Surface Representation and Geometric Modeling

Exercise 3 - Mesh Decimation

Handout date: 10/25/2010

Submission deadline: 11/8/2010, Midnight

Note

Copying of code (either from other students or from external sources) is strictly prohibited! Any
violation of this rule will lead to expulsion from the course.

What to submit

A .zip compressed file renamed to "Exercisen-YourName.zip" where n is the number of the
current exercise sheet. It should contain:

e A Microsoft Visual Studio 2008 file solution with all source files and project files. In
order to avoid sending build files, close your Visual Studio solution and run the file
"cleanSolution.bat" located in the top directory of the framework before you submit.

e A "readme.txt" file containing a description on how you solved each exercise (use the
same numbers and titles) and any problems encountered.

e Send your solutions to mirela@stanford.edu before the submission deadline.
No late submissions will be accepted.

Reference Software

See 03-Decimation.exe for an example of how your program should run.

Mesh Decimation

In this exercise you will implement surface simplification using quadric error metrics. The tasks
you will implement to complete the framework to a functional mesh decimation algorithm are as
follows:

e Computing initial quadrics for vertices



Testing edge collapse for triangle flips
Computing the collapse priority as the sum of two quadrics

Implementing the global decimation loop: get best halfedge, collapse, update
neighborhood

Framework

A new project, Decimation has been added to the framework from the previous exercise. It
contains only two files and it compiles to a command line tool that reads a mesh and outputs a
decimated version of it. The program takes three parameters: the ratio between the initial vertex
count and the final vertex count, the input mesh file (.off) and the output mesh file (.off).

4.0 Preparation

The decimation algorithm uses the quadric error measure to collapse halfedges. It operates along
the following principles:

A pair of vertices may be collapsed to a single vertex only if they are connected by an
edge and do not result in a triangle flip.

A halfedge h =s—t is collapsed to t:

A halfedge h = s—t may be assigned a priority pr(h) based on the quadric error. Thus we
may assign to every vertex S a priority equal to that of the halfedge emanating from s
having minimum priority:

pr(s) = min pr(h)

The collapse target of s is targ(s) = the other endpoint of this halfedge h . Hence the
priority queue may store vertices instead of halfedges. Each vertex in the queue has the
properties: priority pr(S) and target targ(s).

In the main loop of the algorithm we pop the vertex S having minimum priority from the
queue. Then the halfedge s—targ(s) is collapsed such that S coincides with t=targ(s). The
properties of t and other affected vertices are updated on the queue.

2



4.1 Quadric from triangle

Complete the init() function in deci.cc so that it calculates vertex quadrics from the quadrics of
the incident triangles. Remember, the quadric associated with a vertex p is the sum of the
quadrics of the triangles, i.e. the sum of the squared distances to planes g; of the triangles

incident on p:

Z dist(q;p)* = Z pTQp=1p" (Z Qi) p=p'Qp

i

where p = (x,y,z,1)T are the homogeneous coordinates of the vertex, q; = (a;, b;, ¢;, d;)Tthe
unit length vector containing the coefficients of gi’s plane equation: a;x + b;y + ¢;z + d; = 0,
and the matrix Q;is:

Qi =q;q;

Use the Quadricd class.

A
T ,'f E""A %
n,.f#ﬁ‘ .

e

Figure 1: Simplification of the cow mesh to 10% of the vertex count

4.2 Collapse testing with normals

Implement the is_collapse_legal() function to test if the collapse would lead to triangle flipping.
To do this, examine every triangle adjacent to the vertex which changes during the collapse. For
every triangle compare the original normal with the normal which would result after the collapse.

If the angle between these normals is larger than n/4, the collapse is illegal.

Hint: Make sure the mesh is unchanged after you return from this function.



4.3 Priority of a halfedge

Compute the priority of a halfedge using the sum of its two end-vertex quadrics and return it in
the function priority().

4.4 Simplification main loop

Implement the main loop of the decimate() function. In every iteration there are three steps:

e Remove the vertex with the lowest priority from the queue by calling the begin()
function.

e In case the corresponding collapse is legal - collapse the halfedge corresponding to this
vertex.

e Update the properties of the vertices on the queue whose adjacent triangles have been
changed using the enqueue_vertex() function.

Your final result should look like Figure 1 for the simplification to 10% of the vertex count.

Hint: Note that the enqueue_vertex() functions works for both vertices which are already in the
queue and completely new ones.)



