Physically Based Sound for Computer Animation and Virtual Environments

Thin Shells

Doug James
Stanford University

Crash!
Nonlinear mode coupling
Nonlinear mode coupling

Linear Frequency Response

Nonlinear Frequency Response

Linear Response

Nonlinear Response
Thin-Shell Dynamics

- Thin-shell membrane + bending energy
 \[
 W_m = \frac{Y h}{2(1 - \nu^2)} \left[(1 - \nu) \text{tr}(\epsilon_m^2) + \nu \text{tr}(\epsilon_m)^2 \right]
 \]
 \[
 W_b = \frac{Y h^3}{24(1 - \nu^2)} \left[(1 - \nu) \text{tr}(\epsilon_b^2) + \nu \text{tr}(\epsilon_b)^2 \right]
 \]

- Internal energy + force
 \[
 E(u) = \int_S W(u; X) \, dS_X = \sum_{i=1}^{N_\Delta} A_i W_i(u)
 \]
 \[
 f_{int} = \nabla_u E(u) = \sum_{i=1}^{N_\Delta} A_i \nabla_u W_i(u)
 \]
Dimension Model Reduction
(a.k.a. “subspace integration”)
Dimensional Model Reduction

\[M \ddot{u} + \int f(u) = f_{ext} \]

Substitute \(u = Uq \)

Project \(U^T \)

Identity

\[U^T M U \ddot{q} + U^T \int f(Uq) = U^T f_{ext} \]

\[\ddot{q} + f(q) = f_{ext} \]

Reduced Equations of Motion

[Bathe 1996; Krysl, Lall, Marsden 2001]
Reduced Internal Forces: Linear Modal Analysis

\[f(q) = U^T f^{int} (Uq) \]

\[
\begin{pmatrix}
\omega_1^2 & q_1 \\
\omega_2^2 & q_2 \\
\vdots & \vdots \\
\omega_r^2 & q_r
\end{pmatrix}
\]

- **Linear force terms.**
- \(r \) decoupled oscillators
- Fast \(O(r) \) time-stepping using IIR filters
 - [Hamming 1983; van den Doel and Pai]
Reduced Internal Forces

\[f(q) = U^T f^{int} (Uq) \]

Slow \(O(rN) \) computation

(but less stiff, so larger explicit time-steps)

[Bathe 1996; Krysl, Lall, Marsden 2001]
Reduced Internal Forces

\[O(rN) \]

\[\begin{align*}
U & \quad \quad \quad U^T \\
 q & \quad \quad \quad f
\end{align*} \]

[Bathe 1996; Krysl, Lall, Marsden 2001]
Optimizing Cubature for Efficient Integration of Subspace Deformations (with Steven An and Ted Kim)

\[f(q) = -\nabla_q E(q) \]
\[= \int_\Omega g(X; q) \; d\Omega_X \]
\[\approx \sum_{i=1}^{n} w_i \; g(X_i; q) \]
Optimizing Cubature for Efficient Integration of Subspace Deformations
(with Steven An and Ted Kim)

- Fast, non-linear subspace forces
- Complex geometry
- Non-linear hyperelastic materials
- Scalable training pre-process:
 - INPUT: Subspace model, training poses
 - OUTPUT: Fast $O(r^2)$ subspace force model
Thin-Shell Cubature

- Subspace dynamics
 \[\ddot{q} + \mathbf{D} \dot{q} + \tilde{f}_{int}(q) = \tilde{f}_{ext} \]

- Subspace forces
 \[\tilde{f}_{int}(q) = U^T f_{int}(Uq) = \sum_{i=1}^{N \Delta} A_i \ g_i(q) \approx \sum_{i \in C} w_i \ g_i(q) \]
Thin-Shell Cubature

Trash can (200 modes) with 800-feature cubature scheme
Results
Model Statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>L (m)</th>
<th>tri</th>
<th>vtx</th>
<th>N</th>
<th>modes</th>
<th>freq (kHz)</th>
<th>material</th>
<th>ν</th>
<th>Y (GPa)</th>
<th>h (mm)</th>
<th>α</th>
<th>β (10^9)</th>
<th>kL</th>
<th>Error_cuba</th>
<th>kL Error_cuba</th>
<th>Δt (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash Can</td>
<td>0.75</td>
<td>77536</td>
<td>38833</td>
<td>116499</td>
<td>200</td>
<td>0.071 – 4.43</td>
<td>Steel</td>
<td>0.30</td>
<td>190</td>
<td>2</td>
<td>0.5</td>
<td>75</td>
<td>800</td>
<td>10.3%</td>
<td>0.98 – 61</td>
<td>1/44100</td>
</tr>
<tr>
<td>Trash Lid</td>
<td>0.55</td>
<td>34312</td>
<td>17286</td>
<td>51858</td>
<td>200</td>
<td>0.112 – 6.79</td>
<td>Steel</td>
<td>0.30</td>
<td>190</td>
<td>2</td>
<td>0.5</td>
<td>75</td>
<td>800</td>
<td>11.5%</td>
<td>1.1 – 68</td>
<td>1/44100</td>
</tr>
<tr>
<td>Water Bottle</td>
<td>0.46</td>
<td>28658</td>
<td>14418</td>
<td>43254</td>
<td>300</td>
<td>0.116 – 3.59</td>
<td>Polycarb</td>
<td>0.37</td>
<td>2.4</td>
<td>2.25</td>
<td>0.5</td>
<td>400</td>
<td>900</td>
<td>10.7%</td>
<td>0.98 – 48</td>
<td>1/44100</td>
</tr>
<tr>
<td>Recycling Bin</td>
<td>0.61</td>
<td>109568</td>
<td>54945</td>
<td>164835</td>
<td>300</td>
<td>0.062 – 2.21</td>
<td>Polycarb</td>
<td>0.37</td>
<td>2.4</td>
<td>5</td>
<td>4.0</td>
<td>300</td>
<td>1200</td>
<td>15.7%</td>
<td>0.70 – 30</td>
<td>1/44100</td>
</tr>
<tr>
<td>Cymbal</td>
<td>0.50</td>
<td>61952</td>
<td>31104</td>
<td>93312</td>
<td>500</td>
<td>0.061 – 9.94</td>
<td>Bronze</td>
<td>0.33</td>
<td>124</td>
<td>0.7</td>
<td>1.0</td>
<td>6.25</td>
<td>1500</td>
<td>10.7%</td>
<td>0.57 – 92</td>
<td>1/88200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Modes r</th>
<th>Modal Analysis</th>
<th>Cubature Precomp.</th>
<th>Timestep Cost</th>
<th>Simulation Cost (per second of audio)</th>
<th>FFAT Precomp. (average time/mode)</th>
<th>FFAT Eval (all modes, M = 4)</th>
<th>FFAT Storage (floats, M = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash Can</td>
<td>200</td>
<td>569 s</td>
<td>2.49 hr</td>
<td>16.1 ms</td>
<td>714 s</td>
<td>109.2 min</td>
<td>0.151 ms</td>
<td>56 MB</td>
</tr>
<tr>
<td>Trash Lid</td>
<td>200</td>
<td>170 s</td>
<td>1.87 hr</td>
<td>14.6 ms</td>
<td>642 s</td>
<td>85.5 min</td>
<td>0.151 ms</td>
<td>113 MB</td>
</tr>
<tr>
<td>Water Bottle</td>
<td>300</td>
<td>314 s</td>
<td>4.31 hr</td>
<td>23.6 ms</td>
<td>1026 s</td>
<td>25.6 min</td>
<td>0.227 ms</td>
<td>54 MB</td>
</tr>
<tr>
<td>Recycling Bin</td>
<td>300</td>
<td>2332 s</td>
<td>9.65 hr</td>
<td>27.8 ms</td>
<td>1224 s</td>
<td>48.0 min</td>
<td>0.227 ms</td>
<td>25 MB</td>
</tr>
<tr>
<td>Cymbal</td>
<td>500</td>
<td>1155 s</td>
<td>3.88 hr</td>
<td>44.3 ms</td>
<td>3900 s</td>
<td>318 min</td>
<td>0.378 ms</td>
<td>512 MB</td>
</tr>
</tbody>
</table>

Table 2: Representative Timings: All timings are for a single 2.66GHz Xeon X5355 processor core, except “Cubature Precomp” which used 8 cores.
Harmonic Shells
A Practical Nonlinear Sound Model for Near-Rigid Thin Shells

Jeffrey Chadwick
Steven An
Doug James
Cornell University

SIGGRAPH ASIA 2009
Thin-shell Cubature

TRASH CAN $r=200$, $T=2000$

TRASH LID $r=200$, $T=2000$
Cubature Error Comparison

<table>
<thead>
<tr>
<th>Error</th>
<th>Time per Timestep</th>
<th>Speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>167ms</td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>28ms</td>
<td>6.1x</td>
</tr>
<tr>
<td>10%</td>
<td>16ms</td>
<td>10x</td>
</tr>
<tr>
<td>15%</td>
<td>10ms</td>
<td>17x</td>
</tr>
</tbody>
</table>

Traditional subspace integration [Krysl et al. 2001] (shown previously)
Comparison to unreduced dynamics

<table>
<thead>
<tr>
<th>Unreduced Dynamics (Explicit Newmark)</th>
<th>Reduced Dynamics (11% cubature error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>~90 hrs / second of simulated sound</td>
<td>17 min / second of simulated sound</td>
</tr>
<tr>
<td>(This 5 sec clip took ~19 days to compute.)</td>
<td>10 sec clip</td>
</tr>
<tr>
<td></td>
<td>441,000 time steps in 2.8 hours</td>
</tr>
</tbody>
</table>
Comparison to Other Methods

1. Nonlinear dynamics + Transfer
 i.e., “Harmonic Shells”

2. Linear dynamics + Transfer
 e.g., [James et al. 2006]

3. Linear dynamics + Monopole
 e.g., [O'Brien et al. 2002; Boneel et al. 2008]

4. Nonlinear dynamics + Monopole