕ_1 , for instance, and let $\{R_l\}_{l=1}^{\infty}$ be the subsequence of $\{Q_k\}_{k=1}^{\infty}$ where $\phi_k = \phi_1$. Then, taking the limit $| \to \infty$, we have $d_P(\phi_1(\{i, j\})) = \lim_{l \to \infty} d_{R_l}(\{i, j\})$. Since $\{R_l\}_{l=1}^{\infty}$ converges to P, we then have $d_P(\phi_1(\{i, j\})) = d_P(\{i, j\})$. But then, we have $d_P(\{i, j\}) = d_{Q_k}(\{i, j\})$ and by the Folklore Lemma, there is a rigid transformation from P to Q_k , so we have a contradiction.

Relabelings

A permutation ϕ of \mathcal{P} is a relabeling if there exists a permutation π of $\{1, \ldots, n\}$ such that $\phi(\{i, j\}) = \{\pi(i), \pi(j)\}.$

• Corollary:

If there exists a relabeling ϕ of \mathcal{P} such that $d_P(\phi(\{i, j\})) = d_Q(\{i, j\})$, then there is a permutation π of $\{1, \ldots, n\}$ such that $p_{\pi(1)}, \ldots, p_{\pi(n)}$ has the same distance matrix as q_1, \ldots, q_n , and therefore, by the Folklore Lemma, there is a rigid transformation from $p_{\pi(1)}, \ldots, p_{\pi(n)}$ to q_1, \ldots, q_n .

• We want to show most point sets with the same distribution of distances have a relabeling.

Key Lemma

Suppose $n \neq 4$. Then a permutation ϕ of \mathcal{P} is a relabeling if and only if for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$.

• Proof:

For every $n \leq 3$, every ϕ is a relabeling and $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. Therefore, we may assume that $n \geq 5$. The only if part of the statement is clear by the definition of a relabeling, so we will show the if direction.

Suppose we have ϕ a permutation of \mathcal{P} such that for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. We note that since ϕ is a permutation, the intersection must then contain only one element. Then, we argue that for i, j, k, l pairwise distinct, $\phi(\{i, j\}) \cap \phi(\{i, k\}) \cap \phi(\{i, l\}) \neq \emptyset$. Suppose otherwise. Then, we can write $\phi(\{i, j\}) = \{a, b\}, \phi(\{i, k\}) = \{a, c\},$ and $\phi(\{i, l\}) = \{b, c\}$. Now, since we have more than 4 points, we can choose mdistinct from i, j, k, l. $\phi(\{i, m\})$ must intersect $\{a, b\}, \{a, c\},$ and $\{b, c\}$. Since $\phi(\{i, m\})$ only has two elements, it must be one of the sets $\{a, b\}, \{a, c\},$ and $\{b, c\}$, but then that would violate ϕ being a permutation. Therefore, $\phi(\{i, j\}) \cap$ $\phi(\{i, k\}) \cap \phi(\{i, l\}) \neq \emptyset$.

Then if we fix an i and choose any distinct $j, k, \phi(\{i, j\}) \cap \phi(\{i, k\})$ must contain an distinct element a and the above shows that a belongs to any $\phi(\{i, l\})$ where l is distinct from i, j, k. Therefore $\bigcap_{l \neq i} \phi(\{i, l\}) = a$ and we can define the map σ from $\{1, \ldots, n\}$ to itself where $\sigma(i) = a$.

To show that σ is a permutation, we simply need to show that it is injective. To do this, we let M_i be the set of all pairs with i in them. Then, $\phi(M_i) \subseteq M_{\sigma(i)}$. But ϕ is a permutation and $|M_i| = |M_{\sigma(i)}|$ so therefore $\phi(M_i) = M_{\sigma(i)}$. Now consider i, j with $\sigma(i) = \sigma(j)$. Then, $M_{\sigma(i)} = M_{\sigma(j)}$ so $\phi(M_i) = \phi(M_j)$. But ϕ is a permutation so $M_i = M_j$ and therefore i = j so σ is injective.

Now, consider $\phi(\{i, j\})$. By the above discussion, it contains both $\sigma(i)$ and $\sigma(j)$, so $\phi(\{i, j\})$ must be $\{\sigma(i), \sigma(j)\}$. Since σ is a permutation, ϕ is therefore a relabeling.

4 Points on a Plane

The proof that most point configurations are reconstructible from pairwise distances relies on a certain determinant that is zero when four points p_i, p_j, p_k, p_l lie on a plane:

$$\det \left(\begin{array}{ccc} a & b & c \\ b & d & e \\ c & e & f \end{array} \right) = 0$$

where $a = -2d_P(\{i, l\}), b = d_P(\{i, j\}) - d_P(\{i, l\}) - d_P(\{j, l\}), c = d_P(\{i, k\}) - d_P(\{i, l\}) - d_P(\{k, l\}), d = -2d_P(\{j, l\}), e = d_P(\{j, k\}) - d_P(\{j, l\}) - d_P(\{k, l\})$ and $f = -2d_P(\{k, l\}).$

This determinant can be expanded as a polynomial:

$$g(U, V, W, X, Y, Z) = 2U^{2}Z + 2UVX - 2UVY - 2UVZ - 2UXW - 2UXZ + 2UYW - 2UYZ - 2UYZ - 2UWZ + 2UZ^{2} + 2V^{2}Y - 2VXY - 2VXW + 2VY^{2} - 2VYW - 2VYZ + 2VWZ + 2X^{2}W - 2XYW + 2XYZ + 2XW^{2} - 2XWZ$$

where $U = d_P(\{i, j\}), V = d_P(\{i, k\}), W = d_P(\{i, l\}), X = d_P(\{j, k\}), Y = d_P(\{j, l\})$ and $Z = d_P(\{k, l\}).$

Main Result

Let $n \ge 5$ and P be a configuration of n points in \mathbb{R}^2 . Suppose for choices of indices a, b, c, d, e, f, g, h, i, j, k such that the pairs $U = \{a, b\}, V = \{d, e\}, W = \{f, g\}, X = \{h, i\}, Y = \{j, k\}, Z = \{a, c\}$ are distinct, we have:

 $g(d_P(U), d_P(V), d_P(W), d_P(X), d_P(Y), d_P(Z)) \neq 0$

then P is reconstructible from pairwise distances.

Suppose that Q is an *n*-point configuration in \mathbb{R}^2 with the same distribution of distances as P. Then, there exists a permutation ϕ such that $d_Q(\{i, j\}) = d_P(\phi(\{i, j\}))$ for all $i \neq j$. We then try to show that ϕ^{-1} is a relabeling, and thus ϕ is also a relabeling.

Now pick any pairwise distinct indices r, s, t, u. Now since q_r, q_s, q_t, q_u lie on a plane,

 $g(d_Q(\{r,s\}), d_Q(\{r,t\}), d_Q(\{r,u\}), d_Q(\{s,t\}), d_Q(\{s,u\}), d_Q(\{t,u\})) = 0$

But then, it follows that

 $g(d_P(\phi(\{r,s\})), d_P(\phi(\{r,t\})), d_P(\phi(\{r,u\})), d_P(\phi(\{s,t\})), d_P(\phi(\{s,u\})), d_P(\phi(\{t,u\}))) = 0$

Therefore, it follows that $\phi(\{r, s\})$ and $\phi(\{t, u\})$ are disjoint, otherwise the pairs would satisfy the conditions of the U, V, W, X, Y, Z stated above and

 $g(d_P(U), d_P(V), d_P(W), d_P(X), d_P(Y), d_P(Z)) \neq 0$

so we have show that ϕ maps disjoint sets $\{r, s\}$ and $\{t, u\}$ to disjoint sets. We take the contrapositive and note that if $\phi(\{r, s\})$ and $\phi(\{t, u\})$ intersect, then $\{r, s\}$ and $\{t, u\}$ also necessarily intersect. Thus, for all i, j, k we have

$$\phi^{-1}(\{i,j\}) \cap \phi^{-1}(\{i,k\}) \neq \emptyset$$

and hence ϕ^{-1} is a relabeling. But then there exists a permutation π of $\{1, \ldots, n\}$ such that $\phi^{-1}(\{i, j\}) = \{\pi(i), \pi(j)\}$. Then, clearly, $\phi(\{i, j\}) = \{\pi^{-1}(i), \pi^{-1}(j)\}$ and thus ϕ is also a relabeling. Thus, by Corollary 4.5, there is a rigid transformation and a relabeling that maps P to Q.

Generalization

- Can be generalized for points in R^m for n greater than or equal to m+2.
- Similar method.

Computation

- Experiments testing this general position condition are not very fast.
- O(n¹¹) time.

More Extensions

- Oriented rigid transformations.
- Scalings.
- Graphs with edge weights using distribution of sub-triangles.

Open Problems

- Complete test for reconstructibility.
- Relate to Gromov-Hausdorff: Point sets are close w.r.t GH distance when their pairwise distance distributions are close under some measure.