Size Theory and Shape Matching

Yi Ding

CS 468 Presentation 2008

Introduction	1-D Size Theory	Multi-D Size Theory	Topological Point of View

What is Size Theory?

- Introduced by P. Frosini et.al.
- A geometrical/topological approach towards shape comparison.
- Natural pseudo-distance and reduced size function.

Introduction	1-D Size Theory	Multi-D Size Theory	Topological Point of View

Model Setup

- Size pair: $(\mathcal{M}, \vec{\phi})$ where $\vec{\phi} : \mathcal{M} \to \mathbb{R}^k$
- To compare shapes $(\mathcal{M}, \vec{\phi})$ and $(\mathcal{N}, \vec{\psi})$, need to compute:

Definition

Natural pseudo-distance

$$inf_{h \in Hom(\mathcal{M},\mathcal{N})}max_{P \in \mathcal{M}}|\phi(P) - \psi(h(P))|$$

where $Hom(\mathcal{M}, \mathcal{N})$ is the set of all homeomorphisms between \mathcal{M} and \mathcal{N} , the natural pseudo-distance equals ∞ if $Hom(\mathcal{M}, \mathcal{N}) = \emptyset$

A computable Natural pseudo-distance

Natural pseudo-dist is 2, ϕ and ϕ' are restrictions of $\zeta : \zeta(x, y, z) = z$

Topological Point of View

Lower Bounds for Natural pseudo-distance

Lower bounds via reduced size function Denoti and Erosipi (2004)

- Donati and Frosini (2004)
- *d_{match}* Frosini *et.al* (2008).
- Lower bounds via size homotopy group
 - Frosini and Mulazzani (1999).

Introduction	1-D Size Theory	Multi-D Size Theory	Topological Point of View

Reduced size function

- Define the diagonal as $\Delta = \{(x, y) \in \mathbb{R}^2 : x = y\}$
- Define the open half-plane above diagonal as $\Delta^+ = \{(x, y) \in \mathbb{R}^2 : x < y\}$
- Homotopy: *P* and *Q* are ⟨φ ≤ y⟩-homotopic if they are connected by a path in the sub level-set *M*⟨φ ≤ y⟩, written as *P* ≃_{φ≤y} *Q*.

Definition

The reduced size function $l^*_{(\mathcal{M},\phi)} : \Delta^+ \to \mathbb{N}$ is defined as $l^*_{(\mathcal{M},\phi)}(\mathbf{x},\mathbf{y}) = \operatorname{card}(\mathcal{M}\langle \phi \leq \mathbf{x} \rangle / \cong_{\phi \leq \mathbf{y}})$.

 $I^*_{(\mathcal{M},\phi)}(x,y)=3$

 $J^*_{(\mathcal{M},\phi)}(x,y)=2$

 $I^*_{(\mathcal{M},\phi)}(x,y)=1$

Properties of reduced size functions

• $I^*_{(\mathcal{M},\phi)}(x,y)$ is non-decreasing in x and non-increasing in y.

•
$$I^*_{(\mathcal{M},\phi)}(x,y) < +\infty$$
 for $x < y$

•
$$I^*_{(\mathcal{M},\phi)}(x,y) = 0$$
 for $x < \min_{P \in \mathcal{M}} \phi(P)$.

- *I*^{*}_(M,φ)(*x*, *y*) = +∞ for any *x* and *y s.t.* ∃ a non-isolated point Q ∈ M with y < φ(Q) < x.
- For every y ≥ max_{P∈M}φ(P), I^{*}_(M,φ)(x, y) is equal to the number of arcwise connected components N of M such that x ≥ min_{P∈N}φ(P).

Introduction	1-D Size Theory	Multi-D Size Theory	Topological Point of View
Formal Seri	es		

• Denote the set of vertical lines of \mathbb{R}^2 by \mathcal{R} , let $\Delta^* = \Delta^+ \cup \mathcal{R}$.

Definition

Any function $m : \Delta^* \to \mathcal{N}$ is said to be a formal series in Δ^* . The set supp $(p) = \{p \in \mathcal{R} : m(r) \neq 0\}$ is called the support of *m*.

Corner Points and Lines

Lemma

Let
$$x_1 \le x_2 < y_1 \le y_2$$
, then
 $l^*_{(\mathcal{M},\phi)}(x_2,y_1) - l^*_{(\mathcal{M},\phi)}(x_1,y_1) \ge l^*_{(\mathcal{M},\phi)}(x_2,y_2) - l^*_{(\mathcal{M},\phi)}(x_1,y_2)$

Definition

For $p = (x, y) \in \Delta^+$, define $\mu(p)$ as the minimum over all positive ϵ with $x + \epsilon < y - \epsilon$ of $l^*_{(\mathcal{M},\phi)}(x + \epsilon, y - \epsilon) - l^*_{(\mathcal{M},\phi)}(x - \epsilon, y - \epsilon) - l^*_{(\mathcal{M},\phi)}(x + \epsilon, y + \epsilon) + l^*_{(\mathcal{M},\phi)}(x - \epsilon, y + \epsilon)$. For every vertical line r, with equation x = k, define $\mu(r)$ as the minimum over all positive ϵ with $k + \epsilon < 1/\epsilon$ of $l^*_{(\mathcal{M},\phi)}(k + \epsilon, 1/\epsilon) - l^*_{(\mathcal{M},\phi)}(k - \epsilon, 1/\epsilon)$

Corner Points and Lines

- A corner point is a point p ∈ Δ⁺ such that μ(p) > 0
- A corner line is a vertical line r ∈ R such that µ(r) > 0. a.k.a corner point at ∞.

Corner Points and Lines

Theorem

Equivalence of Corner Point representation

- Let S_ρ denote the set (x, y) ∈ ℝ² : x < y − ρ, We say *I*^{*}_(M,φ) ≅_ρ *I*^{*}_(N,ψ) if the the two reduced size functions differ only in a vanising subset of S_ρ
- Let L_ρ denote the quotient of all size functions under ≅_ρ and let Ω_ρ denote the set of formal series. There exist a bijection α̃_ρ : L_ρ → Ω_ρ for every ρ ≥ 0.

Comparing reduced size functions

Definition

For any (x, y), (x', y') in $\overline{\Delta}^*$, define the distance

$$d((x,y),(x',y')) = min\{max\{|x-x'|,|y-y'|\},max\frac{y-x}{2},\frac{y'-x'}{2}\}$$

Definition

If a_i and b_i are two representative sequence for l_1^* and l_2^* respectively, then the matching distance between l_1^* and l_2^* is given by:

$$d_{match}(l_1^*, l_2^*) = inf_\sigma sup_i d(a_i, b_i)$$

where i varies in ${\cal N}$ and σ varies among all the bijections from ${\cal N}$ to ${\cal N}.$

Stability and Lower bounds

Theorem

Let (\mathcal{M}, ϕ) be a size pair. For every real number $\epsilon \geq 0$ and for every measuring function $\psi : \mathcal{M} \to \mathbb{R}$ such that $\max_{P} |\phi(P) - \psi(P)| \leq \epsilon$, we have

$$d(I^*_{(\mathcal{M},\phi)}, I^*_{(\mathcal{N},\psi)}) \leq \epsilon$$

Theorem

Let (\mathcal{M}, ϕ) and (\mathcal{N}, ψ) be two size pairs, with \mathcal{M} and \mathcal{N} homeomorphic, then

$$\inf_{f} \max_{P} |\phi(P) - \psi(P)| \geq d_{match}(l^*_{(\mathcal{M},\phi)}, l^*_{(\mathcal{N},\psi)})$$

where $f \in Hom(\mathcal{M}, \mathcal{N})$

Admissible Pair

Definition

For every unit vector $\vec{l} \in \mathbb{R}^k$ such that $l_i > 0$ for every i = 1, ..., k and for every vector $\vec{b} \in \mathbb{R}^k$ such that $\sum_{i=1}^k b_i = 0$, we say (\vec{l}, \vec{b}) is admissible, denote by Adm_k. For every $(\vec{l}, \vec{b}) \in Adm_k$, we define the half-plane $\pi_{(\vec{l}, \vec{b})}$ to be

$$ec{x} = sec{l} + ec{b}$$

 $ec{y} = tec{l} + ec{b}$

where $s < t \in \mathbb{R}$

Introduction	1-D Size Theory	Multi-D Size Theory	Topological Point of View
Foliation			

• For
$$(\vec{l}, \vec{b}) \in Adm_k$$
, a foliation could be defined as $F_{(\vec{l}, \vec{b})}^{\vec{\phi}}(P) = max_{i=1,...,k} \{\frac{\phi_i(P) - b_i}{l_i}\}$

Theorem

For every $(ec{x},ec{y})\in\pi_{(ec{l},ec{b})}$, the following equality holds,

$$I^*_{(\mathcal{M},\phi)}(\vec{x},\vec{y}) = I^*_{(\mathcal{M},\mathcal{F}_{(\vec{l},\vec{b})}^{\vec{\phi}})}(s,t)$$

• The 1-D reduced size functions could be used for shape comparison

Stablity of matching

Lemma

If $(\mathcal{M}, \vec{\phi})$ and $(\mathcal{M}, \vec{\psi})$ are size pairs with $\max_{P \in \mathcal{M}} \|\vec{\phi}(P) - \vec{\psi}(P)\| \le \epsilon$, then for each $(\vec{l}, \vec{b}) \in Adm_k$, it holds that

$$d_{match}(I^*_{(\mathcal{M}, \mathcal{F}_{(\vec{l}, \vec{b})}^{\vec{\phi}})}, I^*_{(\mathcal{M}, \mathcal{F}_{(\vec{l}, \vec{b})}^{\vec{\psi}})}) \leq \frac{\epsilon}{\min_{i=1, \dots, k} I_i}$$

Lower bound

Theorem

Let $(\mathcal{M}, \vec{\phi})$ and $(\mathcal{M}, \vec{\psi})$ be two size pairs with \mathcal{M} and \mathcal{N} homeomorphic. Setting $d((\mathcal{M}, \vec{\phi}), (\mathcal{M}, \vec{\psi})) = \inf_{f} max_{P} \|\vec{\phi}(P) - \vec{\psi}(f(P))\|$, then $\sup_{(\vec{l}, \vec{b}) \in Adm_{k}} \min_{i=1,...,k} I_{i} \cdot d_{match}(I^{*}_{(\mathcal{M}, F^{\vec{\phi}}_{(\vec{l}, \vec{b})})}, I^{*}_{(\mathcal{M}, F^{\vec{\psi}}_{(\vec{l}, \vec{b})})}) \leq d((\mathcal{M}, \vec{\phi}), (\mathcal{M}, \vec{\psi}))$

• The L-H-S is the extended distance *D_{match}*.

Example

Figure: The topological spaces and reduced size functions

Connection to Persistent Homology

- $I_{(\mathcal{M},\phi)}(x,y) = \beta_0^{x,y}$ in 1-D.
- Reduced size functions plays the role of filtration functions.
- Corner points correspond to persistence intervals.
- Stabilty can be proved in both cases.