
 

 
CS468 - Geometry Processing Algorithms 

Exercise 2 - Surface Quality and Smoothing 

 
Handout date: 04/18/2012 

Submission deadline: 05/02/2012, Midnight 

Note 

Copying of code (either from other students or from external sources) is strictly prohibited! Any 
violation of this rule will lead to expulsion from the class. 

What to hand in 

A .zip compressed file renamed to "Exercisen-YourName.zip" where n is the number of the 
current exercise sheet. It should contain: 

• A Microsoft Visual Studio 2008 file solution with all source files and project files. In 
order to avoid sending build files, close your Visual Studio solution and run the file 
"cleanSolution.bat" located in the top directory of the framework before you submit. 

• A documentation file containing a description on how you solved each exercise (use the 
same numbers and titles) and the encountered problems. Feel free to add figures showing 
the results of your program on different meshes. 

• Send your solutions to mirela@stanford.edu before the submission deadline. 
No late submissions will be accepted. 

Sample Software 

See 02-Smoothing.exe for an example of how your program should run. 

Surface Quality and Smoothing 

In this exercise you will implement the following: 

• Computation of the uniform Laplacian operator and using it for smoothing (uniform 
Laplace smoothing) 
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• Computation of the Laplace-Beltrami operator and using it for mean curvature 
approximation and for smoothing (normal direction smoothing) 

• Computation of the circum-radius to minimum edge length ratio to evaluate the triangle 
shapes of a mesh. Comparing the effect of the two smoothing algorithms in terms of their 
influence on the triangle shape. 

• Approximation of the Gaussian curvature. 

 

 

Figure 1: Mean curvature approximation on the face dataset before and after smoothing 
using uniform Laplace 

Framework 

A new project, Smoothing has been added to the framework from the previous exercise. It reuses 
files from the ValenceViewer project and adds additional classes. The QualityViewer class 
extends the MeshViewer and adds visualization modes like curvatures, triangle shapes, and 
reflection lines. The SmoothingViewer extends the MeshViewer and adds the smoothing 
operations which are triggered by the N and U keys. You will need to implement portions in the 
two new classes: QualityViewer and the SmoothingViewer. 
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3.1 Uniform Laplace curvature and smoothing 

a) The uniform Laplace operator approximates the Laplacian of the discretized surface using the 
centroid of the one-ring neighborhood. For a vertex 𝑣 denote the 𝑛 neighboring vertices by 𝑣௜. 
The uniform Laplacian approximation is:  

𝐿௎(𝑣) = ൭1𝑛 ෍ 𝑣௜௜ ൱ − 𝑣 

The half length of the vector 𝐿௎ is a (very crude) approximation of the mean curvature. 

Implement the calc_uniform_mean_curvature() function in the QualityViewer class. This 
function should fill up the vunicurvature_ vertex property with the mean curvature 
approximation using the uniform Laplace operator. 

b) Implement uniform Laplace smoothing in the uniform_smooth(unsigned int _iters) function 
of the SmoothingViewer class. It should apply _iters smoothing operations on the mesh, where 
one smoothing operation moves each vertex of the mesh halfway along its 𝐿௎vector: 𝑣ᇱ = 𝑣 + 12 𝐿௎(𝑣) 

Hint: Make sure that all vertices are smoothed in parallel. Do not forget to update vertex normals 
after vertex coordinates change. 

Test your solution by loading the scanned_face.off model. Choose the “Uniform mean 
curvature” mode and apply uniform smoothing by pressing the U button. You should get images 
similar to Figure 1. You can use the “Reflection Lines” mode to see how the smoothing really 
changes the surface quality.  

Note: The smoothing operation may be not well defined for boundary vertices. Think yourself 
how to smooth these vertices and describe your solution in the readme file. 

3.2 Triangle shapes 

Many applications require triangle meshes with nicely shaped triangles. Equilateral triangles 
usually are considered “nice”, skinny or flat triangles are “bad”. A measure of this quality is the 
ratio between triangle circum-radius and minimum edge length. The smaller this ratio is, the 
closer the triangle is to the equilateral (ideal) triangle. To derive a formula for the circum-radius 𝑟, one can use these two expressions for the area of a triangle: 𝐴 = |𝑎|. |𝑏|. |𝑐|4 𝑟 = |𝑎 × 𝑏|2 , 
where 𝑎, 𝑏 and 𝑐 are vectors representing the edges of the triangles, such that 𝑎 and 𝑏 share a 
common vertex as origin. 
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Implement the calc_triangle_quality() function in the QualityViewer class, so that it fills the face 
property tshape_ with this ratio for every triangle. (Hint: for numerical stability, make sure that 
if your cross product denominator is small or negative, then you simply assign a large value to 
the triangle shape measure and do not calculate it with the general formula.) 

In the visualization of triangle shapes, the scale of the color coding will be fixed between 0.6 and 
2.0, so that you can see the absolute changes induced by smoothing. Load the max.off model, 
choose the “Triangle Shapes” mode and apply uniform smoothing by pressing the U key. The 
shapes of the triangles will change as illustrated on Figure 2. 

 

Figure 2: The shapes of the triangles before and after applying unform Laplace smoothing 

3.3 Laplace-Beltrami mean curvature and smoothing 

For irregular meshes the uniform Laplace smoothing moves vertices not only along the surface 
normal, but also tangentially. To create a smoothing operator which moves vertices only along 
the surface normal, one can use the Laplace-Beltrami operator. This operator uses very specific 
weights for the neighbor vertices: 𝐿஻(𝑣) = ෍ 𝑤௜(𝑣௜௜ − 𝑣)   = ෍(cot௜ 𝛼௜ + cotβ୧)(𝑣௜ − 𝑣)   
where the two angles are those opposite the edge between v and vi: 



 
 

5 
 

 

The Laplace-Beltrami vector gives an approximation of the normal and its half length an 
approximation of the mean curvature at that vertex. 

a) Study the calc_weights() function to understand how and which weights are computed. 
Implement the mean curvature approximation using the Laplace-Beltrami operator. The 
calc_mean_curvature() function should fill the vcurvature_ property with the mean curvature 
approximation values. 

b) Implement smoothing using the Laplace-Beltrami operator. Normalize the cotangent edge 
weights to sum to unity: 𝐿஻ = ଵ∑ ௪೔೔ ∑ 𝑤௜௜ (𝑣௜ − 𝑣). Do not forget to use the damping factor of ଵଶ 
just like in the uniform smoothing case. Compare the effects of the two smoothing methods on 
the shape of the triangles using the “Triangle Shapes” visualization mode. 

3.4 Gaussian curvature 

In the lecture you were shown an easy way to approximate the Gaussian curvature at a vertex of 
a triangle mesh. This is merely the angle defect - using the sum of the angles around a vertex: 𝐺 = 2𝜋 − ෍ 𝜃௝௝  

Implement the calc_gauss_curvature() function in the QualityViewer class so that it stores the 
Gaussian curvature approximations in the vgausscurvature_ vertex property. For the bunny 
dataset you should get a Gaussian curvature approximation similar to the one in Figure 3. 



 
 

6 
 

 

Figure 3: The Gaussian curvature approximation 

3.5 Bonus (10%) 

Implement “tangential smoothing” which moves vertices only in the tangent plane of the vertex, 
thus focuses (only) on enhancing triangle shapes. For this, you should project the uniform 
Laplace average back to the tangent plane of the vertex. Notice that you need to compute (via 
OpenMesh) and store the original normal of the vertex, in order to keep the vertices always on 
the original tangent plane, even after several tangential smoothing iterations. 

 


