AX

(Sparse) Linear Solvers

Why?

Many geometry processing applications boil down to:
solve one or more linear systems

Parameterization

Editing

Reconstruction o
e)
,.../j?-.

Fairing =

p { ((
Morphing '; L E L &:

Don’t you just invert A?

e Matrix not always invertible
— Not square

Y .

\ / \— \/

Over determined Under determined

— Singular
e Almost singular

Don’t you just invert A?

e Even if invertible
— Very expensive O(n?)
— Usually n = number of vertices/faces

Problem definition

Input
— Matrix A
— Vector B4

Output
— Vector X4
— Such that Ax =B

Small time and memory complexity

Use additional information on the problem

Properties of linear systems for DGP

e Sparse A

— Equations depend

on

graph neighborhood

— Equations on vertices
— 7 non-zeros per
row on average

— Number of non zero

elements O(n)

100

200

200

400

500

500

700

500

900

1000
0

+
PP T

4 +
| *ed'e o $

1
200

300

L 1 1 L 2
400 500 600 700 800 Eloly] 1000
nz=7002

n=1002

Non zeros = 7002

Properties of linear systems for DGP

 Symmetric positive definite (positive
eigenvalues)
— Many times A is the Laplacian matrix
— Laplacian systems are usually SPD

 Aremains, b changes — many right hand sides
— Interactive applications
— Mesh geometry — same matrix for X, Y, Z

Linear solvers zoo

A is square and regular

Indirect solvers — iterative
— Jacobi

— Gauss-Seidel

— Conjugate gradient

Direct solvers — factorization
— LU

— QR

— Cholesky

Multigrid solvers

Jacobi iterative solver

e |f all variables are known but one, its value
is easy to find

a.x,+a,x,+..+a x =b

* |dea:
— Guess initial values

— Repeat until convergence

e Compute the value of one variable assuming all
others are known

e Repeat for all variables

Jacobi iterative solver

e Let X" be the exact solution of AX" = Db

[b - Z a;X]
II J#i
e Jacobi method
—Set x'V =0
— While not converged
e Fori=1ton

£ = [b - Y a, x(")J
ij

]?‘—'l

Values from
previous iteration

Jacobi iterative solver
Pros

Simple to implement
— No need for sparse data structure

Low memory consumption O(n)

Takes advantage of sparse structure

Can be parallelized

Jacobi iterative solver
Cons

* Guaranteed convergence for strictly diagonally
dominant matrices

|aﬁ| > E a@"
j=i

— The Laplacian is almost such a matrix

e Converges SLOWLY
— Smoothens the error
— Once the error is smooth, slow convergence

e Doesn’t take advantage of
— Same A, different b
— SPD matrix

Direct solvers - factorization

e |f Ais diagonal/triangular the system is easy to solve

e |dea:
— Factor A using “simple” matrices

Ax = 4/ A4,...4;x =D

X1

— Solve using k easy systems

Ax,=b > Ax,=x, > .. > A x=x,_,

Direct solvers - factorization

e Factoring harder than solving

 Added benefit — multiple right hand sides
— Factor only once!

X, = aLﬁ[b,. — ; a,.jx,.j}
Solving easy matrices

Diagonal (a,=0, i=)

X, = L[1"),. = Z a,.jx,.j}

a; Jj#i

Solving easy matrices

Lower triangular (a, =0, j>i)

(o)
@ @
x=5>
@ @]

e Forward substitution
e Start from X,

=T

L [b > }

Solving easy matrlces

Upper triangular (a, =0, j<i)

(o o o o)
e o o

\ ®)

e Backward substitution
e Start from X,

- 2fp

J>i

LU factorization

e A=LU
— L lower triangular
— U upper triangular

e Exists for any non-singular square matrix

(o Y(e o o o
A - e o e o o
nxn e o @ e o
\® ® e o/ o

L U

* Solve using Lx;=b and Ux = x;

QR factorization

c A=QR
— Q orthogonal > QT=Q 1
— R upper triangular

e Exists for any matrix

mxn

Apw =100 "

e Solve using Rx = Qb

Cholesky factorization

e A=LLT

— L lower triangular

e Exists for square symmetric positive definite
matrices

(.) (. e L .\

R
1

nxXn e e

*/\ ®)

L LT

nxn nxn

~
[

* Solve using Lx,=b and L™x =X,

Direct solvers — sparse factors?

e Usually factors are not sparse, even if Ais

Sparse matrix Cholesky factor

21

Sparse direct solvers

e Reorder variables/equations so factors are sparse

 For example

— Bandwidth is preserved = Reorder to minimize
badnwidth

Sparse matrix Cholesky factor
bounded bandwith

Sparse direct solvers

e SPD matrices

— Cholesky factor sparsity pattern can be derived from
matrix’ sparsity pattern

e Reorder to minimize new non zeros (fill in) of factor matrix

"—
e =y -
(UERY e
» . . g
. Ly
e . : S
- . " L]
GRS
ot Lot !
S -]
at * ’ 1
-]

.M . PR A} chy 1, o f el W, T P T
LN R R A S SR I I I -

Sparse matrix - reordered Cholesky factor

Sparse Cholesky

Symbolic factorization

— Can be reused for matrix with same sparsity structure
* Even if values change!

Only for SPD matrices

Reordering is heuristic — not always gives good sparsity
— High memory complexity if reordering was bad

BUT

— Works extremely well for Laplacian systems
— Can solve systems up to n = 500K on a standard PC

Under-determined systems

e System is under-constrained = too many variables

Y
[A] X =[BW
mxn mel
\)nxl
e Solution: add constraints by pinning variables
— Add equations X; =C;, X, =Cy, ... , X = Cy

Or

— Replace variables with constants in equations
e Better — smaller system

Over-determined systems

System is over-constrained = too many
equations
A [x] =| B

Unless equations are dependent, no solution
exists

2
Instead, minimize: ”Ax — b”

Over-determined systems

e The minimizer of

| 4x - B
e |sthe solution of
A" Ax = A"B

o ATA is symmetric positive definite
— Can use Cholesky

Singular square matrices

e Equivalent to under-determined system

 Add constraints
— By changing variables to constants
— NOT by adding equations!

e Will make system not square
e Much more expensive

Conclusions

Many linear solvers exist

Best choice depends on A

DGP algorithms generate sparse SPD systems
Research shows sparse linear solvers are best for DGP
Sparse algs exist also for non-square systems

If solving in Matlab — use “\” operator

References

e “Efficient Linear System Solvers for Mesh
Processing”, Botsch et al., 2005

