Subdivision Surfaces
Geometric Modeling

- Sometimes need more than polygon meshes
 - Smooth surfaces

- Traditional geometric modeling used NURBS
 - Non uniform rational B-Spline
 - Demo
Problems with NURBS

- A single NURBS patch is either a topological disk, a tube or a torus.

- Must use many NURBS patches to model complex geometry.

- When deforming a surface made of NURBS patches, cracks arise at the seams.
Subdivision

“Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements”
Subdivision Surfaces

- Generalization of spline curves / surfaces
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes
Subdivision Surfaces

- Generalization of spline curves / surfaces
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes
Example: Geri’s Game (Pixar)

- Subdivision used for
 - Geri’s hands and head
 - Clothing
 - Tie and shoes
Example: Geri’s Game (Pixar)

Woody’s hand (NURBS) Geri’s hand (subdivision)
Example: Geri’s Game (Pixar)

- Sharp and semi-sharp features
Example: Games

Supported in hardware in DirectX 11
Subdivision Curves

Given a control polygon...

...find a smooth curve related to that polygon.
Subdivision Curve Types

• Approximating
• Interpolating
• Corner Cutting
Approximating
Approximating

Splitting step: split each edge in two
Approximating

Averaging step: relocate each (original) vertex according to some (simple) rule...
Approximating

Start over ...
Approximating

...splitting...
Approximating

...averaging...
Approximating

...and so on...
Approximating

If the rule is designed carefully...

... the control polygons will converge to a smooth limit curve!
Equivalent to …

- Insert *single* new point at mid-edge
- *Filter* entire set of points.

Catmull-Clark rule: Filter with \((1/8, 6/8, 1/8)\)
Corner Cutting

• Subdivision rule:
 – Insert *two* new vertices at \(\frac{1}{4} \) and \(\frac{3}{4} \) of each edge
 – *Remove* the old vertices
 – Connect the new vertices
B-Spline Curves

- Piecewise polynomial of degree n

\[s(u) = \sum_{i=0}^{k} d_i N_i^n(u) \]

- B-spline curve
- control points
- parameter value
- basis functions
B-Spline Curves

- Distinguish between odd and even points

- Linear B-spline
 - Odd coefficients (1/2, 1/2)
 - Even coefficient (1)
B-Spline Curves

- **Quadratic B-Spline (Chaikin)**
 - Odd coefficients ($\frac{1}{4}, \frac{3}{4}$)
 - Even coefficients ($\frac{3}{4}, \frac{1}{4}$)

- **Cubic B-Spline (Catmull-Clark)**
 - Odd coefficients ($\frac{4}{8}, \frac{4}{8}$)
 - Even coefficients ($\frac{1}{8}, \frac{6}{8}, \frac{1}{8}$)

demo
Cubic B-Spline

\[
\begin{align*}
\frac{1}{8} & \quad \frac{6}{8} & \quad \frac{1}{8} \\
\frac{4}{8} & \quad \frac{4}{8}
\end{align*}
\]

even

odd
Cubic B-Spline

\[
\begin{array}{cccc}
\frac{4}{8} & \frac{4}{8} & \frac{1}{8} & \frac{6}{8} & \frac{1}{8}
\end{array}
\]

odd

even
Cubic B-Spline

odd

even

\[
\begin{pmatrix}
\frac{4}{8} \\
\frac{4}{8}
\end{pmatrix}
\quad \begin{pmatrix}
\frac{1}{8} \\
\frac{6}{8} \\
\frac{1}{8}
\end{pmatrix}
\]
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{4}{8} \\
\frac{1}{8} & \quad \frac{6}{8} & \quad \frac{1}{8}
\end{align*}
\]

odd

even
Cubic B-Spline

\[
\begin{array}{cccc}
\frac{4}{8} & \frac{4}{8} & \frac{1}{8} & \frac{6}{8} & \frac{1}{8} \\
\text{odd} & \text{even} & & & \\
\end{array}
\]
Cubic B-Spline

\[
\frac{4}{8} \quad \frac{4}{8} \quad \frac{1}{8} \quad \frac{6}{8} \quad \frac{1}{8}
\]

odd
even
Cubic B-Spline
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{4}{8} \\
\frac{1}{8} & \quad \frac{6}{8} & \quad \frac{1}{8} \\
\end{align*}
\]

odd \hspace{2cm} \text{even}

\[
\begin{align*}
\frac{4}{8} \\
\frac{4}{8} \\
\end{align*}
\]
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{4}{8} \\
\frac{1}{8} & \quad \frac{6}{8} & \quad \frac{1}{8} \\
\end{align*}
\]

odd \hspace{2cm} even

\[
\begin{align*}
\frac{1}{8} & \quad \frac{6}{8} \\
\frac{1}{8} & \\
\end{align*}
\]
Cubic B-Spline

\[\frac{4}{8} \quad \frac{4}{8} \quad \frac{1}{8} \quad \frac{6}{8} \quad \frac{1}{8} \]

odd even

\[\frac{4}{8} \quad \frac{4}{8} \]

\[\frac{4}{8} \]

35
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{4}{8} \\
\frac{1}{8} & \quad \frac{6}{8} & \quad \frac{1}{8}
\end{align*}
\]

odd \hspace{2cm} even

The diagram illustrates the B-Spline curve with control points and basis functions.
Cubic B-Spline

odd

\[\frac{4}{8} \frac{4}{8} \]

\[\frac{1}{8} \frac{6}{8} \frac{1}{8} \]

even

\[\frac{4}{8} \frac{4}{8} \]

\[\frac{1}{8} \frac{6}{8} \frac{1}{8} \]
Cubic B-Spline

\[
\begin{align*}
\frac{4}{8} & \quad \frac{4}{8} \\
\frac{1}{8} & \quad \frac{6}{8} & \frac{1}{8}
\end{align*}
\]

odd

even
Cubic B-Spline

\[
\begin{pmatrix}
\frac{4}{8} & \frac{4}{8} \\
\frac{1}{8} & \frac{6}{8} & \frac{1}{8}
\end{pmatrix}
\]

odd

even
B-Spline Curves

- Subdivision rules for control polygon
 \[d^0 \rightarrow d^1 = Sd^0 \rightarrow \ldots \rightarrow d^j = Sd^{j-1} = S^j d^0 \]

- Mask of size \(n \) yields \(C^{n-1} \) curve
Interpolating (4-point Scheme)

- Keep old vertices
- Generate new vertices by fitting cubic curve to old vertices
- C^1 continuous limit curve

\[f(x) = ax^3 + bx^2 + cx + d \]
\[f(j) = p_{i+j}, \quad j = 0, \ldots, 3 \]
\[q_i = \frac{1}{16} \left(-p_i + 9p_{i+1} + 9p_{i+2} - p_{i+3} \right) \]
Interpolating
Interpolating
Interpolating
Interpolating
Interpolating

demo
Subdivision Surfaces

• No regular structure as for curves
 – Arbitrary number of edge-neighbors
 – Different subdivision rules for each valence
Subdivision Rules

• How the connectivity changes

• How the geometry changes
 – Old points
 – New points
Subdivision Zoo

- Classification of subdivision schemes

<table>
<thead>
<tr>
<th>Primal</th>
<th>Faces are split into sub-faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
<td>Vertices are split into multiple vertices</td>
</tr>
<tr>
<td>Approximating</td>
<td>Control points are not interpolated</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Control points are interpolated</td>
</tr>
</tbody>
</table>
Subdivision Zoo

- Classification of subdivision schemes

<table>
<thead>
<tr>
<th>Primal (face split)</th>
<th>Approximating</th>
<th>Interpolating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular meshes</td>
<td>Loop (C^2)</td>
<td>Mod. Butterfly (C^1)</td>
</tr>
<tr>
<td>Quad Meshes</td>
<td>Catmull-Clark (C^2)</td>
<td>Kobbelt (C^1)</td>
</tr>
</tbody>
</table>

- Many more...

Dual (vertex split)

- Doo-Sabin, Midedge (C^1)
- Biquartic (C^2)
Subdivision Zoo

- Classification of subdivision schemes

<table>
<thead>
<tr>
<th></th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangles</td>
<td>Rectangles</td>
</tr>
<tr>
<td>Approximating</td>
<td>Loop</td>
<td>Catmull-Clark</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Butterfly</td>
<td>Kobbelt</td>
</tr>
</tbody>
</table>
Catmull-Clark Subdivision

• Generalization of bi-cubic B-Splines
• Primal, approximation subdivision scheme
• Applied to polygonal meshes
• Generates G^2 continuous limit surfaces:
 – C^1 for the set of finite extraordinary points
 • Vertices with valence $\neq 4$
 – C^2 continuous everywhere else
Catmull-Clark Subdivision

\[V_2 = \frac{1}{n} \times \sum_{j=1}^{n} d_j \]

\[E_i = \frac{1}{4} (d_1 + d_{2i} + V_i + V_{i+1}) \]

\[d'_i = \frac{(n-3)}{n} d_1 + \frac{2}{n} R + \frac{1}{n} S \]

\[R = \frac{1}{m} \sum_{i=1}^{m} E_i \]

\[S = \frac{1}{m} \sum_{i=1}^{m} V_i \]
Catmull-Clark Subdivision
Classic Subdivision Operators

- Classification of subdivision schemes

<table>
<thead>
<tr>
<th></th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangles</td>
<td>Rectangles</td>
</tr>
<tr>
<td>Approximating</td>
<td>Loop</td>
<td>Catmull-Clark</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Butterfly</td>
<td>Kobbelt</td>
</tr>
</tbody>
</table>
Loop Subdivision

• Generalization of box splines
• Primal, approximating subdivision scheme
• Applied to triangle meshes
• Generates G^2 continuous limit surfaces:
 – C^1 for the set of finite extraordinary points
 • Vertices with valence $\neq 6$
 – C^2 continuous everywhere else
Loop Subdivision

\[E_i = \frac{3}{8}(d_1 + d_i) + \frac{1}{8}(d_{i-1} + d_{i+1}) \]

\[d'_i = \alpha_n d_i + \frac{(1 - \alpha_n)^{n+1}}{n} \sum_{j=2}^{n+1} d_j \]

\[\alpha_n = \frac{3}{8} + \left(\frac{3}{8} + \frac{1}{4 \cos \frac{2\pi}{n}} \right)^2 \]
Loop Subdivision
Subdivision Zoo

• Classification of subdivision schemes

<table>
<thead>
<tr>
<th></th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangles</td>
<td>Rectangles</td>
</tr>
<tr>
<td>Approximating</td>
<td>Loop</td>
<td>Catmull-Clark</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Butterfly</td>
<td>Kobbelt</td>
</tr>
</tbody>
</table>
Doo-Sabin Subdivision

• Generalization of *bi-quadratic B-Splines*
• Dual, approximating subdivision scheme
• Applied to *polygonal* meshes
• Generates \(G^1 \) *continuous* limit surfaces:
 – \(C^0 \) for the set of finite extraordinary points
 • Center of irregular polygons after 1 subdivision step
 – \(C^1 \) continuous everywhere else
Doo-Sabin Subdivision

\[V_2 = \frac{1}{n} \times \sum_{j=1}^{n} d_j \]

\[E_i = \frac{1}{2} (d_1 + d_{2i}) \]

\[d'_{1,j} = \frac{1}{4} (d_1 + E_j + E_{j-1} + V_j) \]
Doo-Sabin Subdivision
Classic Subdivision Operators

- Classification of subdivision schemes

<table>
<thead>
<tr>
<th>Approximating</th>
<th>Primal</th>
<th>Dual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Triangles</td>
<td>Rectangles</td>
</tr>
<tr>
<td></td>
<td>Loop</td>
<td>Catmull-Clark</td>
</tr>
<tr>
<td>Interpolating</td>
<td>Butterfly</td>
<td>Kobbelt</td>
</tr>
</tbody>
</table>

63
Butterfly Subdivision

- Primal, interpolating scheme
- Applied to triangle meshes
- Generates G^1 continuous limit surfaces:
 - C^0 for the set of finite extraordinary points
 - Vertices of valence = 3 or > 7
 - C^1 continuous everywhere else
Butterfly Subdivision

\[
E_1 = \frac{1}{2} (d_1 + d_2) + \omega (d_3 + d_4) - \frac{\omega}{2} (d_5 + d_6 + d_7 + d_8)
\]

\[d_i' = d_i\]
Butterfly Subdivision
Remark

- Different masks apply on the boundary
- Example: Loop

\begin{itemize}
 \item \textbf{Interior}
 \begin{align*}
 \frac{3}{8} & \quad \frac{1}{8} \\
 \frac{1}{8} & \quad \frac{3}{8}
 \end{align*}
 \quad \quad
 \begin{align*}
 \beta & \quad 1-k\beta \\
 \beta & \quad \beta \\
 \beta & \quad \beta
 \end{align*}

 \textbf{Crease and boundary}
 \begin{align*}
 \frac{1}{2} & \quad \frac{1}{2} \\
 \frac{1}{8} & \quad \frac{3}{4} & \quad \frac{1}{8}
 \end{align*}
\end{itemize}

\textit{a. Masks for odd vertices} \quad \textit{b. Masks for even vertices}
Comparison

Doo-Sabin

Catmull-Clark

Loop

Butterfly
Comparison

• Subdividing a cube
 – Loop result is asymmetric, because cube was triangulated first
 – Both Loop and Catmull-Clark are better than Butterfly (C^2 vs. C^1)
 – Interpolation vs. smoothness
Comparison

• Subdividing a tetrahedron
 – Same insights
 – Severe shrinking for approximating schemes
Comparison

• Spot the difference?
• For smooth meshes with uniform triangle size, different schemes provide very similar results
• Beware of interpolating schemes for control polygons with sharp features
So Who Wins?

- Loop and Catmull-Clark best when interpolation is not required
- Loop best for triangular meshes
- Catmull-Clark best for quad meshes
 - Don’t triangulate and then use Catmull-Clark
Analysis of Subdivision

• Invariant neighborhoods
 – How many control-points affect a small neighborhood around a point?

• Subdivision scheme can be analyzed by looking at a local subdivision matrix
Local Subdivision Matrix

- Example: Cubic B-Splines

\[
\begin{pmatrix}
p_{-2}^{j+1} \\
p_{-1}^{j+1} \\
p_0^{j+1} \\
p_1^{j+1} \\
p_2^{j+1}
\end{pmatrix}
= \frac{1}{8}
\begin{pmatrix}
1 & 6 & 1 & 0 & 0 \\
0 & 4 & 4 & 0 & 0 \\
0 & 1 & 6 & 1 & 0 \\
0 & 0 & 4 & 4 & 0 \\
0 & 0 & 1 & 6 & 1
\end{pmatrix}
\begin{pmatrix}
p_{-2}^j \\
p_{-1}^j \\
p_0^j \\
p_1^j \\
p_2^j
\end{pmatrix}
\]

- Invariant neighborhood size: 5
Analysis of Subdivision

• Analysis via eigen-decomposition of matrix S
 – Compute the eigenvalues
 $$\{\lambda_0, \lambda_1, \ldots, \lambda_{n-1}\}$$
 – and eigenvectors
 $$X = \{x_0, x_1, \ldots, x_{n-1}\}$$
 – Let $\lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_{n-1}$ be real and X a complete set of eigenvectors
Analysis of Subdivision

- Invariance under affine transformations
 - $\text{transform}(\text{subdivide}(P)) = \text{subdivide}(\text{transform}(P))$
Analysis of Subdivision

• Invariance under affine transformations
 – transform(subdivide(P)) = subdivide(transform(P))

• Rules have to be affine combinations
 – Even and odd weights each sum to 1

\[\sum_{j} S_{2i,j} = \sum_{j} S_{2i+1,j} = 1 \]
Analysis of Subdivision

- Invariance under reversion of point ordering
- Subdivision rules (matrix rows) have to be symmetric
Analysis of Subdivision

Conclusion: 1 has to be eigenvector of S with eigenvalue $\lambda_0 = 1$
Limit Behavior - Position

• Any vector is linear combination of eigenvectors:

\[p = \sum_{i=0}^{n-1} a_i x_i \quad a_i = \tilde{x}_i^T p \]

• Apply subdivision matrix:

\[S p^0 = S \sum_{i=0}^{n-1} a_i x_i = \sum_{i=0}^{n-1} a_i S x_i = \sum_{i=0}^{n-1} a_i \lambda_i x_i \]
Limit Behavior - Position

• For convergence we need \[1 = \lambda_0 > \lambda_1 \geq \cdots \geq \lambda_{n-1} \]

• Limit vector:

\[
p_i^\infty = a_0 = \hat{x}_0^T p^j \quad \text{independent of } j
\]
Limit Behavior - Tangent

• Set origin at a_0:

\[p^j = \sum_{i=1}^{n-1} a_i \lambda_i^j x_i \]

• Divide by λ_1

\[\frac{1}{\lambda_1^j} p^j = a_1 x_1 + \sum_{i=2}^{n-1} a_i \left(\frac{\lambda_i}{\lambda_1} \right)^j x_i \]

• Limit tangent given by:

\[t_{i}^{\infty} = a_1 = \tilde{x}_1^{T} p^j \]
Limit Behavior - Tangent

• Curves:
 – All eigenvalues of S except $\lambda_0=1$ should be less than λ_1 to ensure existence of a tangent, i.e.

 \[1 = \lambda_0 > \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_{n-1} \]

• Surfaces:
 – Tangents determined by λ_1 and λ_2

 \[1 = \lambda_0 > \lambda_1 = \lambda_2 > \lambda_3 \geq \cdots \geq \lambda_{n-1} \]
Example: Cubic Splines

• Subdivision matrix & rules

\[S = \frac{1}{8} \begin{pmatrix}
1 & 6 & 1 & 0 & 0 \\
0 & 4 & 4 & 0 & 0 \\
0 & 1 & 6 & 1 & 0 \\
0 & 0 & 4 & 4 & 0 \\
0 & 0 & 1 & 6 & 1
\end{pmatrix} \]

\[p_{2i}^{j+1} = \frac{1}{8} p_{i-1}^j + \frac{6}{8} p_i^j + \frac{1}{8} p_{i+1}^j \]

\[p_{2i+1}^{j+1} = \frac{1}{2} p_i^j + \frac{1}{2} p_{i+1}^j \]

• Eigenvalues

\[(\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4,) = \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) \]
Example: Cubic Splines

- Eigenvectors

\[X = \begin{pmatrix}
1 & -1 & 1 & 1 & 0 \\
1 & -\frac{1}{2} & \frac{2}{\Delta t} & 0 & 0 \\
1 & 0 & -\frac{1}{\Delta t} & 0 & 0 \\
1 & \frac{1}{2} & \frac{2}{\Delta t} & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{pmatrix} \quad X^{-1} = \begin{pmatrix}
0 & \frac{1}{6} & \frac{4}{6} & \frac{1}{6} & 0 \\
0 & -1 & 0 & 1 & 0 \\
& & \ldots \\
& & \ldots \\
& & \ldots
\end{pmatrix} \]

- Limit position and tangent

\[p_i^\infty = \underline{\mathbf{x}}_0^T \mathbf{p}_i = \frac{1}{6} \left(p_{i-1}^j + 4p_i^j + p_{i+1}^j \right) \]

\[t_i^\infty = \underline{\mathbf{x}}_1^T \mathbf{p}_i = p_{i+1}^j - p_i^j \]
Properties of Subdivision

• Flexible modeling
 – Handle surfaces of arbitrary topology
 – Provably smooth limit surfaces
 – Intuitive control point interaction

• Scalability
 – Level-of-detail rendering
 – Adaptive approximation

• Usability
 – Compact representation
 – Simple and efficient code
Beyond Subdivision Surfaces

- Non-linear subdivision [Schaefer et al. 2008]

 Idea: replace arithmetic mean with other function

\[
\text{de Casteljau with } \frac{a+b}{2}
\]

\[
\text{de Casteljau with } \sqrt{ab}
\]
Beyond Subdivision Surfaces

- **T-Splines** [Sederberg et al. 2003]
 - Allows control points to be *T-junctions*
 - Can use less control points
 - Can model different topologies with single surface
Beyond Subdivision Surfaces

- How do you subdivide a teapot?