CS 468
Data-driven Shape Analysis

Intrinsic Maps

April 15, 2014
Inter-surface Map

\[f : M_1 \rightarrow M_2 \]
Applications

Kraevoy and Sheffer 2004
Applications

Kraevoy and Sheffer 2004
Desired Properties

Given two (or more) shapes find a map f, that is:

- Automatic
- Fast to compute
- Bijective (if we expect to have a global correspondence)
- Low-distortion
Desired Properties

Given two (or more) shapes find a map f, that is:

- **Automatic**
 - Fast to compute
 - Bijective (if we expect to have a global correspondence)
 - Low-distortion

Consider a simple case...
Desired Properties

Given two (or more) shapes find a map f, that is:

- Automatic
- Fast to compute
- Bijective (if we expect to have a global correspondence)
- Low-distortion

Consider a simple case...
Consistent Re-meshing

landmark correspondences

Kraevoy 2004
Consistent Re-meshing

landmark correspondences

consistent parameterization
Consistent Re-meshing

How do we choose these paths?

consistent parameterization

Kraevoy 2004
Distortion Metrics

Compare triangles T and $f(T)$

- Angles (conformal map)
- Areas
- Stretch

E.g. small conformal distortion, large area distortion:

Schreiner et al. 2004
Distortion Metrics

Compare triangles T and $f(T)$

- Angles (conformal map)
- Areas
- Stretch

NOTE: isometry preserves all

E.g. small conformal distortion, large area distortion:

Schreiner et al. 2004
Pros and Cons

Pros:
• Apps!

Cons:
• Need many manual landmark points
• Hard to minimize the distortion

Praun et al. 2001
Consider an algorithm:

- Set landmark correspondences
- Measure energy
- Repeat and return minimal energy
Consider an algorithm:

- Set landmark correspondences
- Measure energy
- Repeat and return minimal energy

Problems?
Consider an algorithm:

- Set landmark correspondences
 ➔ Measure energy
- Repeat and return minimal energy

Choice of energy greatly affects the results and the optimization.
Gromov-Hausdorff Distance
Gromov-Hausdorff

Compare shapes as metric spaces

Shape = metric space (X, d)

Invariance = isometry w.r.t. d
Gromov-Hausdorff

Compare shapes as metric spaces

Shape = metric space \((X, d)\)
Invariance = isometry w.r.t. \(d\)

\(\phi : X \to Y\)
\(\psi : Y \to X\)
Gromov-Hausdorff

Compare shapes as metric spaces

\[d_{GH}(X, Y) = \frac{1}{2} \inf_{\varphi: X \to Y, \psi: Y \to X} \max \{ \text{dis } \varphi, \text{dis } \psi, \text{dis } (\varphi, \psi) \} \]

where:

\[\text{dis } \varphi = \sup_{x, x' \in X} \left| d_X(x, x') - d_Y(\varphi(x), \varphi(x')) \right| \]

\[\text{dis } \psi = \sup_{y, y' \in Y} \left| d_Y(y, y') - d_X(\psi(y), \psi(y')) \right| \]

\[\text{dis } (\varphi, \psi) = \sup_{x \in X, y \in Y} \left| d_X(x, \psi(y)) - d_Y(y, \varphi(x)) \right| \]
Generalized MDS

Search for a permutation

Generalized multidimensional scaling (GMDS)

\[d_{\text{int}}(X, Y) = \min_{\{y_1, \ldots, y_n\} \subseteq Y} \left\| d_X(x_i, x_j) - d_Y(y_i, y_j) \right\| \]

A. Bronstein, M. Bronstein, R. Kimmel, *PNAS 2006, SIAM JSC 2006*
Pros and Cons

Pros:
- Good distance for non-isometric metric spaces

Cons:
- Non-convex
- HUGE search space (i.e. permutations)
Practice

Heuristics to explore the permutations

→ Solve at a very coarse scale => interpolate

• Coarse-to-fine
• Partial Matching

Bronstein’08
Practice

Heuristics to explore the permutations

• Solve at a very coarse scale => interpolate
 ➔ Coarse-to-fine

• Partial Matching

Bronstein’08

Sahillioglu’12
Heuristics to explore the permutations

- Solve at a very coarse scale => interpolate
- Coarse-to-fine

⇒ Partial Matching

- Find correspondence φ^*, ψ^* minimizing distortion between current parts u^*, v^*
- Select parts u^*, v^* minimizing the distortion with current correspondence φ^*, ψ^* subject to $\lambda(u^*, v^*) \leq \lambda_0$

A. Bronstein, M. Bronstein, A. Bruckstein, R. Kimmel, IJCV 2008
Properties

Given two (or more) shapes find a map f, that is:

- ✔ Automatic
- ✗ Fast to compute
- ✗ Bijective (if we expect to have a global correspondence)
- ✔ Low-distortion

Unless failed to find an optima
Proper non-isometry is HARD!

How hard is it to match Isometric Shapes?
Proper non-isometry is HARD!

How hard is it to match Isometric Shapes?

E.g. how many point-to-point correspondences do we need to define a map between two isometric shapes?
Heat Kernel Map

Only need to match **one** point!

\[HKM_p(x, t) = k_t(p, x) \]
Heat Kernel Map

Only need to match one point!

\[HKM_p(x, t) = k_t(p, x) \]
Heat Kernel Map

Pros:

- The search space is TINY
 - Naturally works in partial case

Cons:

- Sensitive to deviations from isometry
Heat Kernel Map

Pros:
• The search space is TINY
 ➡ Naturally works in partial case

Cons:
• Sensitive to deviations from isometry

Ovsjanikov’10
Heat Kernel Map

Pros:
• The search space is TINY
• Naturally works in partial case

Cons:
⇒ Sensitive to deviations from isometry

Ovsjanikov’10
Heat Kernel Map

Pros:
• The search space is TINY
• Naturally works in partial cases

Cons:
→ Sensitive to deviations from isometry

Ovsjanikov’10
Conformal Geometry
Another definition of isometry:

- Angle-preserving (conformal)
- Area-preserving
Isometry Revisited

Another definition of isometry:

- Angle-preserving (conformal)
- Area-preserving

\[\text{isometries} \subseteq \text{conformal maps} \]

Hard! Easier
Conformal Maps

Two easy subproblems

- Conformal map to a sphere
- Conformal map between spheres
Conformal Mapping

Two easy subproblems

- Conformal map to a sphere
- Conformal map between spheres

mid-edge uniformization

“unwarped” sphere:
Conformal Mapping

Two easy subproblems

• Conformal map to a sphere
 ➔ Conformal map between spheres

Conformal Map is uniquely defined by 3 correspondences (Moebius Transformation)
Möbius Transformations

\[f(z) = \frac{az+b}{cz+d} \]

http://www.ima.umn.edu/~arnold/moebius/
Moebius Voting

Algorithm for Isometric Shapes:

- Repeat for many triplets:
 - Propose 3 correspondences
 - Compute a conformal map
 - Pick the one that has the smallest area distortion
Moebius Voting

Algorithm for Non-Isometric Shapes:

• Repeat for many triplets:
 • Propose 3 correspondences
 • Compute a conformal map
 ➡ VOTE based on the area distortion
Conformal Mapping

Pros:
• Efficient
• Can handle some non-isometry

Cons:
• Does not provide a smooth or continuous map
• Does not optimize global distortion
• Works for genus 0 manifold surfaces
Blended Intrinsic Maps

Blend conformal maps into a smooth map

These conformal maps introduce area distortions in different regions

Kim’11
Blended Intrinsic Maps

Blend conformal maps into a smooth map

Blending Weights for m_1, m_2, and m_3 Distortion of the Blended Map

Kim’11
Blended Intrinsic Maps

Algorithm:
- Generate consistent maps
- Find blending weights (per-point weight for each map)
- Blend maps
Blended Intrinsic Maps

Algorithm:

Generate consistent maps

- Find blending weights (per-point weight for each map)
- Blend maps
Blended Intrinsic Maps

Algorithm:

leton consistent maps
• Find blending weights (per-point weight for each map)
• Blend maps

$$B_{i,j} = \int_{M_1} c_i(p)c_j(p)S_{i,j}(p)dA(p)$$

Map similarity matrix
Blended Intrinsic Maps

Algorithm:
- Generate consistent maps
 - Find blending weights (per-point weight for each map)
 - Blend maps

Eigen-analysis to find “blocks” of mutually-similar maps

Kim’11
Blended Intrinsic Maps

Algorithm:

- Generate consistent maps
 - Find blending weights (per-point weight for each map)
 - Blend maps

Eigen-analysis to find “blocks” of mutually-similar maps

What is the second block?
Algorithm:

- **Generate consistent maps**
 - Find blending weights (per-point weight for each map)
 - Blend maps

Eigen-analysis to find “blocks” of mutually-similar maps
Blended Intrinsic Maps

Algorithm:

- Generate consistent maps
 - Find blending weights (per-point weight for each map)
- Blend maps

Area-distortion

Candidate Map Blending Weight $c_i(p)$

Kim’11
Blended Intrinsic Maps

Algorithm:
- Generate consistent maps
- Find blending weights (per-point weight for each map)

⇒ Blend maps

Kim’11
Some Examples

Symmetric flip

Stretched

Kim’11
Evaluation

\[0 \leq d < 0.05 \quad 0.05 \leq d < 0.1 \quad 0.1 \leq d < 0.15 \quad 0.15 \leq d < 0.2 \quad 0.2 \leq d < \infty \]
Blended Intrinsic Maps

Pros
- Highly non-isometric shapes
- Efficient

Cons
- Still has a lot of area distortion for some shapes
- Genus 0 manifold surfaces

Kim’11
Functional Maps
What is a map?
Functional Maps

Map functions rather than points

\[\phi : M \to N \]
Functional Maps

Map functions rather than points

$T_{\phi} : L^2(N) \to L^2(M)$
Functional Maps

How to represent functions on surfaces?
How to represent functions on surfaces?

\[f(x) = a_1 \cdot \cdot \cdot + a_2 \cdot \cdot \cdot + a_3 \cdot \cdot \cdot + \cdots \]

Laplace-Beltrami
Functional Maps

How to represent functional maps?
How to represent functional maps?

Functional Map Matrix, change of basis

Ovsjanikov’12
Slides by Solomon
Example Maps

(c) left to right map
Example Maps

(c) left to right map
(d) head to tail map

Ovsjanikov’12
The reason it looks like identity is not by chance!

Ovsjanikov’12
Functional Maps

Simple Algorithm

• Compute some geometric functions to be preserved: A, B
• Solve in least-squares sense for C, $B = CA$

Additional Considerations

• Favor commutativity
• Favor orthonormality (if shapes are isometric)
• Efficiently getting point-to-point correspondences

Ovsjanikov’12
Pros
• Sparse representation
• Linear
• New way of thinking about maps

Cons
• More work is needed for non-isometric surfaces
Choice of Basis

Coupled quasi-harmonic basis

Laplacian eigenbases

Coupled quasi-harmonic bases
Soft/Fuzzy Maps

Points mapping to probability distributions to cope with mapping ambiguity

Kim’12, Solomon’12, Solomon’13
Mapping Symmetric Shapes

Separate basis into symmetric and anti-symmetric part
Map Visualization

Find high-distortion areas in multi-scale fashion

Ovsjanikov’13
Homework

Notes

• Due Apr 20
• Include some info on how to use your program
• Include relevant source code files and brief description
• Send a link to a zip file to vk2@stanford.edu (or e-mail directly if size < 5Mb)
• ALWAYS mark axes in ALL plots / figures!

• Questions?
References

- Cross-Parameterization and Compatible Remeshing of 3D Models. V. Kraevoy and A. Sheffer. SIGGRAPH 2004
- Consistent Mesh Parameterizations. E. Praun, W. Sweldens, P. Schröder. SIGGRAPH 2001
- Inter-Surface Mapping. J. Schreiner, A. P. Asirvatham, E. Praun, H. Hoppe. SIGGRAPH 2004
- One Point Isometric Matching with the Heat Kernel. M. Ovsjanikov, Q. Mérigot, F. Mémoli and L. Guibas. SGP 2010
- Möbius Voting for Surface Correspondence. Y. Lipman, T. Funkhouser. SIGGRAPH 2009
- Blended Intrinsic Maps. V. Kim, Y. Lipman, T. Funkhouser. SIGGRAPH 2011
- Shape Matching via Quotient Spaces. M. Ovsjanikov, Q. Mérigot, V. Pătraşucean, L. Guibas. SGP 2013
- Analysis and Visualization of Maps Between Shapes. M. Ovsjanikov, M. Ben-Chen, F. Chazal and L. Guibas. CGF 2013