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and eigenmodes; damping models; time-stepping modal vibrations; integration with rigid-body dynamics
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1 Basic Vibration Model
X

m

We start by reviewing the basics of vibration theory and refer to the text-
book [8] for more details. A spring-mass system exemplifies the basic
vibration model, with a single degree of freedom (DoF). Without fric-
tion, the position x of the mass is described by the equation

mẍ+ kx = 0, (1)

where k is the stiffness of the spring and m is the mass. If the spring is initially stretched by a distance of
A, it then starts to vibrate, following a sinusoid function x(t) = A cos(ωt). Here ω =

√
k/m is the angular

frequency.

X

m

Damped vibration. The spring-mass system (1) has no energy loss and
will keep vibrating. To model energy dissipation, one can add a “viscous”
damper that generates a damping force proportional to the velocity of the
mass and thereby attempts to suppress the current velocity. Let c denote
the strength of the damper, then this damped system follows the damped
vibration equation,

mẍ+ cẋ+ kx = f(t), (2)

where f(t) describes the (possibly) time-varying external force. This is a second-order ordinary differ-
ential equation (ODE). When the external force vanishes, the vibration behavior depends on the damping
strength c: if c is larger than the critical damping, cc = 2

√
km, the system is overdamped, with no vibration

produced; if c < cc, the system is underdamped; it will vibrate but eventually stop.

Impulse response. In order to solve the vibration equation analytically, it is instructional to look at the
impulse response of Eq. (2). Assume that the forcing function on the right hand side of (2) is an impulse
(i.e., a Dirac delta function δ(t)). If we assume the system starts from rest at t = 0, then the vibration that
satisfies (2) can be written as

x(t) =
1

mωd
e−ξωt sinωdt. (3)

This is the impulse response function of (2). Here ω is the undamped natural frequency of vibration,

ω =

√
k

m
,
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the frequency value when there is no damping (i.e., c = 0). ξ is the dimensionless modal damping factor,

ξ =
c

2mω
.

Lastly, ωd is the damped natural frequency,

ωd = ω
√

1− ξ2.

The damped natural frequency is meaningful only when ξ < 1, which amounts to requiring the damping
coefficient c less than the critical damping cc.

There are many ways of deriving the impulse response (3). We sketch a simple derivation here using
Laplace transform. One can apply the Laplace transform on both sides of (2), and transform it into an
algebraic equation,

(ms2 + ds+ k)x̃(s) = 1,

where x̃(s) is the Laplace transform of x(t), and the solution is

x̃(s) =
1

ms2 + ds+ k
.

Applying the inverse Laplace transform on x̃(s) yields the expression of impulse response (3).
Provided an arbitrary forcing function f(t) on the right hand side of (2), we can now express the solution

as a time convolution with the impulse response,

x(t) =

∫ t

0

f(τ)

mωd
e−ξω(t−τ) sinωd(t− τ)dτ. (4)

Numerical integration. Directly computing the time convolution (4) is expensive and unstable. However,
there are many different numerical integration schemes, such as the explicit Euler, implicit Euler, and Runge-
Kutta method. One simple approach is by using a small IIR digital filter [5, 9, 10]. Concretely, if the timestep
size if h, then the x value at the timestep k is computed as

xk = 2ε cos θxk−1 − ε2xk−2 +
2fk−1[ε cos(θ + γ)− ε2 cos(2θ + γ)]

3mωωd
,

where ε = e−ξωh, θ = ωdh is the phase shift across a timestep, γ = arcsin ξ, and fk−1 is the forcing value
at the timestep k − 1.

2 Elastic Vibration

In this section, we introduce the differential equation describing the elastic vibration of a solid body, starting
by representing the solid body volume with a finite element mesh. Typical representations of the volume in-
clude tetrahedral mesh and hexahedral mesh. Computer graphics community has developed many geometry
processing tools to convert a closed surface mesh into a tetrahedral mesh. In the supplementary material of
this course, we provide the source code of an implementation of the method of Labelle and Shewchuk [6]
for this purpose.

Suppose a tetrahedral mesh consists of n nodes, whose rest positions are Xi, i = 1 · · ·n. Since the
elastic vibration displaces the nodal positions, we denote their time-varying displaced positions as xi(t) and
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the nodal displacement as ui(t) = xi(t)−Xi. Our goal here is to derive a system of equations to describe
the solid body’s elastic vibration, in a form of

Mü+ Du̇+ Ku = f(t). (5)

This is the high-dimensional equivalent of the vibration equation (2). Here u is a 3n× 1 vector stacking the
displacement vectors ui of all nodes. M, K and D are respectively the mass, stiffness, and damping matrices
with a size 3n× 3n.

The equation (5) arises from discretizing the dynamical elastic equation of continuum body using the
standard finite element scheme. We therefore refer the reader to the textbooks [4, 2] for a thorough introduc-
tion of continuum mechanics and its finite element simulation. Here we focus on outlining the computational
routine that constructs the mass, stiffness, and damping matrices.

Stiffness matrix. Consider a single tetrahedron of the finite element mesh. If it
is small, we can approximate the deformation gradient as a constant value inside
of the tetrahedron, namely,

F = [x2 − x1 x3 − x1 x4 − x1][X2 −X1 X3 −X1 X4 −X1]
−1.

The deformation gradient allows us to further estimate the strain also as a constant
tensor in the tetrahedron. In general, the strain tenor is nonlinear with respect to
the deformation gradient. Here, since the surface vibration of a rigid body that
produces sounds is often very tiny, we consider the linearized strain tensor for
small deformations E expressed as

E =
1

2
(F+ FT ),

and further compute the stress tensor S using the linear constitutive law,

S = C : E,

where C is the symmetric fourth-order tensor, known as the stiffness tensor. Depending on specific material
parameters, the stiffness tensor is symmetric with Cijkl = Cklij = Cjikl = Cijlk. For example, for isotropic
material, the stiffness tensor has the form,

Cijkl = Kδijδkl + µ(δikδjl + δilδjk −
2

3
δijδkl),

where δij is the Kronecker delta function.
With the stress tensor S computed, we can now estimate the internal elastic force applied on each of the

four tetrahedral nodes. Given a stress tensor and a direction n, the elastic force pointing along that direction
is Sn. Thus, for each tetrahedral node, we need to estimate an effective normal direction, which we use
the average of the normal directions of the three triangles adjacent to that node. For example, the effective
normal of node-1 is the normalized vector of

n1 = (X3 −X1)× (X4 −X1) + (X4 −X1)× (X2 −X1) + (X2 −X1)× (X3 −X1).

At this point, we have obtained an expression of the internal force introduced by the deformation of
a single tetrahedron. Let Si be the piece-wise constant stiffness tenor of the tetrahedron i and nji be the
effective normal direction of a node j in the tetrahedron i. The total internal force at the node j is

tj =
∑
i∈Tj

Sinji, (6)
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where Tj indicate the set of tetrahedra incident to the node j. In this expression, nji is a constant direction.
Si is linearly related to the nodal positions xi. Thus, the internal force tj linearly depends on the nodal
displacement vector u, and we express this dependence as

t = Ku,

where t stacks the internal force vectors of all finite element nodes, and K is the stiffness matrix, which can
be constructed by rewriting Si in (6) as a linear function with respect to the displacement vectors uj .

We also note that K is rather sparse. This is because the internal force tj of a node j depends on
only a small set of nodal displacement vectors, as shown above that Tj consists of only a small number of
tetrahedra.

Mass matrix. The mass matrix can be derived by taking the second partial derivative of the kinetic energy
with respect to the nodal velocities. If we consider a single tetrahedron again, it contributes a 12 × 12
submatrix to the final mass matrix. It can be shown that this 12 × 12 submatrix is a 4 × 4 block matrix,
where each block Bij , i, j = 1...4, is a 3× 3 diagonal matrix, in particular, Bij = 1

20ρV (1+ δij)I3×3. Once
the 12× 12 submatrix is computed, it is added into the 3n× 3n matrix M according to its column and row
indices.

Damping matrix. With the stiffness and mass matrices computed, Rayleigh damping model is often used
to compute the damping matrix. It defines D as a linear combination of M and K, that is, D = αM + βK,
where both α and β are user-specified parameters. We note that the Rayleigh damping model is not physi-
cally principled. In fact, a general and physically based elastic damping model remains unclear. Rayleigh
damping has been widely used in many graphics and engineering simulations, because of the numerical
convenience it enables: it allows us to decouple the linear vibration system into individual modal vibrations,
as introduced in the next section.

3 Linear Modal Analysis

We now numerically solve the system (5) to obtain the object’s elastic vibration. We will decouple the
system into a set of independent one-dimensional vibration equations (2), each of which can be solved as
described in Section 1.

The key idea is to exploit the algebraic properties of generalized eigenvalue decomposition of (M,K).
In particular, we perform the generalized eigenvalue decomposition,

KU = MUS,

which yields a modal shape matrix U and a diagonal eigenvalue matrix S. Since U is full rank, we can use
it as the linear basis to express the displacement vector u as u = Uq. We then substitute it into (5) and
pre-multiply both sides by UT , obtaining

UTMUq̈ + UTDUq̇ + UTKUq = UTf(t).

Two algebraic properties of the generalized eigenvalue decomposition help to simplify this equation: from
the generalized eigenvalue decomposition, we have UTMU = I and UTKU = S. Meanwhile, with the
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Rayleigh damping model, UTDU = αI+ βS, also a diagonal matrix. As a result, the vibration system (5) is
transformed into

q̈ + (αI+ βS)q̇ + Sq = UTf(t). (7)

On the left hand side, all pre-multiplied matrices are diagonal. Thus, equations about every element qi of q
are independent from each other. In other words, instead of solving a set of coupled equations, we can now
solve n damped vibration equations independently. For the purpose of sound synthesis, we are interested in
the vibrational frequencies in our hearing range (20Hz to 20kHz). Thus, we only need to consider the rows
of (7) whose vibrational frequencies are in this range.

4 Simulation Pipeline

In summary, the linear modal vibration of a solid object can be simulated using the following steps.

1. Convert a surface mesh into a volumetric mesh (e.g., a tetrahedral mesh).

2. Provided the physical material parameters, construct the mass, stiffness, and damping matrices.

3. Compute the generalized eigenvalue decomposition KU = MUS.

4. Decompose the vibration system into individual modal vibrations.

5. Numerically integrate individual modal vibrations.

5 Discussion

Linear modal analysis eases the simulation of linear elastic vibration by decoupling the vibration into in-
dependent modes. Yet, this approach is limited. While linear elasticity very often suffices for modeling
surface vibration of rigid objects that produce sounds, there exist many sound phenomena related to nonlin-
ear dynamics. For example, thin sheets vibrate nonlinearly when they are struck strongly. This is why many
percussion instruments, such as gong and cymbal, are able to produce rich and intriguing sounds. Simulat-
ing sound generation from nonlinear surface vibration can leverage many nonlinear simulation techniques
developed in engineering and computer graphics (e.g., see [7, 3]). Generally speaking, nonlinear simulation
requires to use a very small timestep size (e.g., 1/22050sec) to capture audible frequency content (from
20Hz to 20kHz), and it is hard to decouple the nonlinear vibration into individual vibrational modes—their
vibrational modes can be coupled as shown in [3]. Thus, those simulations are computationally much more
expensive.

The Rayleigh damping model is just a numerical model, in which the use of linear combination of
stiffness and mass matrices as the damping matrix enables to fully decouple the vibrational system into
independent modes. However, this damping model is not physical. A major reason is that in general it
is unclear which state variables are relevant to determine the damping forces [1]. So far, the damping
parameters α and β still require manual tweaking.
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