What is Deep Learning?

Deep learning allows computational models that are composed of **multiple processing layers to learn representations of data with multiple levels of abstraction.**

The traditional model of pattern recognition (since the late 50's)

- Fixed/engineered features (or fixed kernel) + trainable classifier
From Y. LeCun's Slides

Linear Regression
SVM
Decision Trees
Random Forest
...

\[y = \text{sign} \left(\sum_{i=1}^{N} W_i F_i(X) + b \right) \]
Can we automatically learn “good” feature representations?
The traditional model of pattern recognition (since the late 50's)
- Fixed/engineered features (or fixed kernel) + trainable classifier

End-to-end learning / Feature learning / Deep learning
- Trainable features (or kernel) + trainable classifier
Modern architecture for pattern recognition

Speech recognition: early 90's – 2011

- MFCC (fixed)
- Mix of Gaussians (unsupervised)
- Classifier (supervised)

Object Recognition: 2006 - 2012

- SIFT, HoG (fixed)
- K-means Sparse Coding (unsupervised)
- Pooling
- Classifier (supervised)
Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Deep Learning: Representations are hierarchical and trained
It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
ImageNet 1000 class image classification accuracy
Big Data + Representation Learning with Deep Nets

WaveNet: A Generative Model for Raw Audio

By Google DeepMind

Acoustic Modeling

Near human-level Text-To-Speech performance

[Link](https://deepmind.com/blog/wavenet-generative-model-raw-audio/)
Big Data + Representation Learning with Deep Nets

Neural Translation Machine
by Quac V. Le et al at Google Brain.

Data from side-by-side evaluations, where human raters compare the quality of translations for a given source sentence.
Scores range from 0 to 6, with 0 meaning "completely nonsense translation," and 6 meaning "perfect translation."

Outline

- Motivation
- A Simple Neural Network
- Ideas in Deep Net Architectures
- Ideas in Deep Net Optimization
- Practicals and Resources
Outline

- Motivation
- **A Simple Neural Network**
- Ideas in Deep Net Architectures
- Ideas in Deep Net Optimization
- Practicals and Resources
A Simple Neural Network

Use recent three days’ average temperature to predict tomorrow’s average temperature.
A Simple Neural Network

W1, b1, W2, b2, W3, b3 are network parameters that need to be learned.

forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (1x1)

From CS231N
Neural Network: Forward Pass

\[y' = W_3 f(W_2 f(W_1 x + b_1) + b_2) + b_3 \]
Minimize: $L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3 - y_i)^2$

Given N training pairs: $\{x_i, y_i\}_{i=1}^{N}$
Neural Network: Backward Pass

Minimize: $L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3) - y_i)^2$

Given N training pairs: $\{x_i, y_i\}_{i=1}^{N}$

Non-convex optimization :(
Neural Network: Backward Pass

Minimize: \(L(x, y; W, b) = \sum_{i=1}^{N} (W_3 f(W_2 f(W_1 x_i + b_1) + b_2) + b_3) - y_i)^2 \)

Given N training pairs: \(\{x_i, y_i\}_{i=1}^{N} \)

Non-convex optimization :(Use gradient descent!

Parameter update example:

\[
W_3 = W_3 - \eta \frac{\partial L}{\partial W_3}
\]
A Simple Neural Network

Model: Multi-Layer Perceptron (MLP) \[y' = W_3 f (W_2 f (W_1 x + b_1) + b_2) + b_3 \]

Loss function: L2 loss \[l(y, y') = (y - y')^2 \]

Optimization: Gradient descent \[W = W - \eta \frac{\partial L}{\partial W} \]
Outline

● Motivation
● A Simple Neural Network
● **Ideas in Deep Net Architectures**
● Ideas in Deep Net Optimization
● Practicals and and Resources
What people think I am doing when I “build a deep learning model”

What I actually do...
Contents

Building blocks: fully connected, ReLU, conv, pooling, upconv, dilated conv

Classic architectures: MLP, LeNet, AlexNet, NIN, VGG, GoogleNet, ResNet, FCN
Multi-Layer Perceptron

Fully Connected Non-linear Op

http://playground.tensorflow.org/
- The first learning machine: the **Perceptron** Built at Cornell in 1960

- The Perceptron was a (binary) linear classifier on top of a simple feature extractor

\[y = \text{sign} \left(\sum_{i=1}^{N} W_i F_i(X) + b \right) \]

From LeCun’s Slides
Non-linear Op

Sigmoid
\[\sigma(x) = 1/(1 + e^{-x}) \]

Major drawbacks: Sigmoids saturate and kill gradients

Tanh
\[\tanh(x) = 2\sigma(2x) - 1 \]

From CS231N
Non-linear Op

ReLU (Rectified Linear Unit)

\[f(x) = \max(0, x) \]

- **Cheaper (linear) compared with Sigmoid (exp)**
- **No gradient saturation, faster in convergence**
- **“Dead” neurons if learning rate set too high**

Other Non-linear Op:

Leaky ReLU, \(f(x) = 1(x < 0)(\alpha x) + 1(x \geq 0)(x) \)

MaxOut \(\max(w_1^T x + b_1, w_2^T x + b_2) \)

A plot from Krizhevsky et al. paper indicating the **6x improvement in convergence** with the ReLU unit compared to the tanh unit.
Convolutional Neural Network: LeNet (1998 by LeCun et al.)

One of the first successful applications of CNN.
Fully Connected NN in high dimension

- **Example:** 200x200 image
 - Fully-connected, 400,000 hidden units = 16 billion parameters
 - Locally-connected, 400,000 hidden units 10x10 fields = 40 million params
 - Local connections capture local dependencies

Shared Weights & Convolutions: Exploiting Stationarity

- **Example:** 200x200 image
 - 400,000 hidden units with 10x10 fields = 1000 params
 - 10 feature maps of size 200x200, 10 filters of size 10x10
Convolution

Stride 1

Pad 1
Stride 2

From CS231N

Pad 1
Stride 1

From vdumoulin/conv_arithmetic
Convolution

5x5 RGB Image
5x5x3 array

3x3 kernel, 2 output channels, pad 1, stride 2
weights: 2x3x3x3 array
bias: 2x1 array

Output
3x3x2 array

\[H' = \frac{(H - K)}{\text{stride}_H} + 1 \]
\[= \frac{(7-3)}{2} + 1 = 3 \]

From CS231N
Pooling layer (usually inserted in between conv layers) is used to reduce spatial size of the input, thus reduce number of parameters and overfitting.

Discarding pooling layers has been found to be important in training good generative models, such as variational autoencoders (VAEs) or generative adversarial networks (GANs). It seems likely that future architectures will feature very few to no pooling layers.

From CS231N
AlexNet (2012 by Krizhevsky et al.)

The first work that popularized Convolutional Networks in Computer Vision

What’s different?
What’s different?

- Big data: ImageNet
- GPU implementation: more than 10x speedup
- Algorithm improvement: deeper network, data augmentation, ReLU, dropout, normalization layers etc.

Our network takes between five and six days to train on two GTX 580 3GB GPUs. -- Alex
Network in Network (2013 by Min Lin et al.)

56x56x128 256x5x5x128 weights 256x5x5x256 weights 256x5x5x256 weights
1x1 convolution: MLP in each pixel’s channels
Use very little parameters for large model capacity.
Karen Simonyan, Andrew Zisserman: **Very Deep Convolutional Networks for Large-Scale Image Recognition.**

- Its main contribution was in showing that the depth of the network is a critical component for good performance.

- Their final best network contains 16 CONV/FC layers and, appealingly, features an extremely homogeneous architecture that only performs 3x3 convolutions and 2x2 pooling from the beginning to the end.

--- quoted from CS231N
An Inception Module: a new building block..

Its main contribution was the development of an Inception Module and the using Average Pooling instead of Fully Connected layers at the top of the ConvNet, which dramatically reduced the number of parameters in the network (4M, compared to AlexNet with 60M).

--- edited from CS231N

Tip on ConvNets: Usually, most computation is spent on convolutions, while most space is spent on fully connected layers.
ResNet (2016 by Kaiming He et al.)

The winner in ILSVRC 2015
ResNet (2016 by Kaiming He et al.)

- Deeper network hard to train: Use skip connections for residual learning.
- Heavy use of batch normalization.
- No fully connected layers.

$H(x) = F(x) + x$
Classification:

Segmentation:

Learning Deconvolution Network for Semantic Segmentation
If you know how to compute **gradients** in convolution layers, you know upconv.
Up convolution/Convolution transpose/Deconvolution

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[y_{11} = w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} + w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} + w_{31}x_{31} + w_{32}x_{32} + w_{33}x_{33} \]

\[
\frac{\partial L}{\partial x_{11}} = \sum_i \sum_j \frac{\partial L}{\partial y_{ij}} \frac{\partial y_{ij}}{\partial x_{11}} = \frac{\partial L}{\partial y_{11}} \frac{\partial y_{11}}{\partial x_{11}} = \frac{\partial L}{\partial y_{11}} w_{11}
\]
Up convolution/Convolution transpose/Deconvolution

<table>
<thead>
<tr>
<th>X</th>
<th>W</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
</tbody>
</table>

\[
y_{11} = w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} + w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} + w_{31}x_{31} + w_{32}x_{32} + w_{33}x_{33}
\]

\[
y_{12} = w_{11}x_{12} + w_{12}x_{13} + w_{13}x_{14} + w_{21}x_{22} + w_{22}x_{23} + w_{23}x_{24} + w_{31}x_{32} + w_{32}x_{33} + w_{33}x_{34}
\]

\[
\frac{\partial L}{\partial x_{12}} = \sum_i \sum_j \frac{\partial L}{\partial y_{ij}} \frac{\partial y_{ij}}{\partial x_{12}} = \frac{\partial L}{\partial y_{11}} w_{12} + \frac{\partial L}{\partial y_{12}} w_{11}
\]
Convolution with stride =>
Upconvolution with input upsampling

See https://github.com/vdumoulin/conv_arithmetic for examples
Fully convolutional network (FCN) variations

Input image $H \times W \times 3$

Output scores $H \times W \times N$

conv

upsample

Output scores $H \times W \times N$

upconv

Input image $H \times W \times 3$

Skip links

dilated conv

Input image $H \times W \times 3$
Dilated/Atrous Convolution

Issues with convolution in dense prediction (image segmentation)

- Use small kernels
 - Receptive field grows linearly with #layers: \(1 \times (k-1) + k\)
- Use large kernels
 - Loss of resolution

Dilated convolutions support exponentially expanding receptive fields without losing resolution or coverage.

Fig from ICLR 16 paper by Yu and Koltun.
Dilated/Atrous Convolution

Baseline: conv + FC Dilated conv

Fig from ICLR 16 paper by Yu and Koltun.
Outline

- Motivation
- A Simple Neural Network
- Ideas in Deep Net Architectures
- Ideas in Deep Net Optimization
- Practicals and and Resources
Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum, Adam, learning rate decay

Other Ingredients: Data augmentation, Regularization, Dropout, Xavier initialization, Batch normalization
NN Optimization:
Back Propagation [Hinton et al. 1985]
Gradient Descent with Chain Rule Rebranded.

Fig from Deep Learning by LeCun, Bengio and Hinton. Nature 2015
SGD, Momentum, RMSProp, Adagrad, Adam

- **Batch gradient descent (GD):**
 - Update weights once after looking at all the training data.

- **Stochastic gradient descent (SGD):**
 - Update weights for each sample.

- **Mini-batch SGD:**
 - Update weights after looking at every “mini batch” of data, say 128 samples.

Let x be the weight/parameters, dx be the gradient of x. In mini-batch, dx is the average within a batch.

SGD (the vanilla update)

```python
# Vanilla update
x += -learning_rate * dx
```

where `learning_rate` is a hyperparameter - a fixed constant.

From CS231N
Momentum:

```python
# Momentum update
v = mu * v - learning_rate * dx  # integrate velocity
x += v  # integrate position
```

Initializing the parameters with random numbers is equivalent to setting a particle with zero initial velocity at some location.

The optimization process can then be seen as equivalent to the process of simulating the parameter vector (i.e. a particle) as rolling on the landscape.
Per-parameter adaptive learning rate methods

Adagrad by Duchi et al.:

```python
# Assume the gradient dx and parameter vector x
cache += dx**2
x += -learning_rate * dx / (np.sqrt(cache) + eps)
```

weights with high gradients => effective learning rate reduced

RMSProp by Hinton:

```
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += -learning_rate * dx / (np.sqrt(cache) + eps)
```

Use moving average to reduce Adagrad’s aggressive, monotonically decreasing learning rate

Adam by Kingma et al.:

```
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += -learning_rate * m / (np.sqrt(v) + eps)
```

Use smoothed version of gradients compared with RMSProp. Default optimizer (along with Momentum).

From CS231N
Annealing the learning rate (the dark art...)

Learning rate 0.003

From Martin Gorner
Annealing the learning rate (the dark art...)

Learning rate 0.003 at start then dropping exponentially to 0.0001

From Martin Gorner
Annealing the learning rate (the dark art...)

- **Stairstep decay**: Reduce the learning rate by some factor every few epochs. E.g. half the learning rate every 10 epochs.

- **Exponential decay**: \(\text{learning_rate} = \text{initial_lr} \times \exp(-kt) \) where \(t \) is current step.

- **“On-demand” decay**: Reduce the learning rate when error plateaus
Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum, Adam, learning rate decay

Other Ingredients: Data augmentation, Regularization, Dropout, Xavier initialization, Batch normalization
Dealing with Overfitting: Data Augmentation

Flipping, random crop, random translation, color/brightness change, adding noise...

Pictures from CS231N
Dealing with Overfitting: Regularization, Dropout

L1/L2 regularization on weights: limit the network capacity by encouraging distributed and sparse weights. When combining L1 and L2 regularization, it’s called elastic net regularization: $\lambda_1 |w| + \lambda_2 w^2$

Dropout by Srivastava et al.: During testing there is no dropout applied, with the interpretation of evaluating an averaged prediction across the exponentially-sized ensemble of all sub-networks.
Applying dropout during training
Xavier and MSR Initialization

Problem with random Gaussian initialization: the distribution of the outputs has a variance that grows with the number of inputs => Exploding/diminishing output in very deep network.

\[W = 0.01 \times \text{np.random.randn}(D,H) \]

\[w = \text{np.random.randn}(n) / \sqrt{n}. \]

\[w = \text{np.random.randn}(n) \times \sqrt{2/n}. \]
Data “whitening”

Data: large values, different scales, skewed, correlated
Data “whitening”

Modified data: centered around zero, rescaled...

Subtract average
Divide by std dev

From Martin Gorner
Batch Normalization

Compute average and variance on mini-batch

Center and re-scale logits before the activation function (decorrelate? no, too complex)

\[\hat{x} = \frac{x - \text{avg}_{\text{batch}}(x)}{\text{stddev}_{\text{batch}}(x) + \epsilon} \]

"logit" = weighted sum + bias
Batch Normalization

Compute average and variance on mini-batch

\[\hat{x} = \frac{x - \text{avg}_{\text{batch}}(x)}{\text{stdev}_{\text{batch}}(x) + \epsilon} \]

"logit" = weighted sum + bias
Center and re-scale logits before the activation function (de-correlate? no, too complex)

Add learnable scale and offset for each logit so as to restore expressiveness

\[\text{BN}(x) = \alpha \hat{x} + \beta \]

Try \(\alpha = \text{stddev}(x) \) and \(\beta = \text{avg}(x) \) and you have \(\text{BN}(x) = x \)

From Martin Gorner
Batch Normalization

\[\hat{x} = \frac{x - \text{avg}_{\text{batch}}(x)}{\text{stddev}_{\text{batch}}(x) + \epsilon} \]

\[BN(x) = \alpha \hat{x} + \beta \]

+ You can go faster: use higher learning rate
+ BN also regularises: lower or remove dropout

depends from:
weights, biases, images

depends from:
same weights and biases, images
only one set of weights and biases in a mini-batch

=> BN is differentiable relatively to weights, biases, \(\alpha \) and \(\beta \)
It can be used as a layer in the network, gradient calculations will still work
Outline

● Motivation
● A Simple Neural Network
● Ideas in Deep Net Architectures
● Ideas in Deep Net Optimization
● **Practicals and Resources**
Data Collecting, Cleaning, Preprocessing > 50% time

“OS” of Machine/Deep Learning

Caffe, Theano, Torch, Tensorflow, Pytorch, MXNET, ...
Matlab in the earlier days. Python and C++ is the popular choice now.

Deep network debugging, Visualizations
Resources

Stanford CS231N: Convolutional Neural Networks for Visual Recognition

Stanford CS224N: Natural Language Processing with Deep Learning

Berkeley CS294: Deep Reinforcement Learning

Learning Tensorflow and deep learning, without a PhD

Udacity and Coursera classes on Deep Learning

Book by Goodfellow, Bengio and Courville: http://www.deeplearningbook.org/

What’s not covered...

Sequential Models (RNN, LSTM, GRU)

Deep Reinforcement Learning

3D Deep Learning (MVCNN, 3D CNN, Spectral CNN, NN on Point Sets)

Generative and Unsupervised Models (AE, VAE, GAN etc.)

Theories in Deep Learning

...
Summary

● Why Deep Learning

● A Simple Neural Network
 ○ Model, Loss and Optimization

● Ideas in deep net architectures
 ○ Building blocks: FC, ReLU, conv, pooling, unpooling, upconv, dilated conv
 ○ Classics: MLP, LeNet, AlexNet, NIN, VGG, GoogleNet, ResNet

● Ideas in deep net optimization
 ○ Basics: GD, SGD, mini-batch SGD, Momentum, Adam, learning rate decay
 ○ Other Ingredients: Data augmentation, Regularization, Dropout, Batch normalization

● Practicals and Resources