
CS468: Machine Learning for 3D Data Handout # 1
Spring 2017
Stanford University Friday, 14 April 2017

Homework #1: Surface Representations; Converting between representations; Basics of
Discrete Geometry : Laplace-Beltrami operator. [100 points]

Due Date: Wednesday, April 26

Homework policies
CS468 is a highly technical course, so doing the homework is the only way to acquire a work-
ing knowledge of the material presented. We encourage you strongly to start working on the
homework problems right away—the problems below, as well as those to follow, have consider-
able technical depth and you are unlikely to be able to solve them if you wait until the evening
before the due date.

Collaboration in solving the problems is encouraged in this class—you have a lot to learn
from your fellow students. However, in order to make grading the homeworks a meaningful
way to measure your effort and your understanding of the material, we must ask that:

• On programming problems [such as in this homework], groups of up to three students
can work together as a team, handing in a single body of code and documentation for
their joint effort.

It is very important in this course that every homework be turned in on time. We recognize
that occasionally there are circumstances beyond your control that prevent an assignment from
being completed on time. You will be allowed two classes of grace during the quarter. This
means that you can either hand in two assignments each late by one class, or one assignment
late by two classes. Any further assignments handed in late will be penalized by 20% for
each class that they are late, unless special arrangements have been made previously with the
instructor or the CA(s).

Software
We ask that you use MATLAB for this assignment. You can represent meshes in MATLAB via
the indexed-face-set representation: an #V ×3 float-valued array for the vertex positions and a
#F×3 integer-valued array for the faces - the latter one indexes into the vertex position array.
You can use functions like trimesh, triplot, trisurf to visualize the triangulation.

Goals of this assignment
In this exercise you will

• Compute unoriented normals from a point cloud using PCA.



2 CS468: Handout # 1

Figure 1: Stages of surface reconstruction from point cloud with normals. Left to right: input point
cloud, implicit function slices, same function evaluated on a grid, Marching Cubes result.

• Compute an implicit function that approximates a given 3D point cloud with normals,
such that the input points lie at the zero level set of the function.

• Sample the implicit function on a three dimensional volumetric grid.

• Reconstruct a triangle mesh of the zero level set of the implicit function, using the March-
ing Cubes algorithm.

• Sample the computed mesh to extract a point cloud, using the basic Farthest Point Sam-
pling pipeline.

• Construct the discrete Laplace-Beltrami operator on a mesh, and visualize its eigenfunc-
tions.

This assignment has been structured as a pipeline that can start from a single input (a
point-cloud with normals) and proceed through the intemediate steps of implicit surface recon-
struction, meshing, sampling and analysis. However, we recommend that you implement each
step as an individual MATLAB function, so you can test it with different inputs and compare
the results. For example, the Marching-Cubes-reconstructed mesh might be too irregular for
subsequent Laplace-Beltrami calculations, so you can test your implementation one on of the
provided input meshes instead. You should provide a main script that runs those functions and
produces the required figures.

Problem 1. [25 points]

For this part of the assignment, you will compute approximate normals for the points in a point
cloud, based on local tangent-plane fitting around each point. The procedure is based on PCA,
and outlined in the attached document pca.pdf. Note that this procedure produces unoriented
normals - consistently orienting those normals is typically needed to reconstruct a surface but
will not be required in this assignment.

• Use the provided readOFF function to load a point cloud from the provided .off files.
If any faces are present in the .off file, ignore them. Visualize the input point cloud
and normals, which will serve as ground truth for comparisons.



CS468: Handout # 1 3

• For each point in the cloud, find its K nearest neighbors in the point cloud.

• Fit a plane to this neighborhood to compute the normal direction at the point.

• Visualize those normals along with the ground truth normals as found inside the .off file.

Possibly relevant MATLAB functions: quiver3, line, plot3, pdist2 , eig.

Problem 2. [20 points]

For this part of the assignment, you will compute an implicit function f (~p), ~p= (x,y,z) defined
on all of 3D space, such that the input point cloud lies at the zero level set of this function,
i.e. for any point ~pi in the input point cloud, we have f (~pi) = 0. The normals of the implicit
function evaluated at the point cloud locations should agree with the normals of the point cloud.
For this part you will use the normals provided as ground truth in the .off files, which have
the correct orientation.

2(a). Create a grid sampling the 3D space. Create a regular volumetric grid around
your point cloud: compute the axis-aligned bounding box of the point cloud, enlarge it slightly
and divide it into uniform cells (cubes). Visualize the grid points.

Possibly relevant MATLAB functions: meshgrid, linspace.

2(b). Evaluate the implicit function on the grid points. For each node of the grid,
compute the value of the implicit function f (x,y,z) using the simple distance-to-tangent-plane
approach that we learned in class ([3]). An example is shown in Fig. 1.

• For each node of your regular grid, find the closest sample from the point cloud and
associated normal.

• Use the normal to compute a signed distance from the grid point to the tangent plane
associated with the point cloud sample.

• Visualize the 3-D implicit function by slicing..

• Color-code the computed values of the implicit function on the grid points (by posi-
tive/negative values) and display them as a colored grid.

Possibly relevant MATLAB functions: pdist2, slice, scatter3.

Problem 3. [5 points]

For this part of the assignment, you will perform the implicit-function-to-mesh conversion.
You will operate on the implicit function that you have computed in the previous part. For an
example result see Fig. 1.

• Use the MATLAB implementation of Marching Cubes [4] to extract the zero isosurface
from your grid.



4 CS468: Handout # 1

• Display your result as a triangulation.

• Experiment with different grid resolutions and compare the final result.

Possibly relevant MATLAB functions: isosurface, trisurf, cameratoolbar.

Problem 4. [20 points]

For this part of the assignment, you will convert a mesh into a point cloud. Namely, you
will sample points from the mesh using the Farthest Point Sampling approach ([1], [2]). For
simplicity, you can sample only from the vertex set of the mesh, and use Dijkstra’s algorithm
on the mesh graph to compute on-surface distances on the mesh. The general pipeline then is
as follows:

• Create an initial sample point set S, that includes a single vertex from the mesh.

• Compute the on-mesh distance between the points in S and the remaining mesh vertices.

• Find the mesh vertex which is the farthest from all point in S according to this distance.

• Insert the point to S.

• While more points are needed, iterate.

Visualize the points on top of the mesh. Experiment with different numbers of samples.
Posssibly relevant MATLAB functions: distances. For computing Dijkstra distances

you can also use Gabriel Peyre’s Graph Toolbox, found at https://goo.gl/4PAI2P

Problem 5. [30 points]

For this final part of the assignment, you will build the Laplace Beltrami operator on the con-
structed mesh (or any of the given meshes). You will try out both the uniform and cotangent
discretizations [6, 5]. When computing the cotangent weight Laplace Beltrami operator, use
barycentric area computation, namely: area corresponding to a vertex is computed as a sum of
the area of its adjacent triangles, divided by 3.

You will use this operator to visualize the “eigen-modes” of the shape, as computed by the
eigenvalues of the Laplacian operator. These eigen-functions provide a basis for all piecewise-
linear scalar functions on the mesh, constructed by linearly interpolating per-vertex values
into the triangles. When computing the eigendecomposition of the cotangent weight Laplace
Beltrami operator, note that the eigenvalue problem in the discrete case is given by (using the
notations from the lecture slides)

∆φ = A−1Lφ = λφ ⇔ Lφ = λAφ , (1)

where L is the matrix of cotangent weights, A is the diagonal matrix with vertex areas on the
diagonal, and λ and φ are an eigenvalue and its corresponding eigenvector, respectively. Thus
above is called a generalized eigenvalue problem, and can be solved using MATLAB function
eigs.



CS468: Handout # 1 5

Figure 2: Eigenfunctions #2, #4, #6, #8 of the uniform Laplace Beltrami operator.

• Construct the discrete Laplace-Beltrami operator on a mesh, as a sparse matrix of size
#V ×#V . You may need to build a vertex-to-vertex adjacency structure for this, or (more
efficiently) compute it by iterating through the face index array directly. Use MATLAB
vectorization whenever possible.

• Compute its smallest N eigenfunctions, by looking at the eigen-decomposition of that
matrix. Each of them will be a piecewise-linear function on the mesh, essentially deter-
mined by its values at the mesh vertices.

• Visualize the eigenfunctions as colors over the mesh. Do not forget to switch on linear
interpolation inside the faces (e.g., using shading interp).

• Experiment with different numbers of eigen-functions N.

• Experiment with the uniform- vs. cotangent-weight schemes, and note the differences,
if any.

For an example, see Figure 2.
Posssibly relevant MATLAB functions: eigs, jet (or any other colormap).

References
[1] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoreti-

cal Computer Science, 38:293 – 306, 1985.

[2] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center prob-
lem. Math. Oper. Res., 10(2):180–184, May 1985.

[3] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Sur-
face reconstruction from unorganized points. SIGGRAPH Comput. Graph., 26(2):71–78,
July 1992.



6 CS468: Handout # 1

[4] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d sur-
face construction algorithm. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’87, pages 163–169, New York, NY,
USA, 1987. ACM.

[5] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates.
Experimental mathematics, 2(1):15–36, 1993.

[6] Hao Zhang. Discrete combinatorial laplacian operators for digital geometry processing. In
in SIAM Conference on Geometric Design, 2004, pages 575–592. Press, 2004.


