(Sparse) Linear Solvers

Ax = B

Why?

Many geometry processing applications boil down to: solve one or more linear systems

Parameterization

Editing

Reconstruction

Fairing

Morphing

Don't you just invert A?

- Matrix not always invertible
 - Not square

Over determined

Under determined

- Singular
 - Almost singular

Don't you just invert A?

- Even if invertible
 - Very expensive $O(n^3)$
 - Usually n = number of vertices/faces

Problem definition

- Input
 - Matrix A_{mxn}
 - Vector B_{mx1}
- Output
 - Vector x_{nx1}
 - Such that Ax = B
- Small time and memory complexity
- Use additional information on the problem

Properties of linear systems for DGP

- Sparse *A*
 - Equations depend on graph neighborhood
 - Equations on vertices
 → 7 non-zeros per row on average
 - Number of non zero elements O(n)

n = 1002Non zeros = 7002

Properties of linear systems for DGP

- Symmetric positive definite (positive eigenvalues)
 - Many times A is the Laplacian matrix
 - Laplacian systems are usually SPD
- A remains, b changes many right hand sides
 - Interactive applications
 - Mesh geometry same matrix for X, Y, Z

Linear solvers zoo

- A is square and regular
- Indirect solvers iterative
 - Jacobi
 - Gauss-Seidel
 - Conjugate gradient
- Direct solvers factorization
 - LU
 - QR
 - Cholesky
- Multigrid solvers

Jacobi iterative solver

 If all variables are known but one, its value is easy to find

$$a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i$$

- Idea:
 - Guess initial values
 - Repeat until convergence
 - Compute the value of one variable assuming all others are known
 - Repeat for all variables

Jacobi iterative solver

• Let x^* be the exact solution of $Ax^* - b$

$$x_i^* = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij}^* \right)$$

- Jacobi method
 - $-\operatorname{Set} x_i^{(0)} = 0$
 - While not converged
 - For i = 1 to n

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij}^{(k)} \right)$$

Values from previous iteration

Jacobi iterative solver Pros

- Simple to implement
 - No need for sparse data structure

• Low memory consumption O(n)

Takes advantage of sparse structure

Can be parallelized

Jacobi iterative solver Cons

Guaranteed convergence for strictly diagonally dominant matrices

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

- The Laplacian is *almost* such a matrix
- Converges SLOWLY
 - Smoothens the error
 - Once the error is smooth, slow convergence
- Doesn't take advantage of
 - Same A, different b
 - SPD matrix

Direct solvers - factorization

If A is diagonal/triangular the system is easy to solve

• Idea:

– Factor A using "simple" matrices

$$Ax = A_1 \underbrace{A_2 \dots A_k x}_{x_1} = b$$

Solve using k easy systems

$$A_1x_1 = b \rightarrow A_2x_2 = x_1 \rightarrow \dots \rightarrow A_kx = x_{k-1}$$

Direct solvers - factorization

Factoring harder than solving

- Added benefit multiple right hand sides
 - Factor only once!

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij} \right)$$

$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij} \right)$ Solving easy matrices

Diagonal $(a_{ij} = 0, i \neq j)$

$$\begin{pmatrix} \bullet & & & \\ & \bullet & & \\ & & \bullet & \\ & & \bullet & \\ \end{pmatrix} x = b$$

$$x = \begin{pmatrix} \frac{b_1}{a_{11}} & \frac{b_2}{a_{22}} & \dots & \frac{b_n}{a_{nn}} \end{pmatrix}^T$$

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij} \right)$$

$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij} \right)$ Solving easy matrices

Lower triangular $(a_{ij} = 0, j > i)$

$$\begin{pmatrix} \bullet & & & \\ \bullet & \bullet & & \\ \bullet & \bullet & \bullet & \\ \end{pmatrix} x = b$$

- Forward substitution
- Start from x_1

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j \right)$$

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij} \right)$$

$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_{ij} \right)$ Solving easy matrices

Upper triangular $(a_{ii} = 0, j < i)$

$$\begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \end{pmatrix} x = b$$

- **Backward substitution**
- Start from x_n

$$x_i = \frac{1}{a_{ii}} \left(b_i - \sum_{j>i} a_{ij} x_j \right)$$

LU factorization

- \bullet A = LU
 - L lower triangular
 - -U upper triangular
- Exists for any non-singular square matrix

• Solve using $Lx_1=b$ and $Ux=x_1$

QR factorization

- A = QR
 - Q orthogonal → $Q^T = Q^{-1}$
 - R upper triangular
- Exists for any matrix

$$A_{mxn} = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

• Solve using $Rx = Q^Tb$

Cholesky factorization

- $A = LL^T$ - L lower triangular
- Exists for square symmetric positive definite matrices

• Solve using $Lx_1=b$ and $L^Tx=x_1$

Direct solvers – sparse factors?

Usually factors are **not** sparse, even if A is

Sparse matrix

Cholesky factor

Sparse direct solvers

- Reorder variables/equations so factors are sparse
- For example
 - Bandwidth is preserved → Reorder to minimize badnwidth

Sparse matrix bounded bandwith

Cholesky factor

Sparse direct solvers

- SPD matrices
 - Cholesky factor sparsity pattern can be derived from matrix' sparsity pattern
 - Reorder to minimize new non zeros (fill in) of factor matrix

Sparse matrix - reordered

Cholesky factor

Sparse Cholesky

- Symbolic factorization
 - Can be reused for matrix with same sparsity structure
 - Even if values change!
- Only for SPD matrices
- Reordering is heuristic not always gives good sparsity
 - High memory complexity if reordering was bad
- BUT
 - Works extremely well for Laplacian systems
 - Can solve systems up to n = 500K on a standard PC

Under-determined systems

System is under-constrained → too many variables

$$\begin{pmatrix} A & \end{pmatrix}_{mxn} \begin{pmatrix} x \\ \end{pmatrix}_{mx1} = \begin{pmatrix} B \\ \end{pmatrix}_{mx1}$$

- Solution: add constraints by pinning variables
 - Add equations $x_1 = c_1$, $x_2 = c_2$, ..., $x_k = c_2$

Or

- Replace variables with constants in equations
 - Better smaller system

Over-determined systems

$$\begin{pmatrix} x \\ nx1 \end{pmatrix} = \begin{pmatrix} B \\ mx1 \end{pmatrix}$$

- Unless equations are dependent, no solution exists
- Instead, minimize: $||Ax b||^2$

Over-determined systems

• The minimizer of

$$||Ax-B||^2$$

Is the solution of

$$A^T A x = A^T B$$

- A^TA is symmetric positive definite
 - Can use Cholesky

Singular square matrices

Equivalent to under-determined system

- Add constraints
 - By changing variables to constants
 - NOT by adding equations!
 - Will make system not square
 - Much more expensive

Conclusions

- Many linear solvers exist
- Best choice depends on A
- DGP algorithms generate sparse SPD systems
- Research shows sparse linear solvers are best for DGP
- Sparse algs exist also for non-square systems
- If solving in Matlab use "\" operator

References

 "Efficient Linear System Solvers for Mesh Processing", Botsch et al., 2005