Mesh Data Structures

Data Structures

e What should be stored?

— Geometry: 3D coordinates
— Attributes

e e.g. normal, color, texture coordinate
e Per vertex, per face, per edge

— Connectivity

e Adjacency relationships

Data Structures

e What should it support?
— Rendering

— Geometry queries
 What are the vertices of face #27?
e |s vertex A adjacent to vertex H ?
 Which faces are adjacent to face #17?

— Modifications
e Remove/add a vertex/face
* Vertex split, edge collapse

Data Structures

e How good is a data structure?
— Time to construct (preprocessing)
— Time to answer a query
— Time to perform an operation
— Space complexity
— Redundancy

Mesh Data Structures

Face Set

Shared Vertex

Half Edge

Face Based Connectivity
Edge Based Connectivity
Adjacency Matrix
Corner Table

Face Set

TRIANGLES

Vertex coord. Vertex coord. Vertex coord.
[10 20 30] [40 5 20] [10 4 3]
e Simple
e STL File

* No connectivity
e Redundancy

Shared Vertex

TRIANGLES VERTICES

Vertex Index Vertex Index Vertex Index Vertex Coord.
2 1 3 [40 5 20]

\ [10 20 30]
[10 4 3]

 Connectivity
* No neighborhood

Shared Vertex

Ve

TRIANGLES VERTICES

£, 2 3 1 |y [20 10 0]
v, [19 20 0]
v, [14 15 0]

Shared Vertex

Ve

TRIANGLES

e What are the vertices of face f,?
— O(1) —first triplet from face list

VERTICES

[20 10 0]
[19 20 0]
[14 15 0]

Shared Vertex

Ve

TRIANGLES

f, 2 3 1 Vv,

 What are the one-ring neighbors of v;?
— Requires a full pass over all vertices

VERTICES

[20 10 0]
[19 20 0]
[14 15 0]

Shared Vertex

Ve

TRIANGLES

[, 2 3 1

Are vertices v, and v; adjacent?
— Requires a full pass over all faces

vy
\p

V3

VERTICES

[20 10 0]
[19 20 0]
[14 15 0]

Half Edge Data Structure

e \ertex stores
— Position
— 1 outgoing halfedge

.Aing halfedge
vertex

Half Edge Data Structure

 Halfedge stores
— 1 origin vertex index
— 1 incident face index

— next, prey, twin halfedge indices
O

halfedge
twin

origin vertex next

Half Edge Data Structure

* Face stores
— 1 adjacent halfedge index

adjacent halfedge

Half Edge Data Structure

 Neighborhood Traversal

S PP
l [‘) A //
Te

Face Based Connectivity

. Ve rtex: ...
o ‘::
— position }
— 1 adjacent face index B >
* Face: : 1

— 3 vertex indices
— 3 neighboring face indices T

* No (explicit) edge information

Edge Based Connectivity

Vertex

— position

— 1 adjacent edge index
Edge

— 2 vertex indices
— 2 neighboring face indices
— 4 edges

Face
— 1 edge index

No edge orientation information

Adjacency Matrix

Vi | Vo | V3 | Vv, | Ve | Vg
vy 1 1
v, | 1 1] 1

A= | vs| 1] 1 1 1
Vv, 111 1] 1
Vg 1 1
Vg 1111

e Adjacency Matrix “A”

* If there is an edge between v; & v, then A;=
1

Adjacency Matrix

Symmetric for undirected simple graphs
(A");= # paths of length n from v; to v,
Pros:

— Can represent non-manifold meshes

Cons:

— No connection between a vertex and its
adjacent faces

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner —c

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner—c
Triangle — c.t

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner—c
Triangle — c.t
Vertex — c.v

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner—c

Triangle — c.t

Vertex — c.v

Next corner in c.t (ccw) — c.n

Corner Table

e Corneris a vertex with one of its indicent
triangles

V3

Corner—c

Triangle — c.t

Vertex — c.v

Next corner in c.t (ccw) — c.n
Previous corner — c.p (== c.n.n) Vv,

Corner Table

e Corneris a vertex with one of its indicent
triangles

V3
Corner—c
Triangle — c.t
Vertex — c.v

Next corner in c.t (ccw) — c.n
Previous corner — c.p (== c.n.n)
Corner opposite ¢ —c.o
Edge E opposite ¢ not incident on c.v
Triangle T adjacent to c.t across E v
c.o.v vertex of T that is not incident on E 2

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner—c
Triangle — c.t
Vertex — c.v
Next corner in c.t (ccw) — c.n
Previous corner — c.p (== c.n.n) Vv,
Corner opposite ¢ —c.o
Edge E opposite ¢ not incident on c.v
Triangle T adjacent to c.t across E v
c.o.v vertex of T that is not incident on E 2
Right corner — c.r — corner opposite c.n (== c.n.o)

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner—c
Triangle — c.t
Vertex — c.v
Next corner in c.t (ccw) — c.n
Previous corner — c.p (== c.n.n) Vv,
Corner opposite ¢ —c.o
Edge E opposite ¢ not incident on c.v
Triangle T adjacent to c.t across E v
c.o.v vertex of T that is not incident on E 2
Right corner — c.r — corner opposite c.n (== c.n.o)
Left corner — c.l (== c.p.0 == c.n.n.o)

Corner Table

e Corneris a vertex with one of its indicent
triangles

Corner —
Triangle —
Vertex —
Next corner in c.t (ccw) —
Previous corner —
Corner opposite ¢ —
Edge E opposite ¢ not incident on c.v
Triangle T adjacent to c.t across E
c.o.v vertex of T that is not incident on E
Right corner — c.r — corner opposite c.n (== c.n.o)
Left corner — c.| (== c.p.0 == c.n.n.o)

Corner Table

e Corneris a vertex with one of its indicent
triangles

corner | C.v ct |[cn| cp C.0

Cy vy f, C, C3 Cs

Corner Table

e Corneris a vertex with one of its indicent

triangles

corner | cv | ¢t |[cnfcp | co | cr
C, v | f; || &5 | ¢
C, v, | f; | 5| ¢
C3 v; | f ¢ | o Ce
C, v; | f, | ¢ | ¢ C,
Cs v, | f, || ¢ | &5 | ¢
Ce v, | f, e | e | o

Corner Table

e Store:
— Corner table

— For each vertex — a list of all its corners

e Corner number j*3-2, j*3-1 and j*3 match
face number

Corner Table

e What are the vertices of face #37?
— Check c.v of corners 9, 8, 7

Corner Table

e Are vertices 2 and 6 adjacent?

— Scan all corners of vertex 2, check if c.p.v or
c.n.vareb6

Corner Table

 Which faces are adjacent to vertex 3?
— Check c.t of all corners of vertex 3

Corner Table

* One ring neighbors of vertexv,?
— Get the corners c, cg C,, Of this vertex
— Gotoc.n.vandc.p.vfori=6, 8, 10.
— Remove duplicates

V3

Corner Table

* Pros:
— All queries in O(1) time
— Most operations are O(1)
— Convenient for rendering

* Cons:
— Only triangular, manifold meshes
— Redundancy

