Spectral Algorithms I

Why Spectral?

A different way to look at functions on a domain

Why Spectral?

Better representations lead to simpler solutions

A Motivating Application Shape Correspondence

- Rigid alignment easy different pose?
- **Spectral transform** normalizes shape pose

Spectral Geometry Processing

Use *eigen-structure*of "well behaved" *linear operators*for geometry processing

Eigen-structure

Eigenvectors and eigenvalues

$$A\mathbf{u} = \lambda \mathbf{u}, \mathbf{u} \neq \mathbf{0}$$

 Diagonalization or eigen-decomposition

$$A = U\Lambda U^{\mathsf{T}}$$

Projection into eigen-subspace

$$\mathbf{y'} = U_{(k)}U_{(k)}^{\mathsf{T}}\mathbf{y}$$

DFT-like spectral transform

$$\hat{\mathbf{y}} = U^{\mathsf{T}}\mathbf{y}$$

Eigen-structure

Eigen-structure

Classification of Applications

- Eigenstructure(s) used
 - Eigenvalues: signature for shape characterization
 - Eigenvectors: form spectral embedding (a transform)
 - Eigenprojection: also a transform DFT-like
- Dimensionality of spectral embeddings
 - 1D: mesh sequencing
 - 2D or 3D: graph drawing or mesh parameterization
 - Higher D: clustering, segmentation, correspondence
- Mesh operator used
 - Laplace Beltrami, distances matrix, other
 - Combinatorial vs. geometric
 - 1st-order vs. higher order
 - Normalized vs. un-normalized

Operators?

Best

- Symmetric positive definite operator: $x^TAx > 0$ for any x

Can live with

- Semi-positive definite $(x^TAx \ge 0 \text{ for any } x)$
- Non symmetric, as long as eigenvalues are real and positive e.g.: L = DW, where W is SPD and D is diagonal.

Beware of

- Non-square operators
- Complex eigenvalues
- Negative eigenvalues

Spectral Processing - Perspectives

- Signal processing
 - Filtering and compression
 - Relation to discrete Fourier transform (DFT)
- Geometric
 - Global and intrinsic
- Machine learning
 - Dimensionality reduction

The smoothing problem

Smooth out rough features of a contour (2D shape)

Laplacian smoothing

Move each vertex towards the centroid of its neighbours

Here:

- Centroid = midpoint
- Move half way

Laplacian smoothing and Laplacian

Local averaging /

$$\hat{\mathbf{v}_i} = \frac{1}{2} \left[\frac{1}{2} \left(\mathbf{v}_{i-1} + \mathbf{v}_i \right) \right] + \frac{1}{2} \left[\frac{1}{2} \left(\mathbf{v}_i + \mathbf{v}_{i+1} \right) \right] = \frac{1}{4} \mathbf{v}_{i-1} + \frac{1}{2} \mathbf{v}_i + \frac{1}{4} \mathbf{v}_{i+1}$$

1D discrete Laplacian

$$\delta(\mathbf{v}_i) = \frac{1}{2}(\mathbf{v}_{i-1} + \mathbf{v}_{i+1}) - \mathbf{v}_i$$

Smoothing result

Obtained by 10 steps of Laplacian smoothing

Signal representation

Represent a contour using a discrete periodic
 2D signal

x-coordinates of the seahorse contour

Laplacian smoothing in matrix form

1D discrete Laplacian operator

$$\delta(X) = LX = \begin{bmatrix} 1 & -\frac{1}{2} & 0 & \dots & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 1^2 & -\frac{1}{2} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \dots & 0 & 0 & -\frac{1}{2} & 1 \end{bmatrix} X.$$

Smoothing and Laplacian operator $S = I - \frac{1}{2}L$.

Spectral analysis of signal/geometry

Express signal X as a linear sum of eigenvectors

$$X = \sum_{i=1}^{n} \mathbf{e}_{i} \tilde{x}_{i} = \begin{bmatrix} E_{11} \\ E_{21} \\ \vdots \\ E_{n1} \end{bmatrix} \tilde{x}_{1} + \dots + \begin{bmatrix} E_{1n} \\ E_{2n} \\ \vdots \\ E_{nn} \end{bmatrix} \tilde{x}_{n} = \begin{bmatrix} E_{11} & \dots & E_{1n} \\ E_{21} & \dots & E_{2n} \\ \vdots & \vdots & \vdots \\ E_{n1} & \dots & E_{nn} \end{bmatrix} \begin{bmatrix} \tilde{x}_{1} \\ \tilde{x}_{2} \\ \vdots \\ \tilde{x}_{n} \end{bmatrix} = E\tilde{X}.$$

$$\tilde{x}_i = \mathbf{e}_i^{\mathrm{T}} \cdot X$$

DFT-like spectral transform

Project X along eigenvector

$$\begin{bmatrix} \end{bmatrix} = \begin{bmatrix} E^{\mathsf{T}} \end{bmatrix}$$

$$\tilde{X} = E^{T}X$$

$$X \longrightarrow \tilde{X}$$

Spatial domain

Spectral domain

Plot of eigenvectors

First 8 eigenvectors of the 1D periodic Laplacian

More oscillation as eigenvalues (frequencies) increase

Relation to Discrete Fourier Transform

- Smallest eigenvalue of L is zero
- Each remaining eigenvalue (except for the last one when n is even) has multiplicity 2
- The plotted real eigenvectors are not unique to L
- One particular set of eigenvectors of *L* are the DFT basis
- Both sets exhibit similar oscillatory behaviours w.r.t. frequencies

Reconstruction and compression

Reconstruction using k leading coefficients

$$X^{(k)} = \sum_{i=1}^{k} \mathbf{e}_i \tilde{x}_i, \qquad k \le n.$$

• A form of spectral compression with info loss given by L_2

$$||X - X^{(k)}|| = ||\sum_{i=k+1}^{n} \mathbf{e}_i \tilde{x}_i|| = \sqrt{\sum_{i=k+1}^{n} \tilde{x}_i^2}$$

Plot of spectral transform coefficients

Fairly fast decay as eigenvalue increases

Reconstruction examples

Laplacian smoothing as filtering

Recall the Laplacian smoothing operator

$$S = I - \frac{1}{2}L.$$

Repeated application of S

$$X^{(m)} = S^m X = (I - \frac{1}{2}L)^m X = \sum_{i=1}^n (I - \frac{1}{2}L)^m \mathbf{e}_i \tilde{x}_i = \sum_{i=1}^n \mathbf{e}_i (1 - \frac{1}{2}\lambda_i)^m \tilde{x}_i.$$
 A filter applied to spectral coefficients

Examples

Filter: $f(\lambda) = (1 - \frac{1}{2}\lambda)^m$

Computational issues

- No need to compute spectral coefficients for filtering
 - Polynomial (e.g., Laplacian): matrix-vector multiplication

Spectral compression needs explicit spectral transform

Efficient computation [Levy et al. 08]

Towards spectral mesh transform

- Signal representation
 - Vectors of x, y, z vertex coordinates

(x, y, z)

- Laplacian operator for meshes
 - Encodes connectivity and geometry
 - Combinatorial: graph Laplacians and variants
 - Discretization of the continuous Laplace-Beltrami operator
- The same kind of spectral transform and analysis

Spectral Mesh Compression

Spectral Processing - Perspectives

- Signal processing
 - Filtering and compression
 - Relation to discrete Fourier transform (DFT)
- Geometric
 - Global and intrinsic
- Machine learning
 - Dimensionality reduction

A geometric perspective: classical

Classical Euclidean geometry

- Primitives not represented in coordinates
- Geometric relationships deduced in a pure and self-contained manner
- Use of axioms

A geometric perspective: analytic

Descartes' analytic geometry

- Algebraic analysis tools introduced
- Primitives referenced in global
 frame extrinsic approach

Intrinsic approach

Riemann's intrinsic view of geometry

- Geometry viewed purely from the surface perspective
- Metric: "distance" between points on surface
- Many spaces (shapes) can be treated

simultaneously: isometry

Spectral methods: intrinsic view

Spectral approach takes the intrinsic view

- Intrinsic geometric/mesh information captured via a linear mesh operator
- Eigenstructures of the operator present the intrinsic geometric information in an organized manner
- Rarely need all eigenstructures, dominant ones often suffice

Capture of global information

(Courant-Fisher) Let $S \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then its eigenvalues $\lambda_1 \le \lambda_2 \le \le \lambda_n$ must satisfy the following,

$$\lambda_i = \min_{ \|\mathbf{v}\|_2 = 1 \\ \mathbf{v}^{\mathsf{T}} \mathbf{v}_k = 0, \ \forall 1 \le k \le i-1 } \mathbf{v}^{\mathsf{T}} S \mathbf{v}$$

where \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_{i-1} are eigenvectors of S corresponding to the smallest eigenvalues λ_1 , λ_2 , ..., λ_{i-1} , respectively.

Interpretation

- Smallest eigenvector minimizes the Rayleigh quotient
- *k*-th smallest eigenvector minimizes Rayleigh quotient, among the vectors orthogonal to all previous eigenvectors
- Solutions to global optimization problems

Use of eigenstructures

Eigenvalues

- Spectral graph theory: graph eigenvalues closely related to almost all major global graph invariants
- Have been adopted as compact global shape descriptors

Eigenvectors

- Useful extremal properties, e.g., heuristic for NP-hard problems — normalized cuts and sequencing
- Spectral embeddings capture global information, e.g., clustering

Example: clustering problem

Example: clustering problem

Spectral clustering

Spectral clustering

Why does it work this way?

Local vs. global distances

Would be nice to cluster according to c_{ij}

- A good distance: Points in same cluster closer in transformed domain
- Look at set of shortest paths more global
- Commute time distance c_{ij} = expected time for random walk to go from i to j and then back to i

Local vs. global distances

Commute time and spectral

• Eigen-decompose the graph Laplacian *K*

$$K = U \Lambda U^{\mathsf{T}}$$

Let K' be the generalized inverse of K,

$$K' = U \Lambda' U^{\mathsf{T}},$$

$$\Lambda'_{ii} = 1/\Lambda_{ii}$$
 if $\Lambda_{ii} \neq 0$, otherwise $\Lambda'_{ii} = 0$.

Note: the Laplacian is singular

Commute time and spectral

- Let z_i be the *i*-th row of $U\Lambda'^{1/2}$ the spectral embedding
 - Scaling each eigenvector by inverse square root of eigenvalue
- Then

$$||z_i - z_j||^2 = c_{ij}$$

the commute time distance

[Klein & Randic 93, Fouss et al. 06]

Full set of eigenvectors used, but select first k in practice

Example: intrinsic geometry

Our first example: correspondence

Spectral transform to handle shape pose

Spectral Processing - Perspectives

- Signal processing
 - Filtering and compression
 - Relation to discrete Fourier transform (DFT)
- Geometric
 - Global and intrinsic
- Machine learning
 - Dimensionality reduction

Spectral embedding

Spectral decomposition

$$A = U\Lambda U^{\mathsf{T}}$$

 Full spectral embedding given by scaled eigenvectors (each scaled by squared root of eigenvalue) completely captures the operator

Dimensionality reduction

- Full spectral embedding is high-dimensional
- Use few dominant eigenvectors dimensionality reduction
 - Information-preserving
 - Structure enhancement (Polarization Theorem)
 - Low-D representation: simplifying solutions

Eckard & Young: Info-preserving

- $A \in \Re^{n \times n}$: symmetric and positive semi-definite
- $U_{(k)} \in \Re^{n \times k}$: leading eigenvectors of A, scaled by square root of eigenvalues
- Then $U_{(k)}U_{(k)}^{\mathsf{T}}$: best rank-k approximation of A in Frobenius norm

Brand & Huang: Polarization Theorem

Theorem 5.6 (Polarization Theorem) Denote by $S_{(k)} = X_{(k)} X_{(k)}^{\mathsf{T}}$ the best rank-k approximation of S with respect to the Frobenius norm, where $X_{(k)}$ is as defined in Theorem 5.5. As S is projected to successively lower ranks $S_{(n-1)}, S_{(n-2)}, \ldots, S_{(2)}, S_{(1)}$, the sum of squared angle-cosines,

$$s_k = \sum_{i \neq j} (\cos \theta_{ij}^{(k)})^2 = \sum_{i \neq j} \left(\frac{\mathbf{x}_i^{(k)} \mathbf{T} \mathbf{x}_j^{(k)}}{\|\mathbf{x}_i^{(k)}\|_2 \cdot \|\mathbf{x}_j^{(k)}\|_2} \right)^2$$

is strictly increasing, where $\mathbf{x}_{i}^{(k)}$ is the *i*-th row of $X_{(k)}$.

Low-dim → simpler problems

- Mesh projected into the eigenspace formed by the first two eigenvectors of a mesh Laplacian
- Reduce 3D analysis to contour analysis [Liu & Zhang 07]

Challenges - Not quite DFT

- Basis for DFT is fixed given n, e.g., regular and easy to compare (Fourier descriptors)
- Spectral mesh transform is operator-dependent

Which operator to use?

Different behavior of eigenfunctions on the same sphere

Challenges - No free lunch

- No mesh Laplacian on general meshes can satisfy a list of all desirable properties
- Remedy: use nice meshes Delaunay or non-obtuse

Additional issues

- Computational issues: FFT vs. eigen-decomposition
- Regularity of vibration patterns lost
 - Difficult to characterize eigenvectors, eigenvalue not enough
 - Non-trivial to compare two sets of eigenvectors how to pair up?

Conclusion

Use eigen-structure of "well-behaved" linear operators for geometry processing

Solve problem in a different domain via a spectral transform

Fourier analysis on meshes

Captures global and intrinsic shape characteristics

Dimensionality reduction: effective and simplifying