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and thus of the normal to the curve.  



Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
 
Our goal is to find the best approximation of the tangent direction, 
and thus of the normal to the curve.  



Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
Goal: find best approximation of the normal at P. 
 
Method: Given line l through P with normal n, the distance to the 
tangent line from another close-by point pi: 
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Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
Goal: find best approximation of the normal at P. 
 
Method: Find the line that best fits the neighborhood of P. This will 
approximate the tangent line. 
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Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
Goal: find best approximation of the normal at P. 
 
Equivalently: Find unit-length vector n, minimizing     for a 
set of k points (e.g. k nearest neighbors of P) .   
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Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
Using Lagrange multiplier: 
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Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
Using Lagrange multiplier: 
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Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
The normal n must be an eigenvector of the matrix: 
 
 
 
Moreover, since:  
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Normal Estimation for a Curve 

Assume we have a clean sampling of the curve. 
 
 
 
 
 
 
The normal n must be an eigenvector of the matrix: 
 
 
 
Moreover, nopt must be the eigenvector corresponding to the 
smallest eigenvalue of C. 
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Normal Estimation for a Curve 

Method Outline (PCA): 
 
 
 
 
 
 
 

1.  Given a point P in the point cloud, find its k nearest neighbors. 

2.  Compute 

3.   n: eigenvector corresponding to the smallest eigenvalue of C. 
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1.  Given a point P in the point cloud, find its k nearest neighbors. 

2.  Compute 

3.   n: eigenvector corresponding to the smallest eigenvalue of C. 
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Same principle for surfaces! 


