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What is Deep Learning?

Deep learning allows computational models that are 
composed of multiple processing layers to learn 
representations of data with multiple levels of abstraction.

Artificial
Intelligence

Machine
Learning

Deep
Learning

Deep Learning by Y. LeCun et al. Nature 2015



From Y. LeCun’s Slides



Image: HoG

Image: SIFT

Audio: Spectrogram

Point Cloud: PFH



From Y. LeCun’s Slides

Linear Regression
SVM
Decision Trees
Random Forest
...



Can we automatically learn “good” feature representations?

Image

Thermal Infrared

Video 3D CAD Model

Depth Scan Audio



From Y. LeCun’s Slides
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From Y. LeCun’s Slides



ImageNet 1000 class image classification accuracy



Big Data + Representation Learning with Deep Nets

Acoustic Modeling

Near human-level 
Text-To-Speech performance

By Google DeepMind

https://deepmind.com/blog/wavenet-generative-model-raw-audio/



Big Data + Representation Learning with Deep Nets

Neural Translation Machine 
by Quac V. Le et al at Google Brain.

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
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A Simple Neural Network

Image from CS231N

Use recent three days’ average temperature to predict tomorrow’s 
average temperature.



A Simple Neural Network

From CS231N

Sigmoid function

W1, b1, W2, b2, W3, b3
are network parameters 
that need to be learned.



Neural Network: Forward Pass

From CS231N

x(1): 73.8

x(2): 75.8

x(3): 78.2

y’: -10.4



Neural Network: Backward Pass

73.8

75.8

78.2 Ground truth: 80.8

L2 error = (80.8 - (-10.4))^2

Update Network Parameters

Prediction: -10.4

Minimize:

Given N training pairs:  



Neural Network: Backward Pass

Non-convex optimization :(

Minimize:

Given N training pairs:  

Sigmoid function



Neural Network: Backward Pass

Non-convex optimization :(
Use gradient descent!

Minimize:

Given N training pairs:  

Parameter update example: 



A Simple Neural Network

Model: 
Loss function: 

Multi-Layer Perceptron (MLP) 

L2 loss

Optimization: Gradient descent
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What people think I am doing when I 
“build a deep learning model”

What I actually do...



Contents

Building blocks: fully connected, ReLU, conv, pooling, upconv, 
dilated conv

Classic architectures: MLP, LeNet, AlexNet, NIN, VGG, 
GoogleNet, ResNet, FCN



Multi-Layer Perceptron

http://playground.tensorflow.org/
Fully Connected

Non-linear Op

http://playground.tensorflow.org/
http://playground.tensorflow.org/


Fully Connected

From LeCun’s Slides

● The first learning machine: the 
Perceptron Built at Cornell in 1960

● The Perceptron was a (binary) linear 
classifier on top of a simple feature 
extractor

From CS231N



Non-linear Op

Sigmoid

Tanh

From CS231N

Major drawbacks: Sigmoids saturate and kill gradients



Non-linear Op

ReLU (Rectified Linear Unit)

A plot from Krizhevsky et al. paper 
indicating the 6x improvement in 
convergence with the ReLU unit 
compared to the tanh unit.

Other Non-linear Op:

Leaky ReLU, 

MaxOut From CS231N

+ Cheaper (linear) compared with Sigmoids (exp)
+ No gradient saturation, faster in convergence
- “Dead” neurons if learning rate set too high



Convolutional Neural Network : LeNet (1998 by LeCun et al.) Fully Connected

Non-linear Op

Convolution

Pooling

One of the first successful 
applications of CNN.

(pooling)



Convolution

Slide from LeCun

Fully Connected NN in high dimension

Shared Weights & Convolutions:
Exploiting Stationarity



Convolution

From CS231N

Stride 1 Stride 2

Pad 1
Stride 2

From vdumoulin/conv_arithmetic

Pad 1
Stride 1



Convolution

Pad 1
Stride 2

5x5 RGB Image 
5x5x3 array

3x3 kernel, 2 output 
channels, pad 1, stride 2

weights: 2x3x3x3 array
bias: 2x1 array

Output
3x3x2 array

H’ = (H - K)/stride_H + 1
= (7-3)/2 + 1 = 3

From CS231N



Pooling

Discarding pooling layers has been found to be important in training good generative models, 
such as variational autoencoders (VAEs) or generative adversarial networks (GANs).
It seems likely that future architectures will feature very few to no pooling layers.

From CS231N

Pooling layer (usually inserted in between conv layers) is 
used to reduce spatial size of the input, thus reduce 
number of parameters and overfitting.



LeNet (1998 by LeCun et al.) Fully Connected

Non-linear Op

Convolution

Pooling

(pooling)



AlexNet (2012 by Krizhevsky et al.)

What’s different?

The first work that 
popularized 
Convolutional Networks 
in Computer Vision



AlexNet (2012 by Krizhevsky et al.)

What’s different?

● Big data: ImageNet
● GPU implementation: more than 10x speedup
● Algorithm improvement: deeper network, data 

augmentation, ReLU, dropout, normalization layers etc.

Our network takes between five and six days 
to train on two GTX 580 3GB GPUs. -- Alex



Network in Network (2013 by Min Lin et al.)

56x56x128 256x5x5x128 weights 256x5x5x256 weights 256x5x5x256 weights



Network in Network (2013 by Min Lin et al.)

1x1 convolution: MLP in each pixel’s channels
Use very little parameters for large model capacity.

56x56x128 256x5x5x128 weights

256x5x5x128 weights
+ 1x1 conv (256x256 weights)
+ 1x1 conv (256x256 weights)



VGG (2014 by Simonyan and Zisserman)

Karen Simonyan, Andrew Zisserman: Very Deep 
Convolutional Networks for Large-Scale Image Recognition.

● Its main contribution was in showing that the depth of the 
network is a critical component for good performance. 

● Their final best network contains 16 CONV/FC layers and, 
appealingly, features an extremely homogeneous 
architecture that only performs 3x3 convolutions and 2x2 
pooling from the beginning to the end. 

-- quoted from CS231N

The runner-up in ILSVRC 2014



GoogleNet (2015 by Szegedy et al.)

An Inception Module: a new building block..

Its main contribution was the development of an 
Inception Module and the using Average 
Pooling instead of Fully Connected layers at the 
top of the ConvNet, which dramatically reduced 
the number of parameters in the network (4M, 
compared to AlexNet with 60M).

-- edited from CS231N

Tip on ConvNets:
Usually, most computation is 
spent on convolutions, while 
most space is spent on fully 
connected layers.

The winner in ILSVRC 2014



ResNet (2016 by Kaiming He et al.) The winner in ILSVRC 2015



ResNet (2016 by Kaiming He et al.)

● Deeper network hard to train: Use 
skip connections for residual 
learning.

● Heavy use of batch normalization.

● No fully connected layers.
152 layers..



dog

Classification:

Segmentation:

Learning Deconvolution Network for 
Semantic Segmentation



Up convolution/Convolution transpose/Deconvolution

If you know how to compute gradients in 
convolution layers, you know upconv.



Up convolution/Convolution transpose/Deconvolution
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Up convolution/Convolution transpose/Deconvolution
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Convolution with stride =>
Upconvolution with input upsampling

Upconvolution/Convolution transpose/Deconvolution

See https://github.com/vdumoulin/conv_arithmetic for examples

https://github.com/vdumoulin/conv_arithmetic


Dilated Convolution

Fully convolutional network (FCN) variations

Input image 
HxWx3

dilated 
conv

Output scores 
HxWxN

conv

upconv

Input image 
HxWx3

Output scores
HxWxN

Skip links

Input image 
HxWx3

Output scores
HxWxN

conv

upsample



Dilated/Atrous Convolution

Issues with convolution in dense prediction (image segmentation)
● Use small kernels

○ Receptive field grows linearly with #layers: l∗(k−1)+k
● Use large kernels

○ loss of resolution

Dilated convolutions support exponentially expanding 
receptive fields without losing resolution or coverage.

Fig from ICLR 16 paper by Yu and Koltun.

L1: dilation=1 L2: dilation=2 L2: dilation=4

dilation=2

Receptive field: 3 Receptive field: 7 Receptive field: 15



Fig from ICLR 16 paper by Yu and Koltun.

Dilated/Atrous Convolution

Baseline: conv + FC Dilated conv
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Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum, 
Adam, learning rate decay

Other Ingredients:  Data augmentation, Regularization, 
Dropout, Xavier initialization, Batch normalization



NN Optimization:
Back Propagation [Hinton et al. 1985]
Gradient Descent with Chain Rule Rebranded.

Fig from Deep Learning by LeCun, 
Bengio and Hinton. Nature 2015



SGD, Momentum, RMSProp, Adagrad, Adam

● Batch gradient descent (GD):
○ Update weights once after looking at all the training data.

● Stochastic gradient descent (SGD):
○ Update weights for each sample.

● Mini-batch SGD:
○ Update weights after looking at every “mini batch” of data, say 128 samples.

Let x be the weight/parameters, dx be the gradient of x. In mini-batch, dx is the average within a batch.

SGD (the vanilla update)

From CS231Nwhere learning_rate is a hyperparameter - a fixed constant.



SGD, Momentum, RMSProp, Adagrad, Adam

Initializing the parameters with random numbers 
is equivalent to setting a particle with zero initial 
velocity at some location. 

The optimization process can then be seen as 
equivalent to the process of simulating the 
parameter vector (i.e. a particle) as rolling on 
the landscape.

Momentum:

From CS231N



SGD, Momentum, RMSProp, Adagrad, Adam

Adagrad by Duchi et al.:

Per-parameter adaptive learning rate methods

weights with high gradients => 
effective learning rate reduced

RMSProp by Hinton:
Use moving average to reduce 
Adagrad’s aggressive, monotonically 
decreasing learning rate

Adam by Kingma et al.:

Use smoothed version of gradients 
compared with RMSProp. Default 
optimizer (along with Momentum).

From CS231N



Annealing the learning rate (the dark art...)

From Martin Gorner
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From Martin Gorner



Annealing the learning rate (the dark art...)

● Stairstep decay: Reduce the learning rate by some factor 
every few epochs. E.g. half the learning rate every 10 
epochs.

● Exponential decay: learning_rate = initial_lr * exp(-kt) 
where t is current step.

● “On-demand” decay: Reduce the learning rate when error 
plateaus



Optimization

Basics: Gradient descent, SGD, mini-batch SGD, Momentum, 
Adam, learning rate decay

Other Ingredients: Data augmentation, Regularization, 
Dropout, Xavier initialization, Batch normalization



Dealing with Overfitting: Data Augmentation

Flipping, random crop, random translation, color/brightness change, adding noise...

Pictures from CS231N



Dealing with Overfitting: Regularization, Dropout

L1/L2 regularization on weights: limit the network capacity by encouraging 
distributed and sparse weights. When combining L1 and L2 regularization, it’s called 
elastic net regularization:

Dropout by Srivastava et al.: 
During testing there is no dropout applied, 
with the interpretation of evaluating an averaged 
prediction across the exponentially-sized 
ensemble of all sub-networks.



Applying dropout
during training



Xavier and MSR Initialization

Problem with random Gaussian initialization: the distribution 
of the outputs has a variance that grows with the number of 
inputs => Exploding/diminishing output in very deep network.

W = 0.01* np.random.randn(D,H)

w = np.random.randn(n) / sqrt(n).

w = np.random.randn(n) * sqrt(2/n).



Data “whitening”

From Martin Gorner



Data “whitening”

From Martin Gorner



Batch Normalization

From Martin Gorner



Batch Normalization

From Martin Gorner



Batch Normalization

From Martin Gorner
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Image from Martin Gorner



Data Collecting, Cleaning, Preprocessing > 50% 
time

“OS” of Machine/Deep Learning
Caffe, Theano, Torch, Tensorflow, Pytorch, MXNET, …
Matlab in the earlier days. Python and C++ is the popular 

choice now.

Deep network debugging, Visualizations



Resources

Stanford CS231N: Convolutional Neural Networks for Visual Recognition

Stanford CS224N: Natural Language Processing with Deep Learning

Berkeley CS294: Deep Reinforcement Learning

Learning Tensorflow and deep learning, without a PhD

Udacity and Coursera classes on Deep Learning

Book by Goodfellow, Bengio and Courville: http://www.deeplearningbook.org/

Talk by LeCun 2013: http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf

Talk by Hinton, Bengio, LeCun 2015: 
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

http://cs231n.stanford.edu/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://rll.berkeley.edu/deeprlcourse/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://www.udacity.com/course/deep-learning--ud730
https://www.coursera.org/learn/neural-networks
https://www.udacity.com/course/deep-learning--ud730
http://www.deeplearningbook.org/
http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
https://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf


What’s not covered...

Sequential Models (RNN, LSTM, GRU)

Deep Reinforcement Learning

3D Deep Learning (MVCNN, 3D CNN, Spectral CNN, NN on Point Sets)

Generative and Unsupervised Models (AE, VAE, GAN etc.)

Theories in Deep Learning

...



Summary

● Why Deep Learning

● A Simple Neural Network
○ Model, Loss and Optimization

● Ideas in deep net architectures
○ Building blocks: FC, ReLU, conv, pooling, unpooling, upconv, dilated conv
○ Classics: MLP, LeNet, AlexNet, NIN, VGG, GoogleNet, ResNet

● Ideas in deep net optimization
○ Basics: GD, SGD, mini-batch SGD, Momentum, Adam, learning rate decay
○ Other Ingredients:  Data augmentation, Regularization, Dropout, Batch 

normalization

● Practicals and Resources


