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Geometric Modeling

 Sometimes need more than polygon meshes
— Smooth surfaces

e Traditional geometric modeling used NURBS
— Non uniform rational B-Spline
— Demo




Problems with NURBS

e A single NURBS patch is either a topological
disk, a tube or a torus

 Must use many NURBS
patches to model
complex geometry

 When deforming a surface made of NURBS
patches, cracks arise at the seams



Subdivision

“Subdivision defines a smooth curve or surface as
the limit of a sequence of successive
refinements”




Subdivision Surfaces

e Generalization of spline curves / surfaces
— Arbitrary control meshes
— Successive refinement (subdivision)
— Converges to smooth limit surface
— Connection between splines and meshes
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e Generalization of spline curves / surfaces

— Arbitrary control meshes

— Successive refinement (subdivision)

— Converges to smooth limit surface

— Connection between splines and meshes




Example: Geri’'s Game (Pixar)

e Subdivision used for
— Gerr’'s hands and head
— Clothing
— Tie and shoes




Example: Geri’'s Game (Pixar)

Woody’s hand (NURBS)  Geri’s hand (subdivision)




Example: Geri’'s Game (Pixar)

e Sharp and semi-sharp features




Example: Games

Supported in hardware in DirectX 11

X

NVIDIA.

Motivation




Subdivision Curves

Given a control polygon...

...find a smooth curve related to that polygon.
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Subdivision Curve Types

e Approximating
 Interpolating

e Corner Cutting
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Approximating



Approximating

Splitting step: split each edge in two
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Approximating

Averaging step: relocate each (original) vertex
according to some (simple) rule...

A

O\
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Approximating

Start over ...
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Approximating

...splitting...
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Approximating

...averaging...
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Approximating

...and so on...
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Approximating

If the rule is designed carefully...

... the control polygons will converge to a
smooth limit curve!
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Equivalent to ...

 |Insert single new point at mid-edge

* Filter entire set of points.

Catmull-Clark rule: Filter with (1/8, 6/8, 1/8)
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Corner Cutting

e Subdivision rule:
— Insert two new vertices at ¥4 and % of each edge
— Remove the old vertices
— Connect the new vertices

Oy Oy Oy O
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B-Spline Curves

Piecewise polynomial of degree n

B- spllne curve control points
T
§ :d N7 (u)
=0 \
paramete. value

basis functions
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B-Spline Curves

 Distinguish between odd and even points

 Linear B-spline
— Odd coefficients (1/2, 1/2)
— Even coefficient (1)




B-Spline Curves

e Quadratic B-Spline (Chaikin)
— Odd coefficients (Y4, %)
— Even coefficients (34, Vi)

 Cubic B-Spline (Catmull-Clark)
— Odd coefficients (4/8, 4/8)
— Even coefficients (1/8, 6/8, 1/8)
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Cubic B-Spline

even odd
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Cubic B-Spline

odd even
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Cubic B-Spline
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Cubic B-Spline
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Cubic B-Spline
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Cubic B-Spline
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Cubic B-Spline
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Cubic B-Spline

4 4
8 8
0—0—0 O0—O0 O
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Cubic B-Spline

4 4
8 8
0—0—0 O0—O0 O
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Cubic B-Spline

4 4

8 8

Oo—0O0—=0 O— O O
odd even
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Cubic B-Spline

4 4
8 8
0—0—0 O0—O0 O
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Cubic B-Spline

4 4

8 8

Oo—0O0—=0 O— O O
odd even
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Cubic B-Spline

4 4
8 8
0—0—0 O0—O0 O
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Cubic B-Spline
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B-Spline Curves

e Subdivision rules for control polygon
d° - d!=8d° - ... - d =8d77! = §/d°

e Mask of size n yields C™! curve
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Interpolating (4-point Scheme)

« Keep old vertices

 Generate new vertices by fitting cubic curve to

old vertices

e C! continuous limit curve

Pit1

e
-

Ptz

f(a) =az® +bz* + cx+d

f(j)=pi+jl i=0,...,3

¢ ]
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Interpolating
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Interpolating
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Interpolating

44



Interpolating
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Interpolating

demo
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Subdivision Surfaces

* No regular structure as for curves
— Arbitrary number of edge-neighbors
— Different subdivision rules for each valence

a7



Subdivision Rules

 How the connectivity changes

 How the geometry changes
— Old points
— New points



Subdivision Zoo

e Classification of subdivision schemes

Primal Faces are split into sub-faces

Dual Vertices are split into multiple vertices

Approximating

Control points are not interpolated

Interpolating

Control points are interpolated
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Subdivision Zoo

e Classification of subdivision schemes

Primal (face split)

SN/ AV
I,-‘.\ 7 \ ’/
/ /l
AN AN A
/\ JAVAYAVAYA

Triangular meshes

i

il

Quad Meshes

Approximating Loop(C?) Catmull-Clark(C?)
Interpolating | Mod. Butterfly (CY) Kobbelt (CY)

 Many more...

. L T T
n/l\. N e o } .

Dual (vertex split)

Doo-Sabin, Midedge(C?)

Biquartic (C?)
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Subdivision Zoo

e Classification of subdivision schemes

Primal
Dual
Triangles Rectangles
Approximating Loop Catmull-Clark _
Doo-Sabin
. Midedge
Interpolating Butterfly Kobbelt J
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Catmull-Clark Subdivision

« Generalization of bi-cubic B-Splines
* Primal, approximation subdivision scheme
* Applied to polygonal meshes

 Generates G2 continuous limit surfaces:

— C! for the set of finite extraordinary points
 Vertices with valence = 4

— C? continuous everywhere else

52




Catmull-Clark Subdivision
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Classic Subdivision Operators

e Classification of subdivision schemes

Primal
Dual
Triangles Rectangles
Approximating Loop Catmull-Clark _
Doo-Sabin
. Midedge
Interpolating Butterfly Kobbelt J
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Loop Subdivision  /\ —/

* Generalization of box splines
* Primal, approximating subdivision scheme
* Applied to triangle meshes

 Generates G2 continuous limit surfaces:

— C! for the set of finite extraordinary points
 Vertices with valence = 6

— C? continuous everywhere else
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Loop Subdivision

3 1
= g(dl + di )+ g(dj_l + di+1)

57



IVISION

Loop Subd

ias N
MR

ool
N
VA
ATAVAVAVAVAVAV
JAYANAVAVAVAVAAY
A= AN vaviY

£
w

WAVAVAVAY;
L2RL/

AT A AT A AN AT AYAT AT AT AV AN A AVATS

YA A A AW A A A ALY YT ATAVAY
T A AN AW AT AT AT AT ALY AT AT AT ALY

) /AYAVAVAVAVAVAVAVAVAVAVAVAVAVAVATL
| VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV, VA
IVAVAVAVAVAWAVAVAVAVAVAVAVAVAVAVAVA,
e N A T AN AYAVAVAVAYATA
b OSeR JAVA".
A SNV AVAVAVAVAYAVAYIY.

1= e R S \ ¥

58



Subdivision Zoo

e Classification of subdivision schemes

Primal
Dual
Triangles Rectangles
Approximating Loop Catmull-Clark _
Doo-Sabin
. Midedge
Interpolating Butterfly Kobbelt J
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Doo-Sabin Subdivision —

« Dual, approximating subc

Generalization of bi-quadratic B-Splines

IVision scheme

* Applied to polygonal mes

« Generates Gl continuous

NES

limit surfaces:

— CO%for the set of finite extraordinary points

« Center of irregular polygons after 1 subdivision step

— C! continuous everywhere else
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Classic Subdivision Operators

e Classification of subdivision schemes

Primal
Dual
Triangles Rectangles
Approximating Loop Catmull-Clark _
Doo-Sabin
. Midedge
Interpolating Butterfly Kobbelt J
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Butterfly Subdivision

* Primal, interpolating scheme

« Applied to triangle meshes

e Generates G! continuous limit surfaces:

— C° for the set of finite extraordinary points
e Vertices of valence =3 or>7

— C! continuous everywhere else
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Butterfly Subdivision

d6 dS
E = ;(d1 +d, )+(n(d3 +d4)—
—%(dS +d, +d, +d,)
d =d,
d, d,




Butterfly Subdivision
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Remark

 Different masks apply on the boundary

 Example: Loop

1

F;
| /\ | -
E \./ § Interior
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Crease and boundary I

Bluw@
Colm —

L L
2 8

a. Masks for odd vertices b. Masks for even vertices

67



Comparison

Doo-Sabin
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Comparison

e Subdividing a cube

— Loop result is assymetric, because cube was triangulated
first

— Both Loop and Catmull-Clark are better then Butterfly (C?
vs. Cl)

— Interpolation vs. smoothness

Loop Butterfly Catmull-Clark
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Comparison

e Subdividing a tetrahedron
— Same Insights
— Severe shrinking for approximating schemes

Loop Butterfly Catmull-Clark
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Comparison

e Spot the difference?

e For smooth meshes with uniform triangle size, different schemes
provide very similar results

e Beware of interpolating schemes for control polygons with sharp
features

Loop Bzmer,y{ Catmull-Clark



So Who Wins?

* Loop and Catmull-Clark best when interpolation is not required

e Loop best for triangular meshes

o Catmull-Clark best for quad meshes
— Don’t triangulate and then use Catmull-Clark

Catmull-Clark,after
72 triangulation

Initial mesh Loop Catmull-Clark



Analysis of Subdivision

 |nvariant neighborhoods

— How many control-points affect a small
neighborhood around a point ?

e Subdivision scheme can be analyzed by looking
at a local subdivision matrix
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Local Subdivision Matrix

« Example: Cubic B-Splines . 0 l
O ® L L
\41 i{ 6 }{1
VN VY,
pj—-lil fl 68 1 0 0\ /pj—ﬂ\ 1 r\ Y )‘\‘}! p‘?&‘\ ff{i Pt A
pli! ;] 04400]]| P,
1 =g 01610
p2+1 0 0 440 !
pitt ) \00161/\p;)

 Invariant neighborhood size: 5
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Analysis of Subdivision

* Analysis via eigen-decomposition of matrix S
— Compute the eigenvalues

{AD: All oy Aﬂ—l]’

— and eigenvectors

X = {Xo, X1, "':xn—l}

— Let Xg > A1 > > A1 De real and X a complete
set of eigenvectors
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Analysis of Subdivision

e |[nvariance under affine transformations
— transform(subdivide(P)) = subdivide(transform(P))

) =
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Analysis of Subdivision

e |[nvariance under affine transformations
— transform(subdivide(P)) = subdivide(transform(P))

 Rules have to be affine combinations

— Even and odd weights each sum to 1

> S5 = D Saig1y = 1
J J

I



Analysis of Subdivision

 Invariance under reversion of point ordering

e Subdivision rules (matrix rows) have to be
symmetric
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Analysis of Subdivision

Conclusion: 1 has to be eigenvector of S with
eigenvalue io=1
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Limit Behavior - Position

* Any vector is linear combination of eigenvectors:

—1
P =) ax a; = X p

§=0 \

o Apply subdivision matrix:

rows of X!

nn—1

-1
Sp° —SZa;x. = Za.S& Zaik.-xi

=0 i=0
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Limit Behavior - Position

 For convergencewe need 1=X3> A1 >+ > Apt

e Limit vector:

n—1
® = lim §7p° = i Ix; = ag-1
P Jim S7p J,Lrgagaq&xi ag

oo uT : . .
P° = ag = Xy p’ iIndependent of | !
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Limit Behavior - Tangent

e Set origin at a,.

n—1
P =) aNx
i=1
e Divide by M
1 . n—1 )‘i ]
A—{P’ = Glxl+§ai(:\_1) X;

e Limit tangent given by:



Limit Behavior - Tangent

Curves:

— All eigenvalues of S except A,=1 should be less
than A, to ensure existence of a tangent, i.e.

l=X>A1 > 222 A1

Surfaces:

— Tangents determined by A, and A,

l=X>A=A>A32"2 Aj1
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Example: Cubic Splines

e Subdivision matrix & rules

f A N

21

1
8 = 8 +1
24+1

cooo

o I Y Y W

PR Y

=0 0O
|

= o QO

\

e Eigenvalues

(AUIAIIAEIABIMI) = (11
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Example: Cubic Splines

Eigenvectors

(1 -1 1 1 0) [0 L & L o)

1 -4 &£ 00 0 -1 0 10
X=|1 0 -& 00 Xl =

1 & & 00

\1 1 1 01 \ )

Limit position and tangent
p{° = xup-" = ‘( ;—1 +4pf+pf+1)

= xlpj Pj+1 Pj
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Properties of Subdivision

* Flexible modeling
— Handle surfaces of arbitrary topology
— Provably smooth limit surfaces

— Intuitive control point interaction

o Scalabllity
— Level-of-detall rendering
— Adaptive approximation

o Usability
— Compact representation
— Simple and efficient code
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Beyond Subdivision Surfaces

 Non-linear subdivision [Schaefer et al. 2008]
ldea: replace arithmetic mean with other function

/ \ de Casteljau With";r—b
’ \ de Casteljau withvab
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Beyond Subdivision Surfaces

¢ T-Splines [Sederberg et al. 2003]
— Allows control points to be T-junctions
— Can use less control points
— Can model different topologies with single surface

NURBS T-Splines
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Beyond Subdivision Surfaces

 How do you subdivide a teapot?
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