Machine Learning Foundations
Probabilistic graphical models

Anastasia Dubrovina
Computer Science Dept.
Stanford University
In this lecture

• A reminder
 • Supervised learning - regression, classification
 • Unsupervised learning - clustering
 • Dimensionality reduction
• Probabilistic graphical models
 • Types of graphical models
 • Inference
 • Learning
Supervised learning

- We are given a dataset of examples and correct outputs (x_i, y_i)
- Our goal: learn to map new input to output

- Regression = output y is continuous
- Classification = output y is discrete

Source: Andrew Ng
Supervised learning for 3D data - examples

• Problem: mesh point labeling

• This is a classification problem

Image: Learning 3D Mesh Segmentation and Labeling, Kalogerakis et al.'10
Supervised learning for 3D data - examples

- Problem: shape completion

Classification: part labels

Regression: part orientations

Images: Data-Driven Structural Priors for Shape Completion, Sung et al.’15
Unsupervised learning

• Here, we are given a dataset of **unlabeled** examples

• Goal: derive structure from the data

• We will encounter
 • Clustering

 • Dimensionality reduction
 • Principal Component Analysis (PCA)

Sources: Andrew Ng, CS233, Fast and efficient spectral clustering (Mathworks post)
Unsupervised learning for 3D data - example

- Problem: **unsupervised co-segmentation** of a set of shapes in descriptor space

Image: Unsupervised Co-Segmentation of a Set of Shapes via Descriptor-Space Spectral Clustering, Sidi et al.’11
Dimensionality reduction for 3D data - examples

- Morphable model for synthesis of 3D faces

Image: A morphable model for the synthesis of 3D faces, Blanz and Vetter’99
Dimensionality reduction for 3D data - examples

- Model of the space of human bodies

Image: The space of human body shapes: reconstruction and parameterization from range scans, Allen et al.’03
Probabilistic graphical models
Graphical models for shape analysis

Anguelov et al., NIPS’04
- Registration posed as MRF
- Pointwise and pairwise surface properties
- Optimization: Loopy BP

Sung et al., SIGGRAPH Asia’14
- Part labels and orientation prediction
- Point segmentation
- Optimization: TRW-S
Graphical models for shape synthesis

Chaudhuri et al., TOG’11
- Part compatibility model
- Optimization: likelihood-weighted sampling

Kalogerakis et al., TOG’12
- Generative model
- Optimization: structure learning
Probabilistic graphical models

- Represent the world as a collection of random variables
 \[X = \{X_1, \ldots, X_n\} \text{ with joint distribution } p(X_1, \ldots, X_n) \]

- Compact representation \(p(X_1, \ldots, X_n) \)

- Learn distribution from the data

- Perform inference = compute conditional distributions (CPD) given observations
 \[p(X_i|X_1 = x_1, \ldots, X_n = x_n) \]

Adapted from CS228 slides by Stefano Ermon
Types of graphical models

Bayesian Nets (BN)

Markov Random Fields (MRF)

Conditional Random Fields (CRF)

Image credits: Stafno Ermon, [1], [3]
Bayesian nets

• A Bayesian network is a directed acyclic graph (DAG) $G=(V,E)$ that specifies a joint distribution over X as a product of local conditional distributions.

\[
p(x_1, \ldots, x_n) = \prod_{i \in V} p(x_i \mid x_{Pa(i)})
\]

\[
p(d, i, g, s, l) = p(d)p(i)p(g \mid i, d)p(s \mid i)p(l \mid g)
\]

• # of degrees of freedom?
• And if we don’t assume conditional independence?

Adapted from CS228 slides by Stefano Ermon
Markov random fields

- **Indirected** graphical models - vs. DAGs for Bayesian nets

- Can represent certain dependencies more easily than BN
- Used more in practice - useful for symmetric interactions
- Harder to interpret, learn and perform inference
MRF - formal definition

• An **MRF** is defined by an **undirected graph**:
 • one node for each random variable
 • **undirected** edges represent dependencies
MRF - formal definition

• An **MRF** is defined by an **indirected graph**:
 • one node for each random variable
 • **undirected** edges represent dependencies

• Potential functions, or **factors**, are associated with **cliques** C of the graph

\[p(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c) \]
MRF - formal definition

• An **MRF** is defined by an **indirected graph**:
 • one node for each random variable
 • **undirected** edges represent dependencies

• Potential functions, or **factors**, are associated with **cliques** C of the graph

\[
p(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \phi_c(x_c)
\]

• Z is the **partition function** - normalizes the distribution

\[
Z = \sum_{\hat{x}_1, \ldots, \hat{x}_n} \prod_{c \in C} \phi_c(\hat{x}_c)
\]

Adapted from CS228 slides by Stefano Ermon
Conditional random fields

- “A framework for building probabilistic models to segment and label sequence data (and more)” [3]

- Specifies the probabilities of possible label sequences given an observation sequence X

- Does not expend modeling effort on the observations, which may have complex dependencies and are fixed at test time

“Conditional random fields: probabilistic models …”, Lafferty et al.
CRF - formal definition

• A CRF is a Markov network on variables \(\mathbf{X} \cup \mathbf{Y} \), which specifies conditional distribution

\[
p(y|x) = \frac{1}{Z(x)} \prod_{c \in \mathcal{C}} \phi_c(x_c, y_c)
\]

with partition function

\[
Z(x) = \sum_{\hat{y}} \prod_{c \in \mathcal{C}} \phi_c(x_c, \hat{y}_c)
\]

• Difference with a standard Markov net - sum only over \(\mathbf{Y} \)
Inference in graphical models
Inference in graphical models

• Suppose we are given a BN / MRF / CRF over X
• Given observations E, we are typically interested in
 • Conditional probability queries
 \[p(Y|E = e) = \frac{p(Y, E)}{p(e)} \]
 • Maximum a posteriori (MAP) inference, or most probable explanation
 \[MAP(Y|E = e) = \arg\max_y p(y|e) = \arg\min_y E(y; e) \]
(see next slides for details)
Algorithms for inference (partial list)

- Exact inference
 - Variable elimination
 - Message passing, or belief propagation (BP)
 - ...
- Approximate inference
 - Loopy belief propagation (Loopy BP)
 - Sampling algorithms
 - MAP inference
 - Approximate max-product belief propagation
 - Integer programming and linear programming relaxation
 - ...
 - ...
 - ...
Special case - MAP inference

- The MAP inference task

\[
\arg\max_y p(y)
\]

\[
p(y) = \frac{1}{Z} \prod_{c \in C} \phi_c(y_c)
\]

- Since the normalization is a constant, this is equivalent to

\[
\arg\max_y \prod_{c \in C} \phi_c(y_c)
\]

(called the max-product inference)

- Since log is monotonic, let \(\theta_c(y_c) = \log \phi_c(y_c)\)

- The above becomes equivalent to

\[
\arg\max_y \sum_{c \in C} \theta_c(y_c)
\]

(called max-sum)
MAP as an optimization problem

- Consider a pairwise MRF (cliques of size 1, 2)
- Given an MRF specified by a graph \(G=(V,E) \), MAP can be written as
 \[
 \arg \max_y \sum_{i \in V} \theta_c(y_i) + \sum_{ij \in E} \theta_{ij}(y_i, y_j)
 \]
- Can be solved using
 - Tree-reweighed message passing (TRW-S) algorithm [2]
 - Conversion into integer linear programming, or relaxed into linear programming problem [1]
 - Same energy functional can be optimized using **graph-cuts** [4,5]
Learning in graphical models
A graphical model has two components: **graph structure** and the **associated potentials**.

Several possible ways to acquire a model:

- Use expert knowledge to determine the graph and the potentials.
- Use data+learning to determine the potentials, i.e., **parameter learning**.
- Use data+learning to determine the graph, i.e., **structure learning**.

Manual design is difficult to do and can take a long time for an expert.

We usually have access to a set of examples from the distribution we wish to model, e.g., a set of emails annotated by a human (spam or not-spam).
Parameter learning

• Assume some underlying distribution p^*
• Given is a dataset of m IID samples from p^*

$$D = \{x^{(1)}, \ldots, x^{(m)}\}$$

• Goal: given a family of models M with a fixed structure, learn its parameters, so that it captures the distribution p^*
• Computing p^* exactly is not achievable in general
 • Limited data provides rough approximation to p^*
 • Computational resources
• Therefore, we want to construct the “best” approximation to p^*
Parameter learning - MLE estimation

- We want to construct a model \hat{M} as close as possible to p^*
- Possible measure of “closeness” - Kullback-Leibler divergence between p^* and \hat{p}

$$D(p^* || \hat{p}) = \mathbb{E}_{x \sim p^*} \left[\log \left(\frac{p^*(x)}{\hat{p}(x)} \right) \right] = \sum_x p^*(x) \log \left(\frac{p^*(x)}{\hat{p}(x)} \right)$$

- Minimizing KL divergence is equivalent to maximizing the expected log-likelihood

$$\mathbb{E}_{x \sim p^*} \left[\log \hat{p}(x) \right]$$
Parameter learning - MLE estimation (II)

- Minimizing KL divergence is equivalent to maximizing the expected log-likelihood

\[\mathbb{E}_{x \sim p^*} \left[\log \hat{p}(x) \right] \]

- \(p^* \) is unknown - resort to maximal empirical likelihood learning

\[
\max_{\hat{M}} \mathbb{E}_D \left[\log \hat{p}(x) \right] = \max_{\hat{M}} \frac{1}{|D|} \sum_{x \in D} \log \hat{p}(x)
\]

- Equivalently, maximize the likelihood of the data - density estimation

\[
\hat{p}(x^{(1)}, \ldots, x^{(m)}) = \prod_{x \in D} \hat{p}(x)
\]

Slide credit: Stefano Ermon, CS228
Parameter learning in BN and MRF

• For Bayesian nets, MLE produces a closed-form solution

\[
\theta^*_x | p_a(x_i) = \frac{\#(x_i, p_a(x_i))}{\#(p_a(x_i))}
\]

where \(\#(y)\) is the number of times \(y\) appears in \(D\)

• For MRF/CRF, MLE learning is hard
 • Requires inference to compute \(Z(\theta)\)
 • Either use approximate inference - sampling, or
 • use pseudo-likelihood to avoid inference (out of our scope)

Adapted from CS228 slides by Stefano Ermon
Structure learning

• Two main approaches
 • Constraint-based: test independencies, and add edges accordingly
 • Score-based: search for network structures that maximize the probability of observing the given data set \mathcal{D}

$$\arg\max_G LL(\mathcal{D}|G)$$

• More about specific methods
 • In the following lectures
 • In CS228 notes and in [1]
Bibliography

