CS468: 3D Deep Learning on Point Cloud Data

Hao Su Stanford University

May 10, 2017

Agenda

Point cloud analysis

- PointNet
- PointNet++
- Joint embedding learning for cross-modality image-shape retrieval

Applications of Point Set Learning

Robot Perception

What and where are the objects in a LiDAR scanned scene?

https://3dprint.com/116569/self-driving-cars-privacy/

Applications of Point Set Learning

Molecular Biology

Can we infer an enzyme's category (reactions they catalyze) from its structure?

EcoRV restriction enzyme molecule, LAGUNA DESIGN/SCIENCE PHOTO LIBRARY

Directly process point cloud data

End-to-end learning for unstructured, unordered point data

Directly process point cloud data

End-to-end learning for **unstructured**, **unordered** point data

Unified framework for various tasks

. . .

Properties of a desired neural network on point clouds

Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

Properties of a desired neural network on point clouds

Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

Permutation invariance

Transformation invariance

Properties of a desired neural network on point clouds

Point cloud: N orderless points, each represented by a D dim coordinate

2D array representation

Permutation invariance

Permutation invariance: Symmetric function

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

. . .

Q: What symmetric functions can be constructed by PointNet?

A: Universal approximation to continuous symmetric functions

Theorem:

A Hausdorff continuous symmetric function $f: 2^{\mathcal{X}} \to \mathbb{R}$ can be arbitrarily approximated by PointNet.

PointNet Architecture

Classification Network

mlp (64,128,1024) input mlp (64,64) feature mlp max input points transform transform (512,256,k) **pool** 1024 nx64 nx64 EX Ř nx1024 shared shared global feature κ output scores. point features output scores 64x64 3x3 T-Net T-Net \transform \transform nx128 Ĕ n x 1088 shared shared matrix matrix multiply multiply mlp (512,256) mlp (128,m) Segmentation Network

Results on Object Classification

Object Classification Accuracy on ModelNet40

	input	#views	accuracy	accuracy
			avg. class	overall
SPH [12]	mesh	-	68.2	-
3DShapeNets [29]	volume	1	77.3	84.7
VoxNet [18]	volume	12	83.0	85.9
Subvolume [19]	volume	20	86.0	89.2
LFD [29]	image	10	75.5	-
MVCNN [24]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2

Results on Object Part Segmentation

Results on Object Part Segmentation

	\frown	Part Segmentation mIoU on ShapeNet Part Dataset															
	mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
							phone									board	
# shapes		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
Wu [28]	-	63.2	-	-	-	73.5	-	-	-	74.4	-	-	-	-	-	-	74.8
Yi [30]	81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
3DCNN	79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
Ours	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6

Results on Semantic Scene Segmentation

Results on Semantic Scene Parsing

Semantic Segmentation (point based) on Stanford Semantic Parsing dataset

	mean IoU	overall accuracy
Ours baseline	20.12	53.19
Ours PointNet	47.71	78.62

3D Object Detection (bounding box based)

	table	chair	sofa	board	mean
# instance	455	1363	55	137	
Armeni et al. [2]	46.02	16.15	6.78	3.91	18.22
Ours	46.67	33.80	4.76	11.72	24.24

Robustness to Data Corruption

Robustness to Data Corruption

Which input point will activate neuron j?

Find the top-K points in a dense volumetric grid that activates neuron j.

Visualizing Point Functions

Visualizing Global Point Cloud Features

Visualizing Global Point Cloud Features

Visualizing Global Point Cloud Features (OOS)

Previous Work: PointNet v1.0

Segmentation Network

Previous Work: PointNet v1.0

Segmentation Network

Previous Work: PointNet v1.0

Segmentation Network

No local context for each point!

- Hierarchical Feature Learning
- Increasing receptive field

3D CNN (Wu et al.)

- Hierarchical Feature Learning
- Increasing receptive field

Global Feature Learning Receptive field: one point OR all points

V.S.

PointNet (vanilla) (Qi et al.)

3D CNN (Wu et al.)

Artifacts in segmentation tasks:

Semantic segmentation in randomly translated table-cup scene.

Instance segmentation in tablechair-cup scene

Semantic segmentation in randomly translated table-cup scene.

Instance segmentation in tablechair-cup scene

- Global feature depends on absolute XYZ!
- Hard to generalize to unseen point configurations
Question

- How to learn local context feature for points?
- Use PointNet in local regions, aggregate local region features by PointNet again..
- Hierarchical feature learning!

Multi-Scale PointNet for Hierarchical Feature Learning

N points in (x,y)

PointNet Module/Layer: Farthest Point Sampling + Grouping + PointNet v1.0

- 1. Larger receptive field in higher layers
- 2. Less points in higher layers (more scalable)
- 3. Weight sharing
- 4. Translation invariance (local coordinates in local regions)

Discussions on Multi-Scale PointNet

Multi-Scale PointNet v.s. PointNet v1.0

One-layer Multi-Scale PointNet <=> PointNet v1.0

PointNet Layer v.s. Convolution Layer

Multi-Scale PointNet v.s. Graph CNN

• Unexpectedly strong relation with Graph CNN:

Joan Bruna et al. Spectral Networks and Deep Locally Connected Networks on Graphs. ICLR 2014

Multi-Scale PointNet v.s. Graph CNN

• Local feature extraction, graph coarsening, repeat...

Joan Bruna et al. Spectral Networks and Deep Locally Connected Networks on Graphs. ICLR 2014

Multi-Scale PointNet v.s. Graph CNN

- In Graph CNN's perspective:
- Multi-Scale PointNet defines
 - 1. Graph connectivity through Euclidean distance
 - 2. Graph coarsening by farthest point sampling
 - 3. Local feature extraction with PointNet (v1.0)

Relations to OctNet (Octree based 3D CNN)

OctNet in Graph CNN's perspective:

- 1. Both connectivity and graph coarsening are defined by the Octree.
- 2. Local feature extraction by convolution layer.

OctNet: Learning Deep 3D Representations at High Resolutions Gernot Riegler, Ali Osman Ulusoy and Andreas Geiger

Relations to OctNet (Octree based 3D CNN)

OctNet in Graph CNN's perspective:

In Multi-Scale PointNet

- 1. Both connectivity and graph coarsening are By ground distance defined by the Octree.
- 2. Local feature extraction by convolution layer. By PointNet (v1.0)

OctNet: Learning Deep 3D Representations at High Resolutions Gernot Riegler, Ali Osman Ulusoy and Andreas Geiger

PointNet++: Addressing density variation of point cloud

Density variation is a common issue of 3D point cloud

• perspective effects, radial density variation, motion, etc

Density variation affects hierarchy

• In CNN, small kernels are "always" better

Karen Simonyan & Andrew Zisserman, VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION, ICLR2015

• Is it also true for point cloud learning?

Density variation affects hierarchy

Intuition

- At high density area, we should look more closely
- At low density area, we should look more broadly
- However, parameters at different scales cannot be shared

Idea 1: Multi-scale grouping (MSG)

• Extract features at multiple scales and combine them

- Add random dropout to input point cloud to simulate scanning deficiency
- Dropout ratio is sampled uniformly in [0, 1]

concat

Idea 2: Multi-resolution grouping (MRG)

• Drawback of MSG: expensive

concat

- Need to run PointNet on many neighborhoods
- Multi-resolution grouping: reuse the computation from different levels

Multi-Scale PointNet for Segmentation with "Up-convolution" Module

"Up-convolution" in Multi-Scale PointNet

"Up-convolution" in Multi-Scale PointNet

How to achieve segmentation?

"Up-convolution" in Multi-Scale PointNet

Naive solution: Broadcasting

- - -

Naive solution Plus: Broadcasting + Skip links

Naive solution (broadcasting) Problems:

1. How to deal with points that belong to multiple regions?

2. What if some point belongs to no regions?

"Up-convolution" Module with 3D Interpolation

Instead of broadcasting, use 3D interpolation.

• Nearest Neighbor

. . .

- Inverse distance weighting
- Using delaunay triangulation

"Up-convolution" Module with 3D Interpolation

Instead of broadcasting, use 3D interpolation.

• Nearest Neighbor

. . .

- Inverse distance weighting
- Using delaunay triangulation

$$u(\mathbf{x}) = egin{cases} \displaystyle \sum_{i=1}^N w_i(\mathbf{x}) u_i \ \displaystyle \sum_{i=1}^N w_i(\mathbf{x}) \ \displaystyle \sum_{i=1}^N w_i(\mathbf{x}) \ \displaystyle u_i, & ext{if } d(\mathbf{x},\mathbf{x}_i) = 0 ext{ for all } i \ \displaystyle u_i, & ext{if } d(\mathbf{x},\mathbf{x}_i) = 0 ext{ for some } i \end{cases} w_i(\mathbf{x}) = rac{1}{d(\mathbf{x},\mathbf{x}_i)^p}$$

- 1. Feature Interpolation based on Euclidean distances to kNN
- 2. Skip link feature aggregation
- 3. MLP on aggregated feature for feature update and compression

Multi-Scale PointNet: Segmentation Network

Experimental Results (preliminary)

ModelNet40 Classification Benchmark

	Accuracy
PointNet (vanilla)	87.2%
PointNet	89.2%
MultiScale PointNet	90.1%
MultiScale PointNet (voting)	90.7%
ModelNet40 Classification Benchmark

	Accuracy
PointNet (vanilla)	87.2%
PointNet	89.2%
MultiScale PointNet	90.1%
MultiScale PointNet (voting)	90.7%

ModelNet40 Classification Benchmark

	Accuracy
PointNet (vanilla)	87.2%
PointNet	89.2%
MultiScale PointNet	90.1%
MultiScale PointNet (voting)	90.7%

ShapeNet Part Segmentation Benchmark

• First try...

	mloU
PointNet	80.7%
PointNet + one-hot vector	82.7%
PointNet + one-hot vector + skip links etc.	83.7%
MultiScale PointNet	83.8%

Semantic Segmentation in Scenes

Semantic Segmentation in Scenes

	mloU
PointNet	75.5%
MultiScale PointNet	94.6%

PointNet v2.0: Multi-Scale PointNet

Misclassified table leg

Geodesic distance based weights may help!

Joint Embedding of 3D shapes and 2D images

What is Joint Embedding of Shapes and Images?

Application: Image-based Shape Retrieval

Application: Shape-based Image Retrieval

Application: Cross-View Image Retrieval

How to construct the joint embedding space?

Step 1: Construct Shape Embedding Space

Why not start from images?

- Object pose
- Lighting condition
- Texture variance
- Background clutterness

Similarity between Shapes can be Easily Factored

Step 1: Construct Shape Embedding Space

Shape signature: Light Field Descriptor (with HoG feature)

Pairwise distance matrix of 3D shapes

Step 1: Construct Shape Embedding Space

Dimension reduction (MDS with Sammon mapping)

2D Visualization of Shape Embeddings

99 2 A A 2 A A R 99 P 00 **AERO** 3 00

How to construct the joint embedding space?

Step 2: Projecting Images to the Joint Embedding space: Prepare training data.

Step 2: Projecting Images to Joint Embedding Space

Render for CNN Pipeline

Hao Su, Charles Qi, Yangyan Li, Leonidas Guibas, Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views, ICCV 2015 Oral Presentation

How to construct the joint embedding space?

Joint Embedding Space of Shapes and Images

t-SNE visualization. Embeddings are projected into 2D

Results

Figure 8: Comparison of top-k accuracy on image-based same-instance shape retrieval.

Median rank of	HoG	AlexNet fc7	AlexNet fc7	Siamese	Siamese	Ours
		(ImageNet)	(fine tune)	(64 nbors)	(0 nbor)	Ours
first matched	1	7	5	3	3	1
last matched	32	84	71	94	49	5

Comparison of performance on shape-based same instance imag retrieval

Other approaches to build 3D shape space: GANs

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

NIPS 2016

Chengkai Zhang* Tianfan Xue

Bill Freeman Jos

Josh Tenenbaum

MIT CSAIL

Google Research

* indicates equal contribution