



# **Basic Concepts**



# Today

- Mesh basics
  - **–** Zoo
  - Definitions
  - Important properties
- Mesh data structures

• HW1

# Polygonal Meshes

- Piecewise linear approximation
  - Error is  $O(h^2)$





## Polygonal Meshes

Polygonal meshes are a good representation

– approximation  $O(h^2)$ 



- arbitrary topology
- piecewise smooth surfaces
- adaptive refinement
- efficient rendering



## Triangle Meshes

Connectivity: vertices, edges, triangles

$$\mathcal{V} = \{v_1, \dots, v_n\}$$
 $\mathcal{E} = \{e_1, \dots, e_k\} , \quad e_i \in \mathcal{V} \times \mathcal{V}$ 
 $\mathcal{F} = \{f_1, \dots, f_m\} , \quad f_i \in \mathcal{V} \times \mathcal{V} \times \mathcal{V}$ 



Geometry: vertex positions

$$\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$$
,  $\mathbf{p}_i \in \mathbb{R}^3$ 



### Mesh Zoo



Single component, closed, triangular, orientable manifold



With boundaries



**Not orientable** 





Not only triangles



Non manifold

### Mesh Definitions

Need vocabulary to describe zoo meshes

The connectivity of a mesh is just a graph

We'll start with some graph theory

## **Graph Definitions**



$$G = graph = \langle V, E \rangle$$

$$V = \text{vertices} = \{A, B, C, ..., K\}$$

$$E = edges = \{(AB), (AE), (CD), ...\}$$

$$F = \text{faces} = \{(ABE), (DHJG), ...\}$$

## **Graph Definitions**



**Vertex degree** or **valence** = number of incident edges

$$deg(A) = 4$$

$$deg(E) = 5$$

Regular mesh =

all vertex degrees are equal

## Connected =



path of edges connecting every two vertices



#### **Connected =**

path of edges connecting every two vertices

### Subgraph =

G'=<V',E'> is a subgraph of G=<V,E> if V' is a subset of V and

E' is the subset of E incident on V



#### **Connected =**

path of edges connecting every two vertices

### Subgraph =

G'=<V',E'> is a subgraph of G=<V,E> if V' is a subset of V and E' is a subset of E incident on E'



#### Connected =

path of edges connecting every two vertices

### Subgraph =

G'=<V',E'> is a subgraph of G=<V,E> if V' is a subset of V and

E' is the subset of E incident on V

**Connected Component =** 

maximally connected subgraph

## **Graph Embedding**

**Embedding**: G is embedded in  $\mathbb{R}^d$ , if each vertex is assigned a position in  $\mathbb{R}^d$ 







Embedded in  $\mathbb{R}^3$ 

## Planar Graphs

### **Planar Graph =**

Graph whose vertices and edges can be embedded in R<sup>2</sup> such that its edges do not intersect

**Planar** Graph

**Plane** Graph

Straight Line Plane Graph







# Triangulation



### **Triangulation**:

Straight line plane graph where every face is a *triangle*.

### Mesh

#### Mesh:

straight-line graph embedded in R<sup>3</sup>



**Boundary edge:** 

adjacent to exactly one face

Regular edge:

adjacent to exactly two faces

Singular edge:

adjacent to more than two faces

**Closed mesh:** 

mesh with no boundary edges

### 2-Manifolds Meshes

Disk-shaped neighborhoods









non-manifolds

## Global Topology: Genus

#### **Genus:**

Half the maximal number of closed paths that do not disconnect the mesh (= the number of holes)



### Closed 2-Manifold Polygonal Meshes

### Euler-Poincaré formula

$$V+F-E=\chi$$

### **Euler characteristic**



$$E=12$$

$$F = 6$$

$$\chi = 8 + 6 - 12 = 2$$



$$V = 3890$$

$$E = 11664$$

$$F = 7776$$

$$\chi = 2$$

### Closed 2-Manifold Polygonal Meshes

### Euler-Poincaré formula

$$V + F - E = \chi = 2$$



$$V = 1500, E = 4500$$
  
 $F = 3000, \mathbf{g} = \mathbf{1}$   
 $\chi = \mathbf{0}$ 



$$\mathbf{g} = \mathbf{2}$$
$$\chi = -2$$

### Closed 2-Manifold Triangle Meshes

• *Triangle* mesh statistics

$$E \approx 3V$$

$$F \approx 2V$$



Avg. valence ≈ 6
 Show using Euler Formula



 When can a closed triangle mesh be 6regular?



### Exercise



**Theorem:** Average vertex degree in closed manifold triangle mesh is ~6

**Proof:** In such a mesh, 3F = 2E by counting edges of faces.

By Euler's formula: V+F-E = V+2E/3-E = 2-2g. Thus E = 3(V-2+2g)

So Average(deg) =  $2E/V = 6(V-2+2g)/V \sim 6$  for large V



**Corollary:** Only toroidal (g=1) closed manifold triangle mesh can be regular (all vertex degrees are 6)

**Proof:** In regular mesh average degree is *exactly* 6. Can happen only if g=1

# Regularity



# Orientability



#### **Face Orientation =**

clockwise or anticlockwise order in which the vertices listed

defines direction of face normal

#### Oriented **CCW**:

{(C,D,A), (A,D,B), (C,B,D)}

#### Oriented CW:

 $\{(C,A,D), (D,A,B), (B,C,D)\}$ 

# Orientability



#### **Face Orientation =**

clockwise or anticlockwise order in which the vertices listed

defines direction of face normal

Oriented **CCW**: {(C,D,A), (A,D,B), (C,B,D)}

Oriented CW:

{(C,A,D), (D,A,B), (B,C,D)}

**Not** oriented: {(C,D,A), (D,A,B), (C,B,D)}

## Orientability



**Face Orientation =** 

clockwise or anticlockwise order in which the vertices listed

defines direction of face normal

Oriented **CCW**: {(C,D,A), (A,D,B), (C,B,D)}

Oriented **CW**: {(C,A,D), (D,A,B), (B,C,D)}

**Not** oriented: {(C,D,A), (D,A,B), (C,B,D)}

**Orientable Plane Graph =** 

orientations of faces can be chosen so that each non-boundary edge is oriented in *both* directions

## Non-Orientable Surfaces



**Mobius Strip** 



Klein Bottle

## Garden Variety Klein Bottles



Need a zero-volume bottle?

Searching for a one-sided surface?

Want the ultimate in non-orientability?

Get an ACME KLEIN BOTTLE!







http://www.kleinbottle.com/

## **Smoothness**

Position continuity = C<sup>0</sup>



### **Smoothness**

- Position continuity = C<sup>0</sup>
- Tangent continuity  $\approx C^1$





### **Smoothness**

- Position continuity = C<sup>0</sup>
- Tangent continuity ≈ C<sup>1</sup>
- Curvature continuity  $\approx C^2$



