Edgebreaker
Connectivity Compression for Triangle Meshes

Jarek Rossignac, TVCG 1999
Contribution

- Lossless compression for a triangle mesh, using ≈ 2 bits per triangle for simple meshes
 - Only a slight increase for meshes with holes and handles
- Linear encoding size $O(|T|)$
 - Improves upon $O(|T| \log |T|)$ for many previous approaches
 - The constant is better than for previous approaches
Basic Idea

- Destroy triangles of the mesh one-by-one, starting from the boundary and spiralling inwards
- For each destruction operation, store an opcode indicating the type of the operation
 - Sequence of opcodes is called “history”
 - Length of history == number of triangles, hence linear size encoding
Edgebreaker in action
Terminology

- **Simple triangle mesh**
 - Edge-connected collection of triangles with one or zero bounding loops
 - Piecewise linear surface homeomorphic to a disk or a sphere
- **Hole**: Interior triangles missing
 - Like holes in a sheet of paper
- **Handle**: The surface has genus > 0
 - Doughnuts, teacups etc.
Basics

- Simple triangle mesh T
- “Gate” $g := \text{some half-edge on bounding loop}$
- $X := \text{triangle incident on } g, \ v := \text{third vertex of } X$
Types of Triangles

- The g-X-v combo can be one of the 5 types C L E R S

- Compression scheme: remove X, store the operation (C, L, E, R or S), update the bounding loop and advance the gate
Data Structures

- Mesh: (pseudo) winged-edge structure
- History H: stores CLERS opcodes
- List P: stores vertex positions
- Stack: stores “deferred” loops
Operation C (central)

- v == internal vertex before the op
 == boundary vertex after the op
- Position of v is appended to list P
Operation L (left)
Operation R (right)
Operation S (split)

- Two loops created.
- Push gate of one loop onto the stack and continue with the other loop.
Operation E (end)

- Loop shrinks to zero
- Pop the gate of the next loop to be processed from the stack
Edgebreaker in action
Edgebreaker in action

Stack (before op)

History = C
Edgebreaker in action

History = CC
Edgebreaker in action

History = CCR
Edgebreaker in action

Stack (before op)

History = CCRR
Edgebreaker in action

Stack (before op)

History = CCRRRR
Edgebreaker in action
Edgebreaker in action

Stack (before op)

History = CCRRRSL
Edgebreaker in action

History = CCRRRSLE
Edgebreaker in action

History = CCRRRSLELC
Edgebreaker in action

History = CCRRRSLELCLCR
Edgebreaker in action

History = CCRRRSLELCRRR
Edgebreaker in action

History = CCRRRSLELELCRRRC
Edgebreaker in action

History = CCRRRSLELCRR CR
History = CCRRRSLELCRRCRR
Edgebreaker in action

History = CCRRRSLELCRRCRRR
Edgebreaker in action

Stack (before op)

History = CCRRRSLELCRRCRRRE
Crux Observations

- Different graphs have different histories.
 - Allows reconstruction of topology.

- There is a bijection between C operations and interior vertices of the triangulation.
 - Allows reconstruction of embedding.
Compression

- The history H can be encoded as follows:
 - Write 0 for C
 - Write 100 for S
 - Write 101 for R
 - Write 110 for L
 - Write 111 for E

- (The resulting binary string may be further compressed using any good compression algorithm.)
Compression

- Number of bits required = \(b \)
 \[= |C| + 3(|S| + |L| + |R| + |E|) \]
- Denote boundary vertices \(V_E \) and interior vertices \(V_I \).
- \(|T| = |C| + |S| + |L| + |R| + |E| \) (each op destroys one triangle)
- \(|C| = |V_I| \) (observe from algorithm)
- \(|T| = 2|V_I| + |V_E| - 2 \) (property of triangulations)
- Hence \(b = 2|T| + |V_E| - 2 \leq 3|T| \)
Compression

• Assume mesh has small boundary.
 – e.g., a closed genus 0 surface can be “opened up” by “cutting along” one of its edges; the resulting surface has a boundary of length 2.

• Then $b \approx 2|T|$, i.e. 2 bits per triangle.
 – Compact repr. of any planar triangulated graph!

• Since CL and CE sequences are impossible, encoding can be made even shorter.

• In other situations, different coding schemes may be used, all of which guarantee $b \approx 2|T|$.
Improvement in guarantees:

[King-Rossignac '99] show coding schemes which guarantee $1.84|T|$ length for the encoded history of closed genus 0 meshes.

In practice:

[Rossignac-Szymczak '99] show that entropy codes “usually” give $0.91|T|$ to $1.26|T|$ lengths.
Decompression

- [Rossignac '99] proposes (somewhat convoluted) $O(|T|^2)$ algorithm.
 - Traverses history in compression order, uses preprocessing pass to compute constants + offsets and generation pass to actually recreate the graph.
- [Isenburg-Snoeyink '01] propose single-pass $O(|T|)$ algorithm.
 - Traverses history in reverse order (why did it take two years to devise this “obvious” scheme???)
Spirale Reversi in action

Stack (after op)

History = CCRRRSLELCRRCRRRE
Spirale Reversi in action

History = CCRRRSLELCRRCRRR

Stack (after op)
Spirale Reversi in action

History = CCRRRSLELCRRCCR

Stack (after op)

History = CCRRRSLELCRRCCR
Spirale Reversi in action

Stack (after op)

History = CCRRRSLELCRRCR
Spirale Reversi in action

Stack (after op)

History = CCRRRSLELCRRRC
Spirale Reversi in action

History = CCRRRSLELCRR

Stack (after op)
Spirale Reversi in action

Stack (after op)

History = CCRRRSLELCR
Spirale Reversi in action

History = CCRRRSLELC

Stack (after op)
Spirale Reversi in action

Stack (after op)

History = CCRRRSLEL
Spirale Reversi in action

Stack (after op)

History = CCRRRSLE
Spirale Reversi in action

Stack (after op)

History = CCRRRS\textsubscript{L}
Spirale Reversi in action

History = CCRRRS
Spirale Reversi in action

Stack
(after op)

History = CCRRRR
Spirale Reversi in action

Stack (after op)

History = CCRRR
Spirale Reversi in action

Stack
(after op)

History = CCR
Spirale Reversi in action

Stack (after op)

History = CC
Spirale Reversi in action

Stack (after op)

History = C
Spirale Reversi in action

Stack (final)

History = (null)
Patching holes

• While processing a loop, the third vertex v might lie on the boundary of a hole.

• **Solution:** Introduce M operation which merges the current loop with the hole.
Handling handles

- While processing one loop, we might run into a situation where the third vertex v is on some other loop created by a previous split operation.

- **Solution:**
 - Modify split operation S to mark and push additional information about the deferred loop.
 - When we reach a vertex marked as above, execute an M' operation, which merges the two loops.
Discussion

- What about huge meshes?
 - [Isenburg-Gumhold '03] “Out-of-Core Compression for Gigantic Polygon Meshes”, SIGGRAPH '03.

- Can a different decimation order yield progressively decodable meshes?