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Abstract

This paper investigates current research on size theory. The re-
search reviewed in this paper includes studies on 1-D size theory, multi-
dimensional size theory and their applications to shape matching. This
survey will also address the connections between the size theoretical
approach and other approaches to shape matching.

1 Introduction

Originally proposed as a method for comparison between manifolds, size
theory(cf. [1] [5] [6] [7] [8] [9] [10] [11]) is a new approach towards geomet-
rical/topological shape matching. In a size theoretical framework a shape
is described by a size pair (M, φ), where φ : M → R

k is a k-dimensional
measuring function. Natural pseudo-distance and matching distances are
two important and related dissimilarity measures between size pairs.

The natural pseudo-distance between size pairs (M, φ) and (N , ψ) is
defined as inff∈Hom(M,N ) maxP∈M |φ(P ) − ψ(f(P ))|. Despite its beautiful
geometric formulation, the natural pseudo-distance is very difficult to com-
pute since the infimum is taken over all the homeomorphisms between M
and N . The matching distance dmatch between reduced size functions, be-
ing an easily computable lower bound, is proposed in [6] as an alternative
matching function.

The 1-D size function does not generalize readily to the multidimensional
case, some care must be taken in choosing a suitable foliation. The reduced
size function basically studies the connectedness of sub-level sets. Other
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types of lower bounds also exists, for example, Frosini et.al [11] proposed
a lower bound based on size homotopy groups. The Persistent Homology
approach (cf. [12] [2] [3] [4]) uses higher dimensional topological informa-
tion and it is noted that the zero-dimensional vineyard is closely related to
multidimensional size functions.

The following sections are organized as follows: In section 2 we dis-
cuss 1-D size matching. In section 3 we discuss multidimensional size func-
tions. In section 4 we relate the size-theoretic approach and other topo-
logical/geometrical approaches. In section 5 we conclude this survey and
discuss possible future directions.

2 1-D size functions

Let ∆+ = {(x, y) ∈ R
2 : x < y}. The 1-D reduced size function l∗(M,φ) :

∆+ → N assigns to each point (x, y) ∈ ∆+ the number of connected com-
ponents of the sub level-set {P ∈ M : φ(P ) ≤ x} that is divided by the
equivalence classes of 〈φ ≤ y〉-connectedness. It is easily seen that the size
function is non-decreasing in the first argument and non-increasing in the
second argument (cf. [10]).

Definition 1 For every point p = (x, y) ∈ ∆+, the multiplicity µ(p) is de-

fined as the minimum over all ǫ > 0 with x+ ǫ < y − epsilon of

l∗(M,φ)(x+ǫ, y−ǫ)−l∗(M,φ)(x−ǫ, y−ǫ)−l∗(M,φ)(x+ǫ, y+ǫ)+l∗(M,φ)(x−ǫ, y+ǫ)

Definition 2 For every vertical line r with equation x = k, the multiplicity

µ(r) is defined to be the minimum over all ǫ > 0 with k + ǫ < 1
ǫ

of

l∗(M,φ)(k + ǫ,
1

ǫ
) − l∗(M,φ)(k − ǫ,

1

ǫ
)

Corner points are those points in the half-plane with non-zero multiplicities.
Corner lines (corner points at infinity) are vertical lines with non-zero mul-
tiplicities. The corner points are relatively easy to verify since by definition
one only has to evaluate the reduced size function values at the four cor-
ners of a moving window/interval of variable size. The following observation
about corner points/lines is mentioned in [10] [1],



Theorem 1 For every (x̄, ȳ) ∈ ∆+, we have

l∗(M,φ)(x̄, ȳ) =
∑

(x,y)∈∆∗,x≤x̄,y≤ȳ
µ((x, y))

where ∆∗ is ∆+ extended by the points at infinity.

This theorem leads to the key theorem in [10] that establishes the bijec-
tive correspondence of set of reduced size functions and formal series.

Definition 3 Any function m : ∆∗ → N is said to be a formal series in

∆∗. The set supp(p) = {p ∈ R : m(r) 6= 0} is called the support of m.

Clearly the corner points/lines are the support of formal series.

Theorem 2 Let Sρ denote the set (x, y) ∈ R
2 : x < y − ρ, We say l∗(M,φ)

∼=ρ

l∗(N ,ψ) if the the two reduced size functions differ only in a vanishing subset

of Sρ. Let Lρ denote the quotient of all size functions under ∼=ρ and let Ωρ

denote the set of formal series. There exist a bijection α̃ρ : Lρ → Ωρ for

every ρ ≥ 0.

This theorem justifies the reduction to corner-point presentation since
they completely characterize reduced size functions. Since reduced size func-
tions have at most a finite number of corner points/lines in the upper half
plane (cf [10]), the comparison between two size functions can be achieved
through the comparison of the sequence of multiplicities of the respective
corner points (lines). Indeed, the matching distance between two reduced
size functions is defined as,

Definition 4 If (ai) and (bi) are two representative sequence for l∗1 and l∗2,
then the matching distance is defined by

dmatch(l
∗
1, l

∗
2) := infσsupid(ai, bσ(i))

where i ∈ N and σ varies among all bijections from N to N. The pseudo-

distance d measures the cost of moving one corner point to another and is

defined as,

d((x, y), (x′, y′)) = min{max{|x− x′|, |y − y′|},maxy − x

2
,
y′ − x′

2
}



dmatch is stable with regard to the measuring function, it is noted in [7]
that the matching distance between l∗(M,φ) and l∗(M,ψ) is upper bounded by

the infinity norm of φ− ψ. As proved by in [6], dmatch is a lower bound for
the natural pseudo-distance. It improves an earlier result in [9], indeed it
is the tightest lower bound using size functions [8]. It can be computed in
O(n2.5) time where n is the number of corner points [7]. Other lower bounds
exist, for example in [11] a bound is obtained via size homotopy group.

3 Multidimensional size functions

In the multidimensional setting, ∆+ denote the set {(~x, ~y) ∈ R
k × R

k : ~x ≺
~y}. The multidimensional size function can be reduced to the 1-D case using
a foliation. For size pairs (M, ~φ), a parametrized families of half-planes in
R
k × R

k is considered instead of one.

Definition 5 For every unit vector ~l s.t. li > 0 for every i = 1, . . . , k and

for every ~b ∈ R
k such that

∑k
i=1 bi = 0, we shall say (~l,~b) is admissible. We

denote the set of all admissible pairs by Admk. Given an admissible pair

(~l,~b), we parametrize the half plane π
(~l,~b)

by

~x = s~l +~b ~y = t~l +~b

where s, t ∈ R and s < t.

Theorem 3 Let (~l,~b) be an admissible pair, and F
~φ

(~l,~b)
: M → R be defined

by setting:

F
~φ

(~l,~b)
= maxi=1,...,k{

φi(P ) − bi

li
}

Then, for every (~x, ~y) = (s~l +~b, t~l +~b) ∈ π
(~l,~b)

the following equality holds:

l(M,~φ)(~x, ~y) = l
(M,F

~φ

(~l,~b)
)
(s, t)

From above we can see that for each (~l,~b) ∈ Admk, we have an associated
1-D size function. Let σ(~l,~b) be the associated formal series, the family σ(~l,~b) :

(~l,~b) ∈ Admk is the complete descriptor for the k-dimensional size function



l
(M,~φ)

. Similar to the 1-D case, we have that l
(M,~φ)

≡ l
(N , ~ψ)

if and only

if dmatch(l
(M,F

~φ

(~l,~b)
)
, l

(N ,F
~ψ

(~l,~b)
)
) = 0 for all admissible pairs. Like in the 1-D

case, a stability result on the measuring functions could be obtained using
the foliation defined in Theorem 3. As a consequence, the stability result
leads to a lower bound of the natural pseudo-distance.

Theorem 4 Let (M, ~φ) and (M, ~ψ) be two size pairs with M and N home-

omorphic. Setting d((M, ~φ), (M, ~ψ)) = inff maxP‖~φ(P ) − ~ψ(f(P ))‖, then

sup
(~l,~b)∈Admk

min
i=1,...,k

li · dmatch(l∗
(M,F

~φ

(~l,~b)
)
, l∗

(M,F
~ψ

(~l,~b)
)
) ≤ d((M, ~φ), (M, ~ψ))

Denote the LHS byDmatch, then Dmatch gives a computable lower bound
for the natural pseudo-distance. The computational cost ofDmatch is roughly
that of dmatch multiplied by |Admk|.

As shown by [5] [1], the multidimensional size function could yield dis-
criminatory power. The shapes to compare are M and N where M is the
boundary of [−1, 1]3 and N = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}, The mea-
suring functions are the restrictions of ~Φ(x, y, z) = (|x|, |z|) to respective

manifolds. And the admissible pair is given by ~l = (
√

2
2 ,

√
2

2 ) and ~b = (0, 0).

With the choice above, we have F
~φ

(~l,~b)
=

√
2 max{|x|, |z|}. Using Theorem

3, the 2-D size function reduces to 1-D.

l
(M,~φ)

(x1, x2, y1, y2) = l
(M,~φ)

(
s√
2
,
s√
2

s√
2
,
s√
2
) = l

(M,F
~φ

(~l,~b)
)
(s, t)

Similar reduction holds for ~ψ, thus the comparison reduces to the com-
putation

Dmatch =

√
2

2
dmatch(l

(M,F
~φ

(~l,~b)
)
, l

(N ,F
~ψ

(~l,~b)
)
) =

√
2

2
(
√

2 − 1) = 1 −
√

2

2

See figure 1 for details.

Clearly, the 2-D size function with a suitably chosen admissible pair
can discriminate the surface of a cube from a 2-sphere while the 1-D size
functions can’t. However we should note that in practice such a desired
admissible pair could be very tricky to find and may require a very fine
discretization. Since the computational complexity depends linearly on the
size of the admissible set, this will of course adds to the computational cost.



Figure 1: The Topological spaces M and N and the size functions (adapted
from [5]). Note in particular (0,

√
2) and (0, 1) are corner points of l

(M,F
~φ

(~l,~b)
)

and l
(N ,F

~ψ

(~l,~b)
)

respectively.

4 Relation to Persistent Homology

In [5], a link between size functions and persistent homology (cf. [12] [2]
[3] [4]) is discussed in detail. As the authors noted, the 1-D reduced size
function l(M,φt)(x, y) is equivalent to the persistent betti number βx,y0 . The
measuring function φ plays the role of a filtration function in persistence
homology. And l(M,φt)(x, y) is the number of 0-dimensional features in the
set M〈φ < x〉 that persist in M〈φ < y〉. Corner points and corner lines
correspond to finite and infinite persistence intervals respectively. And gen-
erally speaking, corner points farther away from the diagonal correspond to
coarser (0-dimensional) homological features. In fact the representation of
the 1-D reduced size function is equivalent to the persistence diagram in [4].
The multidimensional size function is a generalization in sense that it stud-
ies the connectedness of the set M〈~φ � ~y〉 instead of the connectedness of
the sub-level set in the 1-D case.

And assuming tameness of the measuring function, a stability result on
multidimensional measuring functions is obtained in [5] similar to the one
in [3].



5 Conclusion and Discussion

Size theory approach extracts topological information from geometrical shapes.
By representing the connectivity of sub-level sets succinctly as finite se-
quence of corner points, matching distances of shapes can be computed
efficiently. An noticable feature of size theory is that measuring functions
could be arbitrary continuous functions. The size theory could easily be
combined with a measuring function that encodes local geometry such as
eccentricity.

From the definition of natural pseudo-distance, we can see that it makes
sense only to consider comparison of homeomorphic manifolds. The seems
rather restrictive especially in the discrete case. The formulation could be
generalized using correspondences into the following form,

inf
R(M,N )

max
(a,b)∈R

|φ(a) − ψ(b)|

where R denotes correspondence. It should be noted here that the concern
is purely notational. In practice, non-hemeomorphic discretization does not
raise any issue in computing the dmatch for reduced size functions (Indeed,
even homeomorphic manifolds leads to formal series with different cardinal-
ity ). However it would be interesting to see if the generalization gives a
similar lower bound result.

The computation of multidimensional size functions depends on the
choice of foliations. In [1] and [5], the family of curves ~γ

(~l,~b)
is used. In

general, any continuous curve ~γ~α : R → R
k such that (i) ~γ~α(s) ≺ ~γ~α(t)

for s < t, (ii) for every (~x, ~y) in ∆+ there is a unique ~γ~α passing through.
A possible research direction would be to investigate multidimensional size
functions using other foliation schemes.
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