
CS468: Machine Learning for 3D Data Handout # 2
Spring 2017
Stanford University Wednesday, 26 April 2017

Homework #2: Joint shape alignment using MRF; Shape segmentation. [100 points]
Due Date: Friday, May 5

Homework policies

CS468 is a highly technical course, so doing the homework is the only way to acquire a work-
ing knowledge of the material presented. We encourage you strongly to start working on the
homework problems right away—the problems below, as well as those to follow, have consider-
able technical depth and you are unlikely to be able to solve them if you wait until the evening
before the due date.

Collaboration in solving the problems is encouraged in this class—you have a lot to learn
from your fellow students. However, in order to make grading the homeworks a meaningful
way to measure your effort and your understanding of the material, we must ask that:

• On programming problems [such as in this homework], groups of up to three students
can work together as a team, handing in a single body of code and documentation for
their joint effort.

It is very important in this course that every homework be turned in on time. We recognize
that occasionally there are circumstances beyond your control that prevent an assignment from
being completed on time. You will be allowed two classes of grace during the quarter. This
means that you can either hand in two assignments each late by one class, or one assignment
late by two classes. Any further assignments handed in late will be penalized by 20% for
each class that they are late, unless special arrangements have been made previously with the
instructor or the CA(s).

Software

We ask that you use MATLAB for this assignment. You can use functions like trimesh,
triplot, trisurf to visualize the triangulated shapes.

Goals of this assignment

In the first problem of this homework, you will implement an approach aiming to align the 3D
shapes in a given collection. You will study how to jointly align the collection of 3D shapes
by formulating and solving for an appropriate Markov Random Field (MRF). In the second
problem, you will implement a learning shape labeling algorithm shown in the lecture.



2 CS468: Handout # 2

Problem 1. Joint Alignment of 3D Shapes [70 points]

Aligning 3D shapes according to their orientation is an important preprocessing step for many
shape analysis tasks, including finding point-to-point correspondences, performing shape com-
parisons, doing shape retrieval, etc. However, manually aligning large sets of 3D shapes is time
consuming and error prone. In this problem, we study how to automatically align a set of 3D
shapes in a consistent orientation (Fig. 1). To simplify the problem we make the assumption
that that all input models have been pre-aligned in terms of the their “up” direction — their
y-axis in our terminology, e.g., seats of chairs face upwards. This assumptions allows us to
parameterize the orientation to be estimated by only the azimuth angle, i.e., the rotation around
the y-axis. For the coding parts of this problem we have provided you with some skeleton code
located at code_and_data/problem1/code.

Figure 1: Joint shape alignment

(a) [20 points] Multi-view shape feature extraction

For each 3D shape we build a feature that is sensitive to its orientation. For this, we will
use a multi-view 2D-representation, i.e., we will represent a shape by the collection of its
2D-renderings coming from predefined viewpoints. Concretely, we represent each shape
as N regularly sampled 2D-views which we further summarize by a discriminative image
feature such as the Histogram of Gradient (HoG) [1]. This is illustrated by Figure 2.

To extract the aforementioned feature you will follow these steps:

(i) Sample V = 16 views evenly along the equator of xOz plane (views on the red circle
in Fig. 2). Specify an order of views in the world frame.

(ii) Normalize each shape to have unit radius and place the shape at the origin of the
world frame.

(iii) Render an image at each view for every shape.



CS468: Handout # 2 3

Figure 2: Multi-view shape representation

(iv) Compute the HoG feature of each view, which produces an H-dimensional vec-
tor. A HoG feature extractor is provided via the hog function in Piotr’s toolbox
(https://github.com/pdollar/toolbox). This function takes an image
as input and outputs a 3-D tensor. Vectorize the output to obtain the HoG feature.
Please first resize all images to 120×120 pixels and then use the default parameters
for the hog function.

(v) Represent each shape by the concatenation of the HoG features with the pre-specified
order. This way a shape will correspond to a (V ×H)-dimensional feature.

Note that this shape representation is orientation sensitive, since the order of views is
defined in a world frame.

You are asked to follow the previous steps and derive the multi-view feature for each
shape in the provided dataset of the 100 3D chairs (data/100chairs.zip). Be-
cause parts (i)-(iii) require a certain amount of familiarity with graphics, we have also
provided you with the end result of running these three steps. Concretely, at data/
100chairs_rendering.zip you can find rendered images from 16 views for every
chair. In other words parts (i)-(iii) are optional and you may start your implementation
directly at part (iv) and exploit the provided images. If you decide to implement (i)-(iii),
submit your shape normalization code in a file named shape_normalization.m
along with your output rendered images. For the multi-view feature extraction code sub-
mit a file named hog_extraction.m. Also submit a visualization of the computed
HoG features for the shapes: 001.obj,002.obj,003.obj, (select 3 views that you
like for each shape). For the visualization of the HoG features you can use the hogDraw
function in Piotr’s toolbox.



4 CS468: Handout # 2

(b) [20 points] Pairwise orientation dissimilarity computation.

Assume a pair of shapes Si and S j that lies on the world frame (as illustrated by the red
planes in Figure 3). In this part we will compute a view-sensitive shape dissimilarity
Di j(θ1,θ2), which captures the shape differences when Si is rotated by θ1 and S j by θ2

(see Fig. 3). Concretely, θ1,θ2 ∈ {0, . . . , 2kπ

V , . . . , 2(V−1)π
V }, i.e., we have discretized the

rotation angles into V bins. This shape dissimilarity can be computed directly from the
multi-view features of Part (a), which are sensitive to the orientation of the 3D shapes.
With Di j(θ1,θ2) fixed, we can choose the optimal pair of angles (θ1,θ2), i.e., those that
correspond to the smallest dissimilarity. Notice, how this dissimilarity score is the same
for the set of view pairs if their relative views are the same, i.e., Di j(θ1,θ2) =Ci j(θ) for
θ ≡ (θ2−θ1) mod 2π . This property can help us to reduce the computation from O(V 2)
(for every θ1 and θ2 combination) to O(V ).

Figure 3: Computing pairwise dissimilarity scores. Red dashed line is the original heading orientation
and green dashed line is the rotated heading orientation.

Your task is to compute the pairwise dissimilarity Di j(θ1,θ2) for each pair of shapes.
Use the L2 distance when comparing the multi-view features for D. In your submis-
sion, upload the source code as pairwise_dissimilarity.m and further provide
the visualization of Di j matrix for the pair of 001.obj and 002.obj shapes (using
imagesc function from Matlab). For the same pair of shapes, use Di j to find and plot
the two pairs of multi-view repesentations that correspond to the smallest and largest
dissimilarities respectively.

(c) [30 points] Joint shape alignment by MRF.

In Part (c), we will try to jointly align all shapes of the collection. To do so, we will
utilize a probabilistic graphical model known as Markov Random Field (MRF). Given
the groundwork done in parts (a) and (b), we are now ready to build a "second-order"
MRF.

To judge the likelihood for shapes Si and S j, to be aligned with orientations θ1 =
2(k1−1)π

V

and θ2 =
2(k2−1)π

V , respectively; we define the affinity wi j(k1,k2) by modulating the dis-
similarity of Part (b):



CS468: Handout # 2 5

wi j(k1,k2) = exp{−Di j(θ1,θ2)/σ} , (1)

where σ is a bandwidth parameter.

Conceptually, we build a complete graph for our shape collection where each node cor-
responds to a shape and each edge is decorated with a matrix Wi j which captures the
aforementioned pairwise affinities. Our end goal is to assign a V -dimensional indicator
binary vector ~Xi ∈ {0,1}V to every node that indicates its optimal rotation. We set Xi,v to
be 1 if a shape is rotated by 2(v−1)π/V and 0 otherwise.

Now, one way of solving the problem of estimating jointly shape orientations, can be
given as the solution to the following optimization problem:

maximize{~Xi} ∑
(i, j)∈E

~XT
i Wi j~X j + ∑

i∈{1...,N}

~UT
i
~Xi

subject to Xi,v ∈ {0,1} for i = 1, . . . ,N v = 1, . . . ,V
∑v Xi,v = 1 for i = 1, . . . ,N

(2)
Where, ~Ui ∈ [0,1]V is a random unary term associated with every vertex and N is the
total number of vertices.

[3 points] If we ignore the unary terms, can you explain how the above formulation is
aiming to align the shapes consistently?

[3 points] Why do we need to add the random unary terms? [Hint: given a solution a,
how different is another solution b where all shapes in b are rotated as in a plus some
constant angle?]

[24 points] Your task is to build the Wi j matrices for this model and solve an approxima-
tion of Problem (2). To solve the optimization problem, you may use an implementation
of the algorithm in [2] by Leordeanu, M. and Hebert, M, which is a fast MRF solver12.
Alternatively, you can implement it yourself - in this case, use the code template provided
in mrf.m. Initialize the unary terms ~Ui by drawing for each dimension i.i.d. samples
from the uniform distribution in [0,1]. You may need to tune the parameter σ to get the
best results. Analyze your results and describe your discoveries.

Save the aligned 3D shapes in OBJ format using the provided code (write_wobj.m).
Make sure that your models are normalized before saving them. In this case, you might
also find useful the MATLAB function trisurf for 3D model visualization.

In your submission, please include the MRF solver code as mrf.m, alignment pipeline
code as a script P1c.m and a zipped package aligned.zip of all aligned 3D shapes.

1https://sites.google.com/site/graphmatchingmethods/
2https://goo.gl/6wgPmD



6 CS468: Handout # 2

If you use the pre-computed views, aligned.zip should include the optimally-aligned
view of each object (i.e., one of the 16 images provided per shape).

Finally, please make a single plot that visualizes for 9 shapes (001.obj to 009.obj)
the output of your alignment. Include this plot in your write-up.

Problem 2. Learning to segment and label 3D shapes
[30 points, Extra credit 25 points]

We saw several algorithms for shape segmentation and labeling. In this part of the assignment,
you will implement a supervised method described in [3]. The algorithm pipeline you will im-
plement is as follows: the algorithm is given a set of labeled shapes as input. First, it computes
a set of per-face shape descriptors. These shape descriptors and ground truth face labels are
then used to train a classifier, which, given a new shape, produces per-face label probabilities.
These probabilities can be used either by themselves, to obtain a maximally probable shape
face classification, or as a unary term in a pairwise MRF. The MRF is solved using graph-
cuts to obtain smooth boundaries between differently labeled regions. Here, you will use the
labeled PSB dataset, available for download at [3]’s project webpage3, as labeledDb.7z.
The dataset consists of 19 classes of objects, as shown at the webpage. Since the training pro-
cess is quite time consuming, for the exercise, choose three classes of shapes, with varying
number of labels (e.g., humans, horses and chairs), and perform all the experiment below for
each of these three classes separately. In you report, clearly state which shape classes you
chose.

(a) [30 points + 10 EXTRA] Training per-face shape classifier

To simplify the problem, you will use pre-computed shape features, made available
for download by the authors of [3]. You can find them at the project webpage3, as
features.7z. Each shape has a corresponding text file, containing F feature vectors,
where F is the number of mesh faces. Note the difference with the paper: here, each
feature is a 628-dimensional vector, and only its first 593 entries are non-zero, for all
shapes and all feature vectors. In your experiments, truncate feature vectors accordingly.

[5 points] Split shapes in each class into training and test sets. The training set should
contain 10−15 shapes. Load training shapes’ features and concatenate them into a single
matrix, with rows corresponding to different features. Concatenate their corresponding
label vectors into a single column vector. Make sure the shape are consistently labeled -
that is, if label 1 corresponds to a right foot of the first human shape in the training set,
it should correspond to a right foot in the rest of human shapes. Visualize the shapes
color-coded according to face labels, to make sure you did this correctly, and include the
image in your report. See Figure 4 for visualization example.

3http://people.cs.umass.edu/~kalo/papers/LabelMeshes/index.html



CS468: Handout # 2 7

Figure 4: Training shapes visualization.

To load the mesh and the labels from labeledDb, you can use the provided functions
loadMesh.m and loadLabels.m. To load features, you may find Matlab functions
textscan and reshape to be useful.

Note: read the next clause now. If you choose to work with a classifier other than the
suggested one, in this clause you should organize data according to the requirements of
the classifier. Add a short explanation about data structures you used in the report.

[18 points] Learn a classifier. Following the paper, you will use JointBoost classifier [4]
to perform classification. You can find a Matlab implementation at Antonio Torralba’s
webpage4. Use features and labels from the previous clause to train the classifier. In
the report, state the algorithm parameters you used, and why you chose them (cross-
validation, algorithm description given in the paper, visual inspection, etc.). Compute
average training accuracy as

ave_acc =
1

#(training shapes) ∑
training shapes

#(correctly classified faces)
#(faces)

,

and include it in your report.

Alternatively, you can use any other classifier of your choice (e.g., a neural network)
for this task. In this case, include a sufficiently detailed description of the classifier
in your report, together with the training procedure (e.g., algorithm parameter choice)
description. See also the note in the previous clause.

4Here is a link to the implementation: http://people.csail.mit.edu/torralba/code/
sharing/sharing.zip.



8 CS468: Handout # 2

[7 points] Test the classifier. Test the classifier on the test set. If you used JointBoost,
compute label probabilities using soft-max applied to the output Fx of the classifier, as
follows
exp_Fx = exp(Fx);
prob = bsxfun(rdivide, exp_Fx, sum(exp_Fx,2));
Use the label with the maximal probability as your label prediction. Visualize the classi-
fication results using color-coded test shapes, and include them in your report. Compute
and add to the report the average test set classification accuracy, similar to previous
clause. Compare with train set classification accuracy.

[10 points EXTRA] Train both JointBoost classier, and an additional classifier, and com-
pare their performance on the test set. Illustrate classification results of the two classifiers
on the test set side-by-side. Add a short analysis of advantages / disadvantages of each
classifier to the report.

Relevant MATLAB functions: axis image, cameratoolbar, bsxfun, caxis,
trisurf(...,’EdgeColor’,’none’,...).

(b) [15 points EXTRA] Classification using graph cuts
As you may have observed, face feature-based classification produces fragmented region
boundaries, and sometimes results in mis-classification. We may try to correct these
problems by solving a full pairwise MRF problem, as suggested in [3]. The unary term
of the MRF is defined by

E1 = ∑
mesh faces fi

−log(prob(labeli)).

To simplify the problem, the smoothness term will be defined as

E2 = µ · ∑
neighboring faces fi, f j

−log(θi j/π)li j,

where θi j are the dihedral angles measured between the normals of the neighboring faces,
and li j are the distances between face centers. Note that in the above, the summation is
only over neighboring vertices. µ is a relative weight of the smoothness term in the total
optimization problem. Hence, optimal labels are obtained by minimizing the sum of the
above two terms. This optimization problem can be efficiently solved using graph cuts
[5]. The following webpage by Olga Veksler lists various graph cut algorithm imple-
mentations: http://vision.csd.uwo.ca/code/, e.g., the implementation of
the Multi-label optimization algorithm, in gco-v3.0.zip.

To solve this clause, implement a solution of the above labeling problem using a graph
cut algorithm. Report on the algorithm parameters used, and the obtained labeling ac-
curacy. Visualize labeling results, side-by-side with the results obtained in the previous
clause, and include this visualization in your report. See Figure 5 for visualization ex-
ample. Add a short discussion of the results.



CS468: Handout # 2 9

Figure 5: Test shapes classification visualization.

In your submission, please include the labeling pipeline code as a script P2.m, as well
as any additional functions you wrote or libraries you used. If these libraries require
compiling mex files, include the compilation commands in your script. DON’T submit
a directory with feature vectors.

What to hand in

Submit all source code files. In your document, attach the required visualizations, and report
accuracy values. Provide answers for all discussion questions in few sentences.



10 CS468: Handout # 2

References
[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Pro-

ceedings of the international conference on Computer Vision and Pattern Recognition
(CVPR), 2005., vol. 1, pp. 886–893, IEEE, 2005.

[2] M. Leordeanu and M. Hebert, “Efficient map approximation for dense energy functions,” in
Proceedings of the 23rd International Conference on Machine learning (ICML), pp. 545–
552, ACM, 2006.

[3] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3d mesh segmentation and label-
ing,” ACM Transactions on Graphics (TOG), vol. 29, no. 4, p. 102, 2010.

[4] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features for multiclass and
multiview object detection,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 29, no. 5, 2007.

[5] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision,” IEEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.


