Point Sets up to Rigid Transformations are Determined by the Distribution of their Pairwise Distances

Daniel Chen
Survey of results of M. Boutin and G. Kemper
Outline

• Motivation
• Preliminaries
• Folklore Lemma
• Main Result
• Computation
• Extensions and Open Problems
Motivation

- Shape Distributions of [osada]
- Distribution of different functions on randomly selected points considered.
- Different dissimilarity measures between distributions also considered.
Motivation

• Comparing the distribution of pairwise distances w.r.t L_1 norm appears to be a good classifier.

• This paper provides some reasoning on why this might be the case: When the distribution of pairwise distances are identical, then the points in general position are the same up to a rigid transformation.
Preliminaries

- General Position
- Rigid Transformation
- Distribution of Pairwise Distances
- Reconstructibility from Pairwise Distances
General Position

• As defined by Matousek:
 Let a set of n points in \mathbb{R}^d be specified by a vector $t = (t_1, t_2, \ldots, t_m)$ for $m = dn$. Then, a general position condition is a condition that can be expressed as $\bigwedge_i p_i(t) \neq 0$ for a countable number of polynomials p_i.

• Set of points not in general position has measure zero.
Rigid Transformation

• Definition:

Let \(p \) be a point in \(\mathbb{R}^m \). Then a rigid transformation is a function \(R : \mathbb{R}^m \to \mathbb{R}^m \) that can be written as \(R(p) = Mp + T \) where \(M \) is an orthogonal \(m \)-by-\(m \) matrix and \(T \) is a column vector in \(\mathbb{R}^m \).
Pairwise Distances

• Distribution:

Given a set of points P, let the distribution of pairwise distances $d(P)$ be the multiset $\{||p_i - p_j||\}_{i<j}$.

• Reconstructibility:

We say that $p_1, \ldots, p_n \in \mathbb{R}^m$ is reconstructible from pairwise distances if for every $q_1, \ldots, q_n \in \mathbb{R}^m$ with the same distribution of pairwise distances, there exists a rigid transformation R and a permutation π of $\{1, \ldots, n\}$, such that $P(p_i) = q_{\pi(i)}$ for every $i \in 1, \ldots, n$.
Folklore Lemma

- Tricky to work with rigid transformations directly.
- Compare distance matrices instead.

Folklore Lemma:

Let p_1, \ldots, p_n and q_1, \ldots, q_n be points in \mathbb{R}^m. If $||p_i - p_j|| = ||q_i - q_j||$ for every i, j in $1, \ldots, n$, then there exists a rigid transformation R such that $R(p_i) = q_i$ for all i.
Folklore Lemma

Proof:

Let $x_i = p_i - p_n$ and $y_i = q_i - q_n$ for $i = 1, \ldots, n$. We claim that $\langle x_i, x_j \rangle = \langle y_i, y_j \rangle$ for all i, j. To see this, we have the following calculation:

\[
\langle x_i, x_j \rangle = \langle p_i - p_n, p_j - p_n \rangle = \frac{\langle p_i - p_n, p_i - p_n \rangle + \langle p_j - p_n, p_j - p_n \rangle - \langle p_i - p_j, p_i - p_j \rangle}{2} = \frac{||p_i - p_n|| + ||p_j - p_n|| - ||p_i - p_j||}{2} = \frac{||q_i - q_n|| + ||q_j - q_n|| - ||q_i - q_j||}{2} = \frac{\langle q_i - q_n, q_i - q_n \rangle + \langle q_j - q_n, q_j - q_n \rangle - \langle q_i - q_j, q_i - q_j \rangle}{2} = \langle q_i - q_n, q_j - q_n \rangle = \langle y_i, y_j \rangle
\]

Now, let $X = [x_1, \ldots, x_n]$ and $Y = [y_1, \ldots, y_n]$. We have shown above that $X^T X = Y^T Y$. Now, $X^T X$ is symmetric and positive semidefinite, and hence can be written as $Q\Lambda Q^T$ for an orthogonal Q and a non-negative diagonal matrix Λ. Since Λ is non-negative, we can write $X^T X = Y^T Y = Q\Lambda^{1/2}Q^T$. Therefore, using the singular value decomposition, we can write X as $U_X \Lambda^{1/2}Q^T$ and Y as $U_Y \Lambda^{1/2}Q^T$ for orthogonal U_X and U_Y. Then, we can write $Y = MX$ for orthogonal $M = U_Y U_X^T$. Moreover, it is easy to verify that $Mx_i = y_i$ for $i = 1, \ldots, n$. To finish the proof, we note that $M(p_i - p_n) = q_i - q_n$ or $q_i = Mp_i + q_n - Mp_n$ so there is a rigid transformation from p_i to q_i with the orthogonal matrix M and translation vector $q_n - Mp_n$.
Digression: Counterexample

• 1D Counterexample:

\[P = \{0, 1, 4, 10, 12, 17\} \quad Q = \{0, 1, 8, 11, 13, 17\} \]

It can be verified that the distribution of distances is the multiset:

\[d(P) = d(Q) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17\} \]

• 2D Counterexample:
Main Idea

• With Folklore Lemma in mind, show that if two point sets have the same distribution of pairwise distances, they have the same distance matrices up to a relabeling of the points.
Some Notation

• Convention:

Let $P = \{p_1, \ldots, p_n\}$ be a labeled set of n points. Then we let $d_P : \mathcal{P} \to \mathbb{R}$ be defined as $d_P(\{i, j\}) = ||p_i - p_j||^2$.

• Corollary:

If n-point configurations P and Q have the same distribution of distances, then there exists a permutation ϕ of \mathcal{P} such that $d_P(\phi(\{i, j\})) = d_Q(\{i, j\})$ for all $\{i, j\} \in \mathcal{P}$.
A Weaker Result

Let P be a configuration of n points. Then, there exists neighborhoods of p_i such that if Q if a configuration of n points with q_i in the neighborhood of p_i and having the same distribution of distances as P, then P and Q are the same up to a rigid transformation and a relabeling of the points.

- **Proof:**

Suppose for the purpose of contradiction that there exists a sequence of configurations $\{Q_k\}_{k=1}^{\infty}$ converging to P such that none of Q_k can be mapped to P via rigid transformation and relabeling, but there exists a sequence of permutations $\{\phi_k\}_{k=1}^{\infty}$ such that $d_P(\phi_k(\{i, j\})) = d_{Q_k}(\{i, j\})$. Since there are finitely many permutations ϕ_k, we can pick ϕ_1, for instance, and let $\{R_l\}_{l=1}^{\infty}$ be the subsequence of $\{Q_k\}_{k=1}^{\infty}$ where $\phi_k = \phi_1$. Then, taking the limit $|\to\infty$, we have $d_P(\phi_1(\{i, j\})) = \lim_{l \to \infty} d_{R_l}(\{i, j\})$. Since $\{R_l\}_{l=1}^{\infty}$ converges to P, we then have $d_P(\phi_1(\{i, j\})) = d_P(\{i, j\})$. But then, we have $d_P(\{i, j\}) = d_{Q_k}(\{i, j\})$ and by the Folklore Lemma, there is a rigid transformation from P to Q_k, so we have a contradiction.
Relabelings

A permutation ϕ of \mathcal{P} is a relabeling if there exists a permutation π of $\{1, \ldots, n\}$ such that $\phi(\{i, j\}) = \{\pi(i), \pi(j)\}$.

- **Corollary:**

 If there exists a relabeling ϕ of \mathcal{P} such that $d_P(\phi(\{i, j\})) = d_Q(\{i, j\})$, then there is a permutation π of $\{1, \ldots, n\}$ such that $p_{\pi(1)}, \ldots, p_{\pi(n)}$ has the same distance matrix as q_1, \ldots, q_n, and therefore, by the Folklore Lemma, there is a rigid transformation from $p_{\pi(1)}, \ldots, p_{\pi(n)}$ to q_1, \ldots, q_n.

- **We want to show most point sets with the same distribution of distances have a relabeling.**
Key Lemma

Suppose $n \neq 4$. Then a permutation ϕ of P is a relabeling if and only if for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$.

Proof:

For every $n \leq 3$, every ϕ is a relabeling and $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. Therefore, we may assume that $n \geq 5$. The only if part of the statement is clear by the definition of a relabeling, so we will show the if direction.

Suppose we have ϕ a permutation of P such that for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. We note that since ϕ is a permutation, the intersection must then contain only one element. Therefore, we may assume that $n \geq 5$. The only if part of the statement is clear by the definition of a relabeling, so we will show the if direction.

Suppose we have ϕ a permutation of P such that for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. We note that since ϕ is a permutation, the intersection must then contain only one element. Then, we argue that for i, j, k, l pairwise distinct, $\phi(\{i, j\}) \cap \phi(\{i, k\}) \cap \phi(\{i, l\}) \neq \emptyset$.

Suppose otherwise. Then, we can write $\phi(\{i, j\}) = \{a, b\}$, $\phi(\{i, k\}) = \{a, c\}$, and $\phi(\{i, l\}) = \{b, c\}$. Now, since we have more than 4 points, we can choose m distinct from i, j, k, l. $\phi(\{i, m\})$ must intersect $\{a, b\}$, $\{a, c\}$, and $\{b, c\}$. Since $\phi(\{i, m\})$ only has two elements, it must be one of the sets $\{a, b\}$, $\{a, c\}$, and $\{b, c\}$, but then that would violate ϕ being a permutation. Therefore, $\phi(\{i, j\}) \cap \phi(\{i, k\}) \cap \phi(\{i, l\}) \neq \emptyset$.

Then if we fix an i and choose any distinct j, k, $\phi(\{i, j\}) \cap \phi(\{i, k\})$ must contain an distinct element a and the above shows that a belongs to any $\phi(\{i, l\})$ where l is distinct from i, j, k. Therefore $\bigcap_{l \neq i} \phi(\{i, l\}) = a$ and we can define the map σ from $\{1, \ldots, n\}$ to itself where $\sigma(i) = a$.

To show that σ is a permutation, we simply need to show that it is injective. To do this, we let M_i be the set of all pairs with i in them. Then, $\phi(M_i) \subseteq M_{\sigma(i)}$. But ϕ is a permutation and $|M_i| = |M_{\sigma(i)}|$ so therefore $\phi(M_i) = M_{\sigma(i)}$. Now consider i, j with $\sigma(i) = \sigma(j)$. Then, $M_{\sigma(i)} = M_{\sigma(j)}$ so $\phi(M_i) = \phi(M_j)$. But ϕ is a permutation so $M_i = M_j$ and therefore $i = j$ so σ is injective.

Now, consider $\phi(\{i, j\})$. By the above discussion, it contains both $\sigma(i)$ and $\sigma(j)$, so $\phi(\{i, j\})$ must be $\{\sigma(i), \sigma(j)\}$. Since σ is a permutation, ϕ is therefore a relabeling.
4 Points on a Plane

The proof that most point configurations are reconstructible from pair-wise distances relies on a certain determinant that is zero when four points \(p_i, p_j, p_k, p_l \) lie on a plane:

\[
\det \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = 0
\]

where
\[
a = -2d_P(\{i, l\}), \quad b = d_P(\{i, j\}) - d_P(\{i, l\}) - d_P(\{j, l\}), \quad c = d_P(\{i, k\}) - d_P(\{i, l\}) - d_P(\{k, l\}),
\]
\[
d = -2d_P(\{j, l\}), \quad e = d_P(\{j, k\}) - d_P(\{j, l\}) - d_P(\{k, l\})
\]
and
\[
f = -2d_P(\{k, l\}).
\]

This determinant can be expanded as a polynomial:

\[
\]

where \(U = d_P(\{i, j\}), V = d_P(\{i, k\}), W = d_P(\{i, l\}), X = d_P(\{j, k\}), Y = d_P(\{j, l\}) \) and \(Z = d_P(\{k, l\}) \).
Let $n \geq 5$ and P be a configuration of n points in \mathbb{R}^2. Suppose for choices of indices $a, b, c, d, e, f, g, h, i, j, k$ such that the pairs $U = \{a, b\}, V = \{d, e\}, W = \{f, g\}, X = \{h, i\}, Y = \{j, k\}, Z = \{a, c\}$ are distinct, we have:

\[
g(d_P(U), d_P(V), d_P(W), d_P(X), d_P(Y), d_P(Z)) \neq 0
\]

then P is reconstructible from pairwise distances.

Proof: Suppose that Q is an n-point configuration in \mathbb{R}^2 with the same distribution of distances as P. Then, there exists a permutation ϕ such that $d_Q(\{i, j\}) = d_P(\phi(\{i, j\}))$ for all $i \neq j$. We then try to show that ϕ^{-1} is a relabeling, and thus ϕ is also a relabeling.

Now pick any pairwise distinct indices r, s, t, u. Now since q_r, q_s, q_t, q_u lie on a plane,

\[
g(d_Q(\{r, s\}), d_Q(\{r, t\}), d_Q(\{r, u\}), d_Q(\{s, t\}), d_Q(\{s, u\}), d_Q(\{t, u\})) = 0
\]

But then, it follows that

\[
g(d_P(\phi(\{r, s\})), d_P(\phi(\{r, t\})), d_P(\phi(\{r, u\})), d_P(\phi(\{s, t\})), d_P(\phi(\{s, u\})), d_P(\phi(\{t, u\}))) = 0
\]

Therefore, it follows that $\phi(\{r, s\})$ and $\phi(\{t, u\})$ are disjoint, otherwise the pairs would satisfy the conditions of the U, V, W, X, Y, Z stated above and

\[
g(d_P(U), d_P(V), d_P(W), d_P(X), d_P(Y), d_P(Z)) \neq 0
\]

so we have show that ϕ maps disjoint sets $\{r, s\}$ and $\{t, u\}$ to disjoint sets. We take the contrapositive and note that if $\phi(\{r, s\})$ and $\phi(\{t, u\})$ intersect, then $\{r, s\}$ and $\{t, u\}$ also necessarily intersect. Thus, for all i, j, k we have

\[
\phi^{-1}(\{i, j\}) \cap \phi^{-1}(\{i, k\}) \neq \emptyset
\]

and hence ϕ^{-1} is a relabeling. But then there exists a permutation π of $\{1, \ldots, n\}$ such that $\phi^{-1}(\{i, j\}) = \{\pi(i), \pi(j)\}$. Then, clearly, $\phi(\{i, j\}) = \{\pi^{-1}(i), \pi^{-1}(j)\}$ and thus ϕ is also a relabeling. Thus, by Corollary 4.5, there is a rigid transformation and a relabeling that maps P to Q.

Main Result
Generalization

• Can be generalized for points in \mathbb{R}^m for n greater than or equal to $m+2$.

• Similar method.
Computation

- Experiments testing this general position condition are not very fast.

- $O(n^{11})$ time.
More Extensions

- Oriented rigid transformations.
- Scalings.
- Graphs with edge weights using distribution of sub-triangles.
Open Problems

• Complete test for reconstructibility.

• Relate to Gromov-Hausdorff: Point sets are close w.r.t GH distance when their pairwise distance distributions are close under some measure.