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Abstract

This report is a summary of [BK06], which gives a simpler, albeit less
general proof for the result of [BK04].

1 Introduction

[BK04] and [BK06] study the circumstances when sets of n-points in Euclidean
space are determined up to rigid transformations by the distribution of unlabeled
pairwise distances. In fact, they show the rather surprising result that any set
of n-points in general position are determined up to rigid transformations by
the distribution of unlabeled distances.

1.1 Practical Motivation

The results of [BK04] and [BK06] are partly motivated by experimental results
in [OFCD]. [OFCD] is an experimental study evaluating the use of shape distri-
butions to classify 3D objects represented by point clouds. A shape distribution
is a the distribution of a function on a randomly selected set of points from
the point cloud. [OFCD] tested various such functions, including the angle be-
tween three random points on the surface, the distance between the centroid
and a random point, the distance between two random points, the square root
of the area of the triangle between three random points, and the cube root of
the volume of the tetrahedron between four random points. Then, the distri-
butions are compared using dissimilarity measures, including χ2, Battacharyya,
and Minkowski LN norms for both the pdf and cdf for N = 1, 2,∞.

The experimental results showed that the shape distribution function that
worked best for classification was the distance between two random points and
the best dissimilarity measure was the pdf L1 norm. [BK04] provides a partial
theoretical justification for these results by showing that there exists a general
position assumption such that the distribution of pairwise distances completely
determines the shape of the point set. This result, however, only considers the
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case when the distribution of pairwise distances are exactly the same. Whether
a similar result holds when the distributions are close is an open problem.

2 Preliminaries

Definition 2.1 (General Position). We use the definition of general position
given in [M]. Let a set of n points in Rd be specified by a vector t = (t1, t2, . . . , tm)
for m = dn. Then, a general position condition is a condition that can be
expressed as

∧
i pi(t) 6= 0 for a countable number of polynomials pi.

The intuition behind a general position condition is that configurations in
general position lie arbitrarily close to any given configuration, as polynomials
only have a finite number of zeros. [BK04] and [BK06] show a general position
condition that also results in the point configuration being completely deter-
mined by the distribution of pairwise distances up to rigid transformations. We
define rigid transformations as the following:

Definition 2.2 (Rigid Transformation). Let p be a point in Rm. Then a rigid
transformation is a function R : Rm → Rm that can be written as R(p) = Mp+T
where M is an orthogonal m-by-m matrix and T is a column vector in Rm.

Definition 2.3 (Distribution of Pairwise Distances). Given a set of points P ,
let the distribution of pairwise distances d(P ) be the multiset {||pi − pj ||}i<j.

We also define reconstructibility from pairwise distances as the following:

Definition 2.4 (Reconstructibility from Pairwise Distances). We say that p1, . . . , pn ∈
Rm is reconstructible from pairwise distances if for every q1, . . . , qn ∈ Rm with
the same distribution of pairwise distances, there exists a rigid transformation R
and a permutation π of {1, . . . , n}, such that P (pi) = qπ(i) for every i ∈ 1, . . . , n.

3 Folklore Lemma

Because it is tricky to work directly with point sets under rigid transformations,
we will instead compare instead the distance matrices. The Folklore Lemma
states that two configurations of points have the same distance matrices if and
only if there exists a rigid transformation that maps one configuration to the
other. The following is an adaptation of the proof given in [BK04], however
using the language of more elementary linear algebra.

Lemma 3.1 (Folklore Lemma). Let p1, . . . , pn and q1, . . . , qn be points in Rm.
If ||pi − pj || = ||qi − qj || for every i, j in 1, . . . , n, then there exists a rigid
transformation R such that R(pi) = qi for all i.
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Proof. Let xi = pi − pn and yi = qi − qn for i = 1, . . . , n. We claim that
〈xi, xj〉 = 〈yi, yj〉 for all i, j. To see this, we have the following calculation:

〈xi, xj〉 = 〈pi − pn, pj − pn〉

=
〈pi − pn, pi − pn〉+ 〈pj − pn, pj − pn〉 − 〈pi − pj , pi − pj〉

2

=
||pi − pn||+ ||pj − pn|| − ||pi − pj ||

2

=
||qi − qn||+ ||qj − qn|| − ||qi − qj ||

2

=
〈qi − qn, qi − qn〉+ 〈qj − qn, qj − qn〉 − 〈qi − qj , qi − qj〉

2
= 〈qi − qn, qj − qn〉 = 〈yi, yj〉

Now, let X = [x1, · · · , xn] and Y = [y1, · · · , yn]. We have shown above
that XTX = Y TY . Now, XTX is symmetric and positive semidefinite, and
hence can be written as QΛQT for an orthogonal Q and a non-negative diagonal
matrix Λ. Since Λ, is non-negative, we can writeXTX = Y TY = QΛ1/2Λ1/2QT .
Therefore, using the singular value decomposition, we can write X as UXΛ1/2QT

and Y as UY Λ1/2QT for orthogonal UX and UY . Then, we can write Y = MX
for orthogonal M = UY U

T
X . Moreover, it is easy to verify that Mxi = yi

for i = 1, . . . , n. To finish the proof, we note that M(pi − pn) = qi − qn or
qi = Mpi + qn −Mpn so there is a rigid transformation from pi to qi with the
orthogonal matrix M and translation vector qn −Mpn.

Now, it is obvious that the distribution of pairwise distances remains the
same after any rigid transformation. We note that it is not the case that all
point configurations are reconstructible from pairwise distances: [B] came up
with a counterexample for a set of points in one dimension as follows:

P = {0, 1, 4, 10, 12, 17} Q = {0, 1, 8, 11, 13, 17}

It can be verified that the distribution of distances is the multiset:

d(P ) = d(Q) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17}

for both point sets while it is also clear that there is no isometry from P to
Q. [BK04] show a counterexample in two dimensions, see Figure 1. [BK04]
and [BK06], however, show the surprising result that there is a general position
condition for n points where n ≥ m + 2 that implies the points are in fact
reconstructible from pairwise distances. For concreteness, we will describe the
proof for n-point configurations for n ≥ 5 in R2.

4 Most Point Configurations are Reconstructible

With the Folklore Lemma in mind, our approach now is to show that two point
sets with the same distribution of distances have the same distance matrices
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Figure 1: 2D Counterexample

up to a relabeling of points. For a set of n points, the distance matrices are
determined by

(
n
2

)
pairs corresponding to the distances between distinct points.

For convenience, we let P = {{i, j}|1 ≤ i < j ≤ n} be all such pairs of indices.
Then, we introduce the following notation to denote distances between points
in point configurations:

Definition 4.1. Let P = {p1, . . . , pn} be a labeled set of n points. Then we let
dP : P → R be defined as dP ({i, j}) = ||pi − pj ||2.

Our convention is to use uppercase to denote the configuration of points and
the corresponding subscripted lowercase letters to denote the labeled points of
that configuration, e.g., given a set of points P , pi will refer to the ith point of
P . Then, we have the following corollary:

Corollary 4.2. If n-point configurations P and Q have the same distribution
of distances, then there exists a permutation φ of P such that dP (φ({i, j})) =
dQ({i, j}) for all {i, j} ∈ P.

Equipped with this notation, we then show the following preliminary result
that if two point configurations are sufficiently close and have the same distri-
bution of distances, then they are the same up to a rigid transformation and a
relabeling of points. This result is weaker than desired but gives some intuition
on why point configurations might be determined by their pairwise distances:

Theorem 4.3. Let P be a configuration of n points.Then, there exists neighbor-
hoods of pi such that if Q if a configuration of n points with qi in the neighborhood
of pi and having the same distribution of distances as P , then P and Q are the
same up to a rigid transformation and a relabeling of the points.

Proof. Suppose for the purpose of contradiction that there exists a sequence of
configurations {Qk}∞k=1 converging to P such that none of Qk can be mapped
to P via rigid transformation and relabeling, but there exists a sequence of
permutations {φk}∞k=1 such that dP (φk({i, j})) = dQk

({i, j}). Since there are
finitely many permutations φk, we can pick φ1, for instance, and let {Rl}∞l=1 be
the subsequence of {Qk}∞k=1 where φk = φ1. Then, taking the limit | → ∞, we
have dP (φ1({i, j})) = liml→∞ dRl

({i, j}). Since {Rl}∞l=1 converges to P , we then
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have dP (φ1({i, j})) = dP ({i, j}). But then, we have dP ({i, j}) = dQk
({i, j}) and

by the Folklore Lemma, there is a rigid transformation from P to Qk, so we
have a contradiction.

However, to show that such a property holds for point configurations that are
far apart, we have to develop different machinery. First, we consider relabelings,
which are permutations with the following property:

Definition 4.4 (Relabelings). A permutation φ of P is a relabeling if there
exists a permutation π of {1, . . . , n} such that φ({i, j}) = {π(i), π(j)}.

Corollary 4.5. If there exists a relabeling φ of P such that dP (φ({i, j})) =
dQ({i, j}), then there is a permutation π of {1, . . . , n} such that pπ(1), . . . , pπ(n)

has the same distance matrix as q1, . . . qn, and therefore, by the Folklore Lemma,
there is a rigid transformation from pπ(1), . . . , pπ(n) to q1, . . . qn.

Therefore, we want to show that most n-point configurations P and Q with
the same distribution of distances in fact have a relabeling φ of P such that
dP (φ({i, j})) = dQ({i, j}) for all {i, j} ∈ P. To that end, we show the following
key lemma:

Lemma 4.6. Suppose n 6= 4. Then a permutation φ of P is a relabeling if and
only if for all pairwise distinct indices i, j, k we have φ({i, j}) ∩ φ({i, k}) 6= ∅.

Proof. For every n ≤ 3, every φ is a relabeling and φ({i, j}) ∩ φ({i, k}) 6= ∅.
Therefore, we may assume that n ≥ 5. The only if part of the statement is clear
by the definition of a relabeling, so we will show the if direction.

Suppose we have φ a permutation of P such that for all pairwise distinct
indices i, j, k we have φ({i, j}) ∩ φ({i, k}) 6= ∅. We note that since φ is a
permutation, the intersection must then contain only one element. Then, we
argue that for i, j, k, l pairwise distinct, φ({i, j}) ∩ φ({i, k}) ∩ φ({i, l}) 6= ∅.
Suppose otherwise. Then, we can write φ({i, j}) = {a, b}, φ({i, k}) = {a, c},
and φ({i, l}) = {b, c}. Now, since we have more than 4 points, we can choose m
distinct from i, j, k, l. φ({i,m}) must intersect {a, b}, {a, c}, and {b, c}. Since
φ({i,m}) only has two elements, it must be one of the sets {a, b}, {a, c}, and
{b, c}, but then that would violate φ being a permutation. Therefore, φ({i, j})∩
φ({i, k}) ∩ φ({i, l}) 6= ∅.

Then if we fix an i and choose any distinct j, k, φ({i, j}) ∩ φ({i, k}) must
contain an distinct element a and the above shows that a belongs to any φ({i, l})
where l is distinct from i, j, k. Therefore

⋂
l 6=i φ({i, l}) = a and we can define

the map σ from {1, . . . , n} to itself where σ(i) = a.
To show that σ is a permutation, we simply need to show that it is injective.

To do this, we let Mi be the set of all pairs with i in them. Then, φ(Mi) ⊆Mσ(i).
But φ is a permutation and |Mi| = |Mσ(i)| so therefore φ(Mi) = Mσ(i). Now
consider i, j with σ(i) = σ(j). Then, Mσ(i) = Mσ(j) so φ(Mi) = φ(Mj). But φ
is a permutation so Mi = Mj and therefore i = j so σ is injective.

Now, consider φ({i, j}). By the above discussion, it contains both σ(i) and
σ(j), so φ({i, j}) must be {σ(i), σ(j)}. Since σ is a permutation, φ is therefore
a relabeling.
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The proof that most point configurations are reconstructible from pair-
wise distances relies on a certain determinant that is zero when four points
pi, pj , pk, pl lie on a plane:

det

 a b c
b d e
c e f

 = 0

where a = −2dP ({i, l}), b = dP ({i, j})−dP ({i, l})−dP ({j, l}), c = dP ({i, k})−
dP ({i, l})−dP ({k, l}), d = −2dP ({j, l}), e = dP ({j, k})−dP ({j, l})−dP ({k, l})
and f = −2dP ({k, l}).

This determinant can be expanded as a polynomial:

g(U, V,W,X, Y, Z) = 2U2Z + 2UV X − 2UV Y − 2UV Z − 2UXW − 2UXZ+

2UYW − 2UY Z − 2UWZ + 2UZ2 + 2V 2Y − 2V XY−
2V XW + 2V Y 2 − 2V YW − 2V Y Z + 2VWZ + 2X2W−
2XYW + 2XY Z + 2XW 2 − 2XWZ

where U = dP ({i, j}), V = dP ({i, k}), W = dP ({i, l}), X = dP ({j, k}),
Y = dP ({j, l}) and Z = dP ({k, l}). Thus, we are ready for the main result:

Theorem 4.7. Let n ≥ 5 and P be a configuration of n points in R2. Suppose
for choices of indices a, b, c, d, e, f, g, h, i, j, k such that the pairs U = {a, b},
V = {d, e},W = {f, g}, X = {h, i}, Y = {j, k}, Z = {a, c} are distinct, we have:

g(dP (U), dP (V ), dP (W ), dP (X), dP (Y ), dP (Z)) 6= 0

then P is reconstructible from pairwise distances.

Proof. Suppose that Q is an n-point configuration in R2 with the same dis-
tribution of distances as P . Then, there exists a permutation φ such that
dQ({i, j}) = dP (φ({i, j})) for all i 6= j. We then try to show that φ−1 is a
relabeling, and thus φ is also a relabeling.

Now pick any pairwise distinct indices r, s, t, u. Now since qr, qs, qt, qu lie on
a plane,

g(dQ({r, s}), dQ({r, t}), dQ({r, u}), dQ({s, t}), dQ({s, u}), dQ({t, u})) = 0

But then, it follows that

g(dP (φ({r, s})), dP (φ({r, t})), dP (φ({r, u})), dP (φ({s, t})), dP (φ({s, u})), dP (φ({t, u}))) = 0

Therefore, it follows that φ({r, s}) and φ({t, u}) are disjoint, otherwise the pairs
would satisfy the conditions of the U, V,W,X, Y, Z stated above and

g(dP (U), dP (V ), dP (W ), dP (X), dP (Y ), dP (Z)) 6= 0
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so we have show that φ maps disjoint sets {r, s} and {t, u} to disjoint sets. We
take the contrapositive and note that if φ({r, s}) and φ({t, u}) intersect, then
{r, s} and {t, u} also necessarily intersect. Thus, for all i, j, k we have

φ−1({i, j}) ∩ φ−1({i, k}) 6= ∅

and hence φ−1 is a relabeling. But then there exists a permutation π of
{1, . . . , n} such that φ−1({i, j}) = {π(i), π(j)}. Then, clearly, φ({i, j}) =
{π−1(i), π−1(j)} and thus φ is also a relabeling. Thus, by Corollary 4.5, there
is a rigid transformation and a relabeling that maps P to Q.

Corollary 4.8. We note that the above proof gives a general position condition
such that when P satisfies the condition, P is reconstructible from pairwise
distances.

This proof can be generalized for points in Rm for n ≥ m + 2 Similarly,
m + 1 points in Rm form a volume of zero in m + 1 dimensions, so there is a
determinant with the pairwise distances that equals zero. This determinant is
then, as before, expressed as a polynomial and it is possible to show that if for
all choices of indices satisfying the same condition as before, the polynomial is
nonzero, then there exists a relabeling for the point configuration and thus the
point configuration is reconstructible from pairwise distances.

5 Computation

[BK06] also experimented with using the above proof to check if certain point
sets are reconstructible. Note that this test does not always work because there
are many point sets which are reconstructible but do not satisfy the general
position condition in the proof. However, they use an exhaustive search of
indices a, b, c, d, e, f, g, h, i, j, k, resulting in an O(n11) algorithm which is not
very practical. Even for n = 8, their test takes 58375 seconds to complete.
An interesting open problem is if there exists a polynomial time algorithm for
checking reconstructibility.

6 Extensions

[BK03] extend the results to matching under oriented rigid transformations, that
is rotations and translations, and also the case of rotations, translations, and
scalings. The case for oriented rigid transformations is shown using a different
invariant that works for rotations and translations, and the case for scalings
is done by rescaling the distribution of distances by normalizing the maximum
distance. [BK07] considers the case of graphs with edge weights and notes that
if all edge weights are distinct, then graphs are determined up to isomorphism
by the distribution of their sub-triangles, which is the distribution of unordered
triples of distances between three nodes.
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7 Open Problems

• The first open problem that follows directly from the results of [BK06]
is if there actually exists a polynomial time algorithm to test for recon-
structibility.

• A second open problem, motivated by the practical approach in [OFCD]
is to show that for most point configurations, if the distance between the
distributions of pairwise distances is small, then the Gromov-Hausdorff
distance between the point sets is also small. This is slightly related to
Theorem 4.3.
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