Point Sets up to Rigid Transformations are Determined by the Distribution of their Pairwise Distances

Daniel Chen

Survey of results of M. Boutin and G. Kemper

Outline

- Motivation
- Preliminaries
- Folklore Lemma
- Main Result
- Computation
- Extensions and Open Problems

Motivation

- Shape Distributions of [osada]
- Distribution of different functions on randomly selected points considered.
- Different dissimilarity measures between distributions also considered.

Motivation

- Comparing the distribution of pairwise distances w.r.t $L_{\text {I }}$ norm appears to be a good classifier.
- This paper provides some reasoning on why this might be the case: When the distribution of pairwise distances are identical, then the points in general position are the same up to a rigid transformation.

Preliminaries

- General Position
- Rigid Transformation
- Distribution of Pairwise Distances
- Reconstructibility from Pairwise didstances

General Position

- As defined by Matousek:

Let a set of n points in \mathbb{R}^{d} be specified by a vector $t=\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ for $m=d n$. Then, a general position condition is a condition that can be expressed as $\bigwedge_{i} p_{i}(t) \neq 0$ for a countable number of polynomials p_{i}.

- Set of points not in general position has measure zero.

Rigid Transformation

- Definition:

Let p be a point in \mathbb{R}^{m}. Then a rigid transformation is a function $R: \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{m} that can be written as $R(p)=M p+T$ where M is an orthogonal m-by- m matrix and T is a column vector in \mathbb{R}^{m}.

Pairwise Distances

- Distribution:

Given a set of points P, let the distribution of pairwise distances $d(P)$ be the multiset $\left\{\left\|p_{i}-p_{j}\right\|\right\}_{i<j}$.

- Reconstructibility:

We say that $p_{1}, \ldots, p_{n} \in \mathbb{R}^{m}$ is reconstructible from pairwise distances if for every $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ with the same distribution of pairwise distances, there exists a rigid transformation R and a permutation π of $\{1, \ldots, n\}$, such that $P\left(p_{i}\right)=q_{\pi(i)}$ for every $i \in 1, \ldots, n$.

Folklore Lemma

- Tricky to work with rigid transformations directly.
- Compare distance matrices instead.
- Folklore Lemma:

Let p_{1}, \ldots, p_{n} and q_{1}, \ldots, q_{n} be points in \mathbb{R}^{m}. If $\left\|p_{i}-p_{j}\right\|=\left\|q_{i}-q_{j}\right\|$ for every i, j in $1, \ldots, n$, then there exists a rigid transformation R such that $R\left(p_{i}\right)=q_{i}$ for all i.

Folklore Lemma

- Proof:

Let $x_{i}=p_{i}-p_{n}$ and $y_{i}=q_{i}-q_{n}$ for $i=1, \ldots, n$. We claim that $\left\langle x_{i}, x_{j}\right\rangle=$ $\left\langle y_{i}, y_{j}\right\rangle$ for all i, j. To see this, we have the following calculation:

$$
\begin{aligned}
\left\langle x_{i}, x_{j}\right\rangle & =\left\langle p_{i}-p_{n}, p_{j}-p_{n}\right\rangle \\
& =\frac{\left\langle p_{i}-p_{n}, p_{i}-p_{n}\right\rangle+\left\langle p_{j}-p_{n}, p_{j}-p_{n}\right\rangle-\left\langle p_{i}-p_{j}, p_{i}-p_{j}\right\rangle}{2} \\
& =\frac{\left\|p_{i}-p_{n}\right\|+\left\|p_{j}-p_{n}\right\|-\left\|p_{i}-p_{j}\right\|}{2} \\
& =\frac{\left\|q_{i}-q_{n}\right\|+\left\|q_{j}-q_{n}\right\|-\left\|q_{i}-q_{j}\right\|}{2} \\
& =\frac{\left\langle q_{i}-q_{n}, q_{i}-q_{n}\right\rangle+\left\langle q_{j}-q_{n}, q_{j}-q_{n}\right\rangle-\left\langle q_{i}-q_{j}, q_{i}-q_{j}\right\rangle}{2} \\
& =\left\langle q_{i}-q_{n}, q_{j}-q_{n}\right\rangle=\left\langle y_{i}, y_{j}\right\rangle
\end{aligned}
$$

Now, let $X=\left[x_{1}, \cdots, x_{n}\right]$ and $Y=\left[y_{1}, \cdots, y_{n}\right]$. We have shown above that $X^{T} X=Y^{T} Y$. Now, $X^{T} X$ is symmetric and positive semidefinite, and hence can be written as $Q \Lambda Q^{T}$ for an orthogonal Q and a non-negative diagonal matrix Λ. Since Λ, is non-negative, we can write $X^{T} X=Y^{T} Y=Q \Lambda^{1 / 2} \Lambda^{1 / 2} Q^{T}$. Therefore, using the singular value decomposition, we can write X as $U_{X} \Lambda^{1 / 2} Q^{T}$ and Y as $U_{Y} \Lambda^{1 / 2} Q^{T}$ for orthogonal U_{X} and U_{Y}. Then, we can write $Y=M X$ for orthogonal $M=U_{Y} U_{X}^{T}$. Moreover, it is easy to verify that $M x_{i}=y_{i}$ for $i=1, \ldots, n$. To finish the proof, we note that $M\left(p_{i}-p_{n}\right)=q_{i}-q_{n}$ or $q_{i}=M p_{i}+q_{n}-M p_{n}$ so there is a rigid transformation from p_{i} to q_{i} with the orthogonal matrix M and translation vector $q_{n}-M p_{n}$.

Digression:

Counterexample

- ID Counterexample:

$$
P=\{0,1,4,10,12,17\} \quad Q=\{0,1,8,11,13,17\}
$$

It can be verified that the distribution of distances is the multiset:

$$
d(P)=d(Q)=\{1,2,3,4,5,6,7,8,9,10,11,12,13,16,17\}
$$

- 2D Counterexample:

Main Idea

- With Folklore Lemma in mind, show that if two point sets have the same distribution of pairwise distances, they have the same distance matrices up to a relabeling of the points.

Some Notation

- Convention:

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a labeled set of n points. Then we let $d_{P}: \mathcal{P} \rightarrow \mathbb{R}$ be defined as $d_{P}(\{i, j\})=\left\|p_{i}-p_{j}\right\|^{2}$.

- Corollary:

If n-point configurations P and Q have the same distribution of distances, then there exists a permutation ϕ of \mathcal{P} such that $d_{P}(\phi(\{i, j\}))=d_{Q}(\{i, j\})$ for all $\{i, j\} \in \mathcal{P}$.

A Weaker Result

Let P be a configuration of n points. Then, there exists neighborhoods of p_{i} such that if Q if a configuration of n points with q_{i} in the neighborhood of p_{i} and having the same distribution of distances as P, then P and Q are the same up to a rigid transformation and a relabeling of the points.

- Proof:

Suppose for the purpose of contradiction that there exists a sequence of configurations $\left\{Q_{k}\right\}_{k=1}^{\infty}$ converging to P such that none of Q_{k} can be mapped to P via rigid transformation and relabeling, but there exists a sequence of permutations $\left\{\phi_{k}\right\}_{k=1}^{\infty}$ such that $d_{P}\left(\phi_{k}(\{i, j\})\right)=d_{Q_{k}}(\{i, j\})$. Since there are finitely many permutations ϕ_{k}, we can pick ϕ_{1}, for instance, and let $\left\{R_{l}\right\}_{l=1}^{\infty}$ be the subsequence of $\left\{Q_{k}\right\}_{k=1}^{\infty}$ where $\phi_{k}=\phi_{1}$. Then, taking the limit $\mid \rightarrow \infty$, we have $d_{P}\left(\phi_{1}(\{i, j\})\right)=\lim _{l \rightarrow \infty} d_{R_{l}}(\{i, j\})$. Since $\left\{R_{l}\right\}_{l=1}^{\infty}$ converges to P, we then have $d_{P}\left(\phi_{1}(\{i, j\})\right)=d_{P}(\{i, j\})$. But then, we have $d_{P}(\{i, j\})=d_{Q_{k}}(\{i, j\})$ and by the Folklore Lemma, there is a rigid transformation from P to Q_{k}, so we have a contradiction.

Relabelings

A permutation ϕ of \mathcal{P} is a relabeling if there exists a permutation π of $\{1, \ldots, n\}$ such that $\phi(\{i, j\})=\{\pi(i), \pi(j)\}$.

- Corollary:

If there exists a relabeling ϕ of \mathcal{P} such that $d_{P}(\phi(\{i, j\}))=d_{Q}(\{i, j\})$, then there is a permutation π of $\{1, \ldots, n\}$ such that $p_{\pi(1)}, \ldots, p_{\pi(n)}$ has the same distance matrix as $q_{1}, \ldots q_{n}$, and therefore, by the Folklore Lemma, there is a rigid transformation from $p_{\pi(1)}, \ldots, p_{\pi(n)}$ to $q_{1}, \ldots q_{n}$.

- We want to show most point sets with the same distribution of distances have a relabeling.

Key Lemma

Suppose $n \neq 4$. Then a permutation ϕ of \mathcal{P} is a relabeling if and only if for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$.

- Proof:

For every $n \leq 3$, every ϕ is a relabeling and $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. Therefore, we may assume that $n \geq 5$. The only if part of the statement is clear by the definition of a relabeling, so we will show the if direction.

Suppose we have ϕ a permutation of \mathcal{P} such that for all pairwise distinct indices i, j, k we have $\phi(\{i, j\}) \cap \phi(\{i, k\}) \neq \emptyset$. We note that since ϕ is a permutation, the intersection must then contain only one element. Then, we argue that for i, j, k, l pairwise distinct, $\phi(\{i, j\}) \cap \phi(\{i, k\}) \cap \phi(\{i, l\}) \neq \emptyset$. Suppose otherwise. Then, we can write $\phi(\{i, j\})=\{a, b\}, \phi(\{i, k\})=\{a, c\}$, and $\phi(\{i, l\})=\{b, c\}$. Now, since we have more than 4 points, we can choose m distinct from $i, j, k, l . \phi(\{i, m\})$ must intersect $\{a, b\},\{a, c\}$, and $\{b, c\}$. Since $\phi(\{i, m\})$ only has two elements, it must be one of the sets $\{a, b\},\{a, c\}$, and $\{b, c\}$, but then that would violate ϕ being a permutation. Therefore, $\phi(\{i, j\}) \cap$ $\phi(\{i, k\}) \cap \phi(\{i, l\}) \neq \emptyset$.

Then if we fix an i and choose any distinct $j, k, \phi(\{i, j\}) \cap \phi(\{i, k\})$ must contain an distinct element a and the above shows that a belongs to any $\phi(\{i, l\})$ where l is distinct from i, j, k. Therefore $\bigcap_{l \neq i} \phi(\{i, l\})=a$ and we can define the map σ from $\{1, \ldots, n\}$ to itself where $\sigma(i)=a$.

To show that σ is a permutation, we simply need to show that it is injective. To do this, we let M_{i} be the set of all pairs with i in them. Then, $\phi\left(M_{i}\right) \subseteq M_{\sigma(i)}$. But ϕ is a permutation and $\left|M_{i}\right|=\left|M_{\sigma(i)}\right|$ so therefore $\phi\left(M_{i}\right)=M_{\sigma(i)}$. Now consider i, j with $\sigma(i)=\sigma(j)$. Then, $M_{\sigma(i)}=M_{\sigma(j)}$ so $\phi\left(M_{i}\right)=\phi\left(M_{j}\right)$. But ϕ is a permutation so $M_{i}=M_{j}$ and therefore $i=j$ so σ is injective.

Now, consider $\phi(\{i, j\})$. By the above discussion, it contains both $\sigma(i)$ and $\sigma(j)$, so $\phi(\{i, j\})$ must be $\{\sigma(i), \sigma(j)\}$. Since σ is a permutation, ϕ is therefore a relabeling.

4 Points on a Plane

The proof that most point configurations are reconstructible from pairwise distances relies on a certain determinant that is zero when four points $p_{i}, p_{j}, p_{k}, p_{l}$ lie on a plane:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)=0
$$

where $a=-2 d_{P}(\{i, l\}), b=d_{P}(\{i, j\})-d_{P}(\{i, l\})-d_{P}(\{j, l\}), c=d_{P}(\{i, k\})-$ $d_{P}(\{i, l\})-d_{P}(\{k, l\}), d=-2 d_{P}(\{j, l\}), e=d_{P}(\{j, k\})-d_{P}(\{j, l\})-d_{P}(\{k, l\})$ and $f=-2 d_{P}(\{k, l\})$.

This determinant can be expanded as a polynomial:

$$
\begin{aligned}
g(U, V, W, X, Y, Z) & =2 U^{2} Z+2 U V X-2 U V Y-2 U V Z-2 U X W-2 U X Z+ \\
& 2 U Y W-2 U Y Z-2 U W Z+2 U Z^{2}+2 V^{2} Y-2 V X Y- \\
& 2 V X W+2 V Y^{2}-2 V Y W-2 V Y Z+2 V W Z+2 X^{2} W- \\
& 2 X Y W+2 X Y Z+2 X W^{2}-2 X W Z
\end{aligned}
$$

where $U=d_{P}(\{i, j\}), V=d_{P}(\{i, k\}), W=d_{P}(\{i, l\}), X=d_{P}(\{j, k\})$, $Y=d_{P}(\{j, l\})$ and $Z=d_{P}(\{k, l\})$.

Main Result

Let $n \geq 5$ and P be a configuration of n points in \mathbb{R}^{2}. Suppose for choices of indices $a, b, c, d, e, f, g, h, i, j, k$ such that the pairs $U=\{a, b\}, V=\{d, e\}, W=$ $\{f, g\}, X=\{h, i\}, Y=\{j, k\}, Z=\{a, c\}$ are distinct, we have:

$$
g\left(d_{P}(U), d_{P}(V), d_{P}(W), d_{P}(X), d_{P}(Y), d_{P}(Z)\right) \neq 0
$$

then P is reconstructible from pairwise distances.

- Proof:

Suppose that Q is an n-point configuration in \mathbb{R}^{2} with the same distribution of distances as P. Then, there exists a permutation ϕ such that $d_{Q}(\{i, j\})=$ $d_{P}(\phi(\{i, j\}))$ for all $i \neq j$. We then try to show that ϕ^{-1} is a relabeling, and thus ϕ is also a relabeling.

Now pick any pairwise distinct indices r, s, t, u. Now since $q_{r}, q_{s}, q_{t}, q_{u}$ lie on a plane,

$$
g\left(d_{Q}(\{r, s\}), d_{Q}(\{r, t\}), d_{Q}(\{r, u\}), d_{Q}(\{s, t\}), d_{Q}(\{s, u\}), d_{Q}(\{t, u\})\right)=0
$$

But then, it follows that

$$
g\left(d_{P}(\phi(\{r, s\})), d_{P}(\phi(\{r, t\})), d_{P}(\phi(\{r, u\})), d_{P}(\phi(\{s, t\})), d_{P}(\phi(\{s, u\})), d_{P}(\phi(\{t, u\}))\right)=0
$$

Therefore, it follows that $\phi(\{r, s\})$ and $\phi(\{t, u\})$ are disjoint, otherwise the pairs would satisfy the conditions of the U, V, W, X, Y, Z stated above and

$$
g\left(d_{P}(U), d_{P}(V), d_{P}(W), d_{P}(X), d_{P}(Y), d_{P}(Z)\right) \neq 0
$$

so we have show that ϕ maps disjoint sets $\{r, s\}$ and $\{t, u\}$ to disjoint sets. We take the contrapositive and note that if $\phi(\{r, s\})$ and $\phi(\{t, u\})$ intersect, then $\{r, s\}$ and $\{t, u\}$ also necessarily intersect. Thus, for all i, j, k we have

$$
\phi^{-1}(\{i, j\}) \cap \phi^{-1}(\{i, k\}) \neq \emptyset
$$

and hence ϕ^{-1} is a relabeling. But then there exists a permutation π of $\{1, \ldots, n\}$ such that $\phi^{-1}(\{i, j\})=\{\pi(i), \pi(j)\}$. Then, clearly, $\phi(\{i, j\})=$ $\left\{\pi^{-1}(i), \pi^{-1}(j)\right\}$ and thus ϕ is also a relabeling. Thus, by Corollary 4.5, there is a rigid transformation and a relabeling that maps P to Q.

Generalization

- Can be generalized for points in R^{m} for n greater than or equal to $\mathrm{m}+2$.
- Similar method.

Computation

- Experiments testing this general position condition are not very fast.
- $O\left(n^{\prime \prime}\right)$ time

More Extensions

- Oriented rigid transformations.
- Scalings.
- Graphs with edge weights using distribution of sub-triangles.

Open Problems

- Complete test for reconstructibility.
- Relate to Gromov-Hausdorff: Point sets are close w.r.t GH distance when their pairwise distance distributions are close under some measure.

