

Surface Representation and Geometric Modeling

Exercise 3 - Mesh Decimation

Handout date: 10/25/2010

Submission deadline: 11/8/2010, Midnight

Note

Copying of code (either from other students or from external sources) is strictly prohibited! Any
violation of this rule will lead to expulsion from the course.

What to submit

A .zip compressed file renamed to "Exercisen-YourName.zip" where n is the number of the
current exercise sheet. It should contain:

• A Microsoft Visual Studio 2008 file solution with all source files and project files. In
order to avoid sending build files, close your Visual Studio solution and run the file
"cleanSolution.bat" located in the top directory of the framework before you submit.

• A "readme.txt" file containing a description on how you solved each exercise (use the
same numbers and titles) and any problems encountered.

• Send your solutions to mirela@stanford.edu before the submission deadline.
No late submissions will be accepted.

Reference Software

See 03-Decimation.exe for an example of how your program should run.

Mesh Decimation

In this exercise you will implement surface simplification using quadric error metrics. The tasks
you will implement to complete the framework to a functional mesh decimation algorithm are as
follows:

• Computing initial quadrics for vertices

• T

• C

• Im
n

 Frame

A new p
contains
decimate
count and

4.0 Pre

The decim
the follow

• A
ed

• A

• A
m
h

• T
pr
pr

• In
qu
pr

Testing edge

Computing th

mplementing
eighborhood

ework

project, Dec
only two fil

ed version of
d the final ve

eparation

mation algor
wing princip

A pair of ver
dge and do n

A halfedge h

A halfedge h
may assign to

aving minim

The collapse
riority queu
roperties: pr

n the main lo
ueue. Then t
roperties of

collapse for

he collapse p

g the glob
d

imation has
les and it co
f it. The pro
ertex count,

rithm uses th
ples:

rtices may b
not result in

= s→t is col

= s→t may
o every vert

mum priority

target of s
e may store

riority pr(s) a

oop of the a
the halfedge
t and other a

r triangle flip

priority as th

bal decimat

s been adde
ompiles to a
gram takes t
the input me

he quadric e

be collapsed
a triangle fli

llapsed to t:

be assigned
tex s a prior

y:

p

is targ(s) =
vertices ins

and target ta

algorithm we
e s→targ(s) i
affected vert

2

ps

he sum of two

tion loop:

d to the fra
command l

three param
esh file (.off

error measur

to a single
ip.

d a priority p
rity equal to

() min
h s t

pr s p
= →

=

= the other e
stead of half
arg(s).

e pop the ver
is collapsed
tices are upd

o quadrics

get best

amework fro
line tool that

meters: the ra
f) and the ou

re to collapse

vertex only

pr(h) based o
o that of the

()pr h

endpoint of
fedges. Each

rtex s having
such that s c

dated on the q

halfedge, c

om the prev
t reads a me

atio between
utput mesh fi

e halfedges.

if they are

on the quadr
e halfedge e

f this halfedg
h vertex in t

g minimum
coincides wi
queue.

collapse, up

vious exerci
esh and outp
the initial v

ile (.off).

It operates a

connected b

ic error. Thu
emanating fr

ge h . Henc
he queue ha

priority from
ith t=targ(s)

pdate

se. It
puts a
vertex

along

by an

us we
rom s

ce the
as the

m the
). The

3

4.1 Quadric from triangle

Complete the init() function in deci.cc so that it calculates vertex quadrics from the quadrics of
the incident triangles. Remember, the quadric associated with a vertex p is the sum of the
quadrics of the triangles, i.e. the sum of the squared distances to planes ݍ௜ of the triangles
incident on p:

෍݀݅ݐݏሺݍ௜,݌ሻଶ
௜

ൌ෍்݌
௜

ܳ௜݌ ൌ ்݌ ൭෍ܳ௜
௜

൱ ݌ ؠ ݌்ܳ݌

where ݌ ൌ ሺݔ, ,ݕ ,ݖ 1ሻ் are the homogeneous coordinates of the vertex, ݍ௜ ൌ ሺܽ௜, ܾ௜, ܿ௜, ݀௜ሻ்the
unit length vector containing the coefficients of qi’s plane equation: ܽ௜ݔ ൅ ܾ௜ݕ ൅ ܿ௜ݖ ൅ ݀௜ ൌ 0,
and the matrix ܳ௜is:

ܳ௜ ൌ ௜்ݍ ௜ݍ

Use the Quadricd class.

Figure 1: Simplification of the cow mesh to 10% of the vertex count

4.2 Collapse testing with normals

Implement the is_collapse_legal() function to test if the collapse would lead to triangle flipping.
To do this, examine every triangle adjacent to the vertex which changes during the collapse. For
every triangle compare the original normal with the normal which would result after the collapse.
If the angle between these normals is larger than π/4, the collapse is illegal.

Hint: Make sure the mesh is unchanged after you return from this function.

4

4.3 Priority of a halfedge

Compute the priority of a halfedge using the sum of its two end-vertex quadrics and return it in
the function priority().

4.4 Simplification main loop

Implement the main loop of the decimate() function. In every iteration there are three steps:

• Remove the vertex with the lowest priority from the queue by calling the begin()
function.

• In case the corresponding collapse is legal - collapse the halfedge corresponding to this
vertex.

• Update the properties of the vertices on the queue whose adjacent triangles have been
changed using the enqueue_vertex() function.

Your final result should look like Figure 1 for the simplification to 10% of the vertex count.

Hint: Note that the enqueue_vertex() functions works for both vertices which are already in the
queue and completely new ones.)

