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Slides based on “Spectral Mesh Processing” Siggraph 2010 course




Why Spectral?

A different way to look at functions on a domain
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Why Spectral?

Better representations lead to simpler solutions
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A Motivating Application

Shape Correspondence

* Rigid alignment easy -
different pose?

e Spectral transform normalizes
shape pose

Rigid alignment
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Spectral Geometry Processing

Use eigen-structure
of “well behaved” linear operators
for geometry processing



Eigen-structure

Eigenvectors and eigenvalues

Diagonalization or

eigen-decomposition

Projection into eigen-subspace

DFT-like spectral transform

Au=Au,u=z0

A =UAU"

V' = UU'Y
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Classification of Applications

Eigenstructure(s) used
— Eigenvalues: signature for shape characterization
— Eigenvectors: form spectral embedding (a transform)
— Eigenprojection: also a transform — DFT-like

Dimensionality of spectral embeddings
— 1D: mesh sequencing
— 2D or 3D: graph drawing or mesh parameterization
— Higher D: clustering, segmentation, correspondence

Mesh operator used
— Laplace Beltrami, distances matrix, other
— Combinatorial vs. geometric
— 1st-order vs. higher order
— Normalized vs. un-normalized



Operators?

e Best
— Symmetric positive definite operator:[xTAx > (0 for any x}

e Can live with
— Semi-positive definite (x"Ax > 0 for any x)

— Non symmetric, as long as eigenvalues are real and positive
e.g.:[L = DW, where W is SPD and D is diagonal.

e Beware of
— Non-square operators
— Complex eigenvalues
— Negative eigenvalues



Spectral Processing - Perspectives

 Signal processing
— Filtering and compression
— Relation to discrete Fourier transform (DFT)

e Geometric
— Global and intrinsic

e Machine learning
— Dimensionality reduction



The smoothing problem

Smooth out rough features of a contour (2D shape)




Laplacian smoothing

Move each vertex towards the centroid of its neighbours
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Laplacian
> /
smoothing

Here:
e Centroid = midpoint
 Move half way



Laplacian smoothing and Laplacian

Laplaclan WLN
e Local averaging moting
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e 1D discrete Laplacian
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Smoothing result

e Obtained by 10 steps of Laplacian smoothing




Signal representation

 Represent a contour using a discrete periodic
2D signal
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Laplacian smoothing in matrix form

abe 3 [ ] i} . U abs
X=\|1: =] - - | =94
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‘ x component only

Smoothing operator y treated same way



1D discrete Laplacian operator
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Smoothing and Laplacian operator S =1 — §L,



Spectral analysis of sighal/geometry

Express signal X as a linear sum of eigenvectors
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Plot of eigenvectors

First 8 eigenvectors of the 1D periodic Laplacian
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Relation to Discrete Fourier Transform

Smallest eigenvalue of L is zero

Each remaining eigenvalue (except for the last one when n is even) has

multiplicity 2
The plotted real eigenvectors are not unique to L
One particular set of eigenvectors of L are the DFT basis

Both sets exhibit similar oscillatory behaviours w.r.t. frequencies



Reconstruction and compression

 Reconstruction using k leading coefficients

4=

* A form of spectral compression with info loss

given by L,




Plot of spectral transform coefficients

Fairly fast decay as eigenvalue increases
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Laplacian smoothing as filtering

e Recall the Laplacian smoothing operator

_ 1
S=I1--L.
S5=1 2}1

e Repeated application of S
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A filter applied to
spectral coefficients
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Computational issues

e No need to compute spectral coefficients for filtering

— Polynomial (e.g., Laplacian): matrix-vector multiplication

e Spectral compression needs explicit spectral transform

e Efficient computation [Levy et al. 08]



Towards spectral mesh transform

e Signal representation

— Vectors of x, y, z vertex coordinates

(X, y, 2)

e Laplacian operator for meshes

— Encodes connectivity and geometry /\

— Combinatorial: graph Laplacians and variants

— Discretization of the continuous Laplace-Beltrami operator

e The same kind of spectral transform and analysis



Spectral Mesh Compression
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Spectral Processing - Perspectives

e Signal processing
— Filtering and compression
— Relation to discrete Fourier transform (DFT)

e Geometric
— Global and intrinsic

e Machine learning
— Dimensionality reduction



A geometric perspective: classical

Classical Euclidean geometry

— Primitives not represented in coordinates

— Geometric relationships deduced in a

pure and self-contained manner

— Use of axioms




A geometric perspective: analytic

Descartes’ analytic geometry

— Algebraic analysis tools

introduced

— Primitives referenced in global

frame — extrinsic approach



Intrinsic approach

Riemann’s intrinsic view of geometry

— Geometry viewed purely from the surface

perspective

— Metric: “distance” between points on surface

— Many spaces (shapes) can be treated

simultaneously: isometry



Spectral methods: intrinsic view

Spectral approach takes the intrinsic view

— Intrinsic geometric/mesh information captured via a

linear mesh operator

— Eigenstructures of the operator present the intrinsic

geometric information in an organized manner

— Rarely need all eigenstructures, dominant ones often

suffice



Capture of global information

(Courant-Fisher) Let S € R"*" be a symmetric matrix. Then its eigenvalues A,
<A, £.... <A, must satisfy the following,

A= min Vv'Sv
V], =2
v'v, =0, Vi<k<i-1

wherev,, v,, ..., v;,_, are eigenvectors of S corresponding to the smallest
eigenvalues A, A, , ..., A;_,, respectively.




Interpretation

A= min @

HVHfl Rayleigh quotient
v'v, =0, Vi<k<i-1

Smallest eigenvector minimizes the Rayleigh quotient

k-th smallest eigenvector minimizes Rayleigh quotient, among the vectors

orthogonal to all previous eigenvectors

Solutions to global optimization problems



Use of eigenstructures

 Eigenvalues

— Spectral graph theory: graph eigenvalues closely related to
almost all major global graph invariants

— Have been adopted as compact global shape descriptors

* Eigenvectors

— Useful extremal properties, e.g., heuristic for NP-hard
problems — normalized cuts and sequencing

— Spectral embeddings capture global information, e.g.,
clustering



Example: clustering problem
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Example: clustering problem
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Spectral clustering

Encode information about - ™~
pairwise point affinities
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Why does it work this way?

Linkage-based o ¢ o
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Local vs. global distances

a1

Would be nice to cluster
according to ¢;

A good distance: Points in same
cluster closer in transformed
domain

Look at set of shortest paths —
more global

Commute time distance c; =
expected time for random walk to
go from i tojand then back toi



Local vs. global distances

In spectral domain

S



Commute time and spectral

e Eigen-decompose the graph Laplacian K

K=UAUT
e Let K’ be the generalized inverse of K,
K =UAUT,

A’ =1/A,if A.#0, otherwise A”;=0.

 Note: the Laplacian is singular



Commute time and spectral

Let z; be the i-th row of UA’ /2 — the spectral embedding

— Scaling each eigenvector by inverse square root of eigenvalue
Then
2 _
| |Zi_zj| |2 = Cij
the commute time distance

[Klein & Randic 93, Fouss et al. 06]

Full set of eigenvectors used, but select first k in practice



Example: intrinsic geometry

Our first example: correspondence Spectral transform to handle shape pose

Rigid alignment




Spectral Processing - Perspectives

e Signal processing
— Filtering and compression
— Relation to discrete Fourier transform (DFT)

e Geometric
— Global and intrinsic

e Machine learning
— Dimensionality reduction



Spectral embedding

» Spectral decomposition | A = UAUT

e Full spectral embedding given by scaled eigenvectors (each scaled by

squared root of eigenvalue) completely captures the operator

A | W =UMN?




Dimensionality reduction

e Full spectral embedding is high-dimensional

e Use few dominant eigenvectors — dimensionality T
reduction
— Information-preserving
— Structure enhancement (Polarization Theorem)
— Low-D representation: simplifying solutions _




Eckard & Young: Info-preserving

e A e R"":symmetric and positive semi-definite

* Uy € R <k |leading eigenvectors of A, scaled by square root of

eigenvalues

* Then UyU ' best rank-k approximation of A in Frobenius norm

/




Brand & Huang: Polarization Theorem

Theorem 5.6 (Polarization Theorem) Denote by
Sy = X(k)X&,) the best rank-k approximation of S
with respect to the Frobenius norm, where X4 is as defined
in Theorem 5.5. As S is projected to successively lower
ranks S, _1),5—2).---:9(2):5(1). the sum of squared
angle-cosines,

(R

| ak)\2 Xi .
5= (cos8; ) =) |
oy i \ 1% 2 1% ]2

(k)

is strictly increasing, where X; is the i-th row of X;.



Low-dim — simpler problems

e Mesh projected into the eigenspace formed by the first two eigenvectors of a

mesh Laplacian

 Reduce 3D analysis to contour analysis [Liu & Zhang 07]



Challenges - Not quite DFT

Basis for DFT is fixed given n, e.g., regular and easy to compare (Fourier

descriptors)

Spectral mesh transform is

operator-dependent

[ Which operator to use? } Different behavior of eigen-
functions on the same sphere




Challenges - No free lunch

* No mesh Laplacian on general meshes can satisfy a list of all desirable

properties

e Remedy: use nice meshes — Delaunay or non-obtuse

Delaunay but obtuse Non-obtuse



Additional issues

e Computational issues: FFT vs. eigen-decomposition

e Regularity of vibration patterns lost

— Difficult to characterize eigenvectors, eigenvalue not

enough

— Non-trivial to compare two sets of eigenvectors — how

to pair up?



Conclusion

Use eigen-structure of “well-behaved” linear operators for geometry
processing

Solve problem in a different domain via a spectral transform
Fourier analysis on meshes
Captures global and intrinsic shape characteristics

Dimensionality reduction: effective and simplifying



