AREA FLOODING ALGORITHMS

Marc Levoy
Hanna-Barbera Productions

June, 1981

1.0 INTRODUCTION

If the animator's task is considered to represent the
largest share of the 1labor required to complete an animated
film, the cel painters's job runs a close second. Typical
large production studios employ more than one hundred people in
each of these two departments. The replacement of xeroxing and
cel painting by optical scanning and computer-assisted cel
coloring boast improvements of between 5:1 and 10:1 in the time
required to color a single cel, making a significant reduction
in the labor force required to produce an animated film,

The heart of any computer-assisted cel coloring system
(occasionally referred to in the 1literature as a "scan and
paint™ system) is a soft area flooding algorithm (occasionally
referred to as a "tint £illing" algorithm). The basic
algorithm for flooding contiguously colored areas in pixel
arrays is well known [3,4]. Area flooders depend by definition
on the placement of a seed point at some pixel in a digital
frame buffer. This seed pixel is usually selected by a human
operator, although some automatic key-frame interpolation
systems attempt to place seeds in each frame of an animated
sequence without manual intervention [l1]. Most area flooders
in the 1literature will replace the color of each pixel
encountered with a desired new color, and will stop £flooding
upon reaching any color other than the color found at the seed
pixel. This technique yields jagged region boundaries, and
drawings colored in this manner exhibit alaising. The
so-called soft area flooders, on the other hand, are designed
to operate on anti-aliased region boundaries, replacing only
the "color™ of the pixels being flooded while leaving the
"shade™ intact., Drawings colored with this technique have a
soft, pleasing appearance, and are acceptable for use in
production studio animation.

The paper by Alvy Ray Smith [3] (reproduced in this
tutorial) gives an excellent presentation of both hard and soft
area flooding. While many variations on the particular
algorithm offered by Smith are conceivable, all area flooders

have certain characterlstics in common which may be summarized
as follows.

1. They are recursive in the sense that they flood a limited
set of pixels according to some rule of proliferation,
storing the positions of pixels encountered along the way
that bear further examination, then retrieving these

positions for use*as seeds in ga new invocation of the
algorithm,

-137-

2. They are non-deterministic in the sense that the sequencing
of the flooder through a contiguously colored region is
ordered by the particular topology encountered along the
way, rather than by some arbitrary rule such as
top-downward or center-outward.

3. They are localized in the sense that the only information
available at each instant are the colors and positions of
pixels that have already been encountered. No global
information is available during the flooding operation,
such as the existence of 1local intensity minima (which
signify edges) or the colors in the centers of adjacent
regions (which are required for rgb flooding) .

Even within this framework, there is much room for
variation and optimization in both the basic search algorithm
and in its implementation. This paper will explore a few
alternatives for flooding algorithms. It will also consider
improvements in the implementation of existing algorithms.

Unfortunately, evaluating the performance of a- flooding
algorithm is not as simple as letting it loose on a sample
region and recording the elapsed time. Depending on the
hardware configuration for which the flooder has been designed,
several other issues may be pertinent as summarized below:

1. Some algorithms trade computational expense for memory
requirements, either by performing pre-processing on the
entire image to be flooded, or by retaining additional
information about individual pixels as they are flooded.
If these flooders must operate in a multi-user environment,
how do processor time costs compare to memory usage costs
for various approaches? How much memory must be allocated
for each flooder?

2. Some algorithms operate in virtual frame buffers contained
in the host processor, writing only modified pixels to the
real frame buffer. If these flooders are written for a
virtual-memory environment, what are the paging 1loads
associated with different approaches? What are the ratios
between processor time and elapsed time?

3. Some algorithms operate on single pixels, while others
operate on entire scanlines at once. How suitable are the
various algorithms to implementation on different frame
buffers? Does the interface between the host processor and
the image storage mandate a particular approach? ‘How much
time is 1lost in accessing the colors of pixels being
considered for flooding? For changing the colors of pixels
that have been flooded?

In the remainder of this paper, numerous alternatives to

the standard area flooder will be examined and their
performance and overall desirability evaluated in terms of some
of the issues listed above. Unfortunately, space prohibits the

-138=

inclusion of code for each variation discussed. Therefore, the
differences between each algorithm and those presented in the
Smith paper will be discussed in narrative form. A single
algorithm, the favorite of this author, will be shown in code
form near the end of the paper.,

2.0 FLOODERS THAT USE ALTERNATIVE PROLIFERATION PATTERNS

The particular algorithm being used to determine -which
pixel is processed next gives rise to what can be loosely
termed the proliferation pattern. 1In all but the very fastest
area flooders, this progression is easily visible on the frame
buffer display as the seed color spreads through the region
being £flooded. The proliferation pattern for a certain area
flooding algorithm is independent from what is often called the
proliferation rule, and the distinction between these two is
crucial to understanding the discussion which £follows. The
test performed on any pixel adjacent to the current pixel,
whose success or failure will determine whether or not that
pixel is stored for use as a future seed position, is called
the proliferation rule. Smith has suggested several such
rules, including £filling all pixels until the color changes
(basic £ill), filling all pixels until a certain color is
encountered (boundary £ill), and f£illing until the shade begins
to climb uphill (tint £ill). The proliferation rule determines
which pixels in a given environment will be flooded by placing
a seed of a given color in a given position; the proliferation
pattern determines the order in which these pixels will be
flooded.

With this distinction made clear, several alternative
proliferation patterns can now be examined, together with their
effect on performance and overall desirability.

2.1 stack Algorithms Versus Queue Algorithms

The progress of a standard area flooder through a
contiguously colored region is familiar to all who have seen
one operate. Since the processing of any one scanline usually
results in the generation of at least two new seed positions,
the order in which these seeds are retrieved from storage
controls the order in which additional scanlines will be
processed. The Smith algorithm, like most area flooders, uses
a simple push-down stack to store the positions of pixels to be
processed at the completion of the current scanline. As a
result, the seed most recently generated dictates the scanline
that will be considered by the next invocation of the flooder.
Figure 1 illustrates the sequence of scanlines that will be
processed by a stack-oriented flooding algorithm operating in a
sample region.

=139

One characteristic of this approach is that it maintains a
high degree of 1locality, working in only one portion of the
sample region at a time and moving consistently in one
direction until it enounters a change in the boundary geometry.
For implementations in which locality is important, this is a
significant advantage. If, for example, the processor is
interfaced to the frame buffer by a scheme in which only one
narrow strip of the image memory is accessable at a time, such
a proliferation pattern is highly desirable. On the other
hand, small pockets are often left unflooded as the algorithm
speeds through a given portion of the region, as shown in
Figure 1b. These pockets are reflected by unprocessed seed
points in the stack which must be picked up on the way back as
the flooder unwinds its stack, as shown in the figure lc.

One of the first variants on the standard flooder that
comes to mind is to substitute a first-in first-out queue for
the push-down stack. In this case, the first seed generated
during the processing of the current scanline becomes the first
to be retrieved from storage. Figure 2 illustrates the
sequence of scanlines that will be processed by a
queue-oriented flooding algorithm operating in the same sample
region as that used in Figure 1. The flooding is seen to
progress simultaneously in as many directions as there are
"arms" of the region being flooded.

This approach implies that the flooder may be working in
several areas of the sample region at one time, but will expand
into and fill all pockets as it progresses through an area, as
shown in the figure. This insures that once an area has been
passed, no further processing on scanlines in that vicinity
will be necessary. This is a terrible algorithm for
implementation with the strip mapping ™ processor/frame buffer
interface cited above, since more than one area is active at a
time. If, however, the processor can map to several strips of
image data at once, or if a virtual-memory processor with
generalized LRU (Least Recently Used) paging is utilized, this
algorithm may actually offer improved performance over the
stack algorithm.

The twists and turns taken by any flooder are highly
dependent on the detailed geometry of the region boundaries.
In the final analysis, comparisons between stack and queue
approaches using various sample regions has suggested that the
relative merit of each approach depends to a great extent on
the conditioning of the input data. If the lines have been
drawn smoothly and the digitizing system is producing
consistent and artefact-free anti-aliasing (in the case of
optically scanned soft edges), the stack algorithm triumphs.
If the data is poorly conditioned, containing broad or noisy
gray-scale transitions such as might be observed in medical
images, queue algorithms are preferrable.

-140-

2.2 Scanline Algorithms Versus Pixel Algorithms

Scanline-oriented algorithms are by far the most popular
in existence, but they are hardly the easiest to design. A
class of students presented with the problem of writing an area
flooder will most likely come up with a concentric, or diamond
flooder. 1In these algorithms, the unit of work 1is a single
pixel rather than a scanline. After flooding the seed pixel,
all pixels surrounding the current pixel (either 4-connected to
the current pixel, or 8-connected, the general algorithm
remains the same) are considered as possible seed positions for
‘the next invocation according to the current rule of
proliferation. When all such pixels have been considered, the
current invocation terminates and the stored seeds are
retrieved and processed.

This approach can be associated with either a stack or
queue implementation, each yielding different orders of
proliferation. The stack version is shown in Figure 3 and the
. queue version in Figure 4. Both exhibit absolutely terrible
locality as the figures demonstrate. This is clearly not the
best algorithm to use in a wvirtual or mapped frame buffer
environment. The size of the stack or queue is also enormous,
reflecting the pixel-oriented nature of the algorithm. This
incurs both a memory cost and a processing cost, since the
additional seed points must be stored and retrieved.

On the bright side, this algorithm is extremely simple to
program and therefore lends itself very well to hardware
implementation. For systems that boast an efficient means of
random access to the entire image memory at once, this approach
might be the optimum solution. There is in fact at least one
micro-processor based turnkey cel animation system available on
the market that uses a concentric proliferation rule in its
hard-edge area flooder. The simplicity of this approach also
suggests that an implementation utilizing multiple parallel
micro-processors could be designed, wherein all processors
receive seed pixels from a single stack and utilize occasional
checks of the image memory itself to avoid duplicating the work
being done by the other processors.

2.3 Effect Of The Display System Architecture

In comparing the overall desirability of these alternative
proliferation patterns, the importance of the display system
architecture becomes evident. Particularly worthy of study is
the interface between the processor executing the flooding
algorithm, whether an external mini-computer or a
micro-processor contained within the display system, and the
image memory containing the pixels to be flooded. To conclude
this section, a 1list of the typical frame buffer interface
architectures is offered, ordered according to this author's
opinion as to their suitability for area flooding algorithms:

=141=

P % P

1, Direct refresh of processor memory. The area flooder runs
in a processor whose address space includes the entire
image memory, which is being scanned directly and

continuously onto the display screen. The maintenance of
locality is unimportant and no transfers of pixel

information to or from a separate image memory are

required. This is probably the ideal environment for an
area flooder.,

2., X,Y,C register on a frame buffer interface. The area
flooder runs in a host processor and can -access random
pixels in the frame buffer by depositing a desired X and Y
position into registers, then reading or writing the color
from a third register. The maintenance of locality is
relatively unimportant, although most frame buffers
containing this type of interface exhibit a reduced cost if
pixels are accessed in row or column sequence. This
environment is a good second choice.

3, Strip or block mapping from processor address space into
image memory. Either in horizontal strips or rectangular
blocks, the host processor maps the address space of its
resident area flooding program into image memory. Within a
certain range, the preservation of locality is unimportant.
When flooding proliferation excceeds this range, the
mapping must be changed accordingly. This constraint makes
this type of interface only a third choice, well behind the
first two.

4, Channelled I/O0 on entire scanline segments. The area
flooder runs in a host processor, but can only transfer
entire scanlines or portions of scanlines to the frame
buffer using channelled or directed I/O. The overhead
required to examine the value of a single random pixel is
so high as to be nearly prohibitive. For this reason, this
architecture does not lend itself very well to area
flooders, even those exhibiting good locality.

For the sake of completeness, there is one final
architecture to consider., There are raster display devices on
the market whose image storage mechanism is based on the
principle of run-length encoding of color information. In such
a device, segments of color that are continuous along scanlines
are represented by single entries in a list, resulting in a
substantial reduction of the storage requirements £for the
entire image. Unfortunately, it is difficult if not impossible
to break apart and recombine color runs not accessed in
sequence along a scanline, a necessary capability for even the
standard scanline area flooder. It therefore seems reasonable
to conclude that although an area flooder could undoubtedly be
written for a run-length encoded frame buffer, it is not really
the best use of either these display devices or the time of the
programmer.,

-142-

1f the reader has found the interface of his or her frame
pbuffer down at the bottom of this list, there is an alternative
scheme for area flooding that might offer some salvation, the
use of a virtual frame buffer. 1In this approach, the area
flooder runs in a high-level language in a host processor,
reading and writing pizxel values to an image array contained
entirely within the memory of the host processor. Those pixels
which have been modified by the flooding process are copied at
intervals from the image array in the host to the frame buffer
image memory. Since the virtual frame buffer contains an exact
copy of the image being flooded, no transfer in the "other
direction is ever necessary. The preservation of locality is
fairly important, since random accesses will incur paging
costs, but the paging is handled by the operating system. The
advantage of this solution is that it is fairly independent of
both the architecture of the frame buffer and of the design of
the interface between the host processor and the frame buffer
image memorye. This therefore becomes the fall-back approach
for systems in which the frame buffer interface is non-optimal,
such as in the case of channelled 1/0.

A further discussion of this problem, and hardware
considerations for painting and area flooding programs in
general, is available in [2] (reproduced in this tutorial).

3,0 IMPROVEMENTS TO THE STANDARD AREA FLOODING ALGORITHM

The code given by Smith for the standard scanline area
flooder is extremely compact. Particularly elegant is the scan
for "children" (pixel positions to be stacked for use as future
seed points) above and below the “current scanline. It is
possible, however, to improve the performance of these
procedures, and by implication the performance of the entire
flooder, at the cost of introducing a measure of additional
complexity into the code executed by the procedures.

3,1 Improvements To Hard-edge Flooders

The first improvement that can be made in the scanning
procedures requires no additional information and can be easily
added to the existing algorithm. The presence of the parental
variables (labelled "yref", "lxref", "rxref" in the Smith
algorithm) allows the scan procedures to avoid re-processing
the parent scanline if the current scanline lies entirely
within the shadow of the parent. If the current scanline lies
only partially in the shadow of the parent, it is still
possible to avoid testing those pixels which do in fact lie in
this shadow. The introduction of a few well placed min-max
functions to establish new do-loop termini for the scanning
process will implement these optimizations and the performance
of the scanning procedures is improved correspondingly. The
algorithm shown at the end of this section incorporates these
modifications.

-143-

The key to achieving the next increment of improvement
lies in placing these parental variables on the stack along
with seed points, making them available to the flooder as those
seed points are unstacked and processed. In order to
understand the importance of retaining parental information, it
is helpful to consider the flooding situation diagrammed in
Figure 5. The standard area flooder begins by processing the
scanline containing the initial seed point, scanline 1 in
Figure 5a. Two pixels are placed on the stack, one above and
one below this scanline., After following the lower branch of
the region to its terminus, scanlines 2 and 3 in Figure 5b, the
only remaining pixel on the stack is the first pixel to have
been placed there. After processing the scanline containing
that pixel, scanline 4 in Figure 5c, the two lines above and
below that scanline are considered for possible stacking,
_ scanlines 5 and 1 in Figure 5d. Scanline 5 is new and needs to
be stacked. Scanline 1 has already been flooded and 1is at
least as large as scanline 4. It should therefore be ignored.
Unfortunately, the standard area flooder has retained parental
information for only the most recent scanline processed,
scanline 3, and is therefore helpless to prevent itself from
re-scanning scanline 1. The solution to this problem is to
stack the necessary parental information along with the seed
positions. Specifically, those variables labelled "yref",
"1xref", "rxref" in the Smith algorithm are placed into storage
along with the "x" and "y" of the proposed seed point. In this
manner, the HINEIGHBOR and LONEIGHBOR procedures may be of
greater service to the FILL procedure, preventing the
re-scanning of the parent scanline whenever possible.

The number of times that the situation described above
occurs is not great since the flooder is usually moving in only
one direction at a time. In almost all cases, the single set
of parental information retained by the standard flooder is
sufficient to avoid re-scanning. The stacked parental values
are only useful in this context when the flooder changes
direction, as shown in the figure.

On the other hand, the knowledge that this parental
information is available during the processing of subsequent
scanlines allows for a significant savings in another area.
Specifically, the retension of parental information allows the
SCANHI and SCANLO procedures to stop after stacking a single
seed point. The sample region in Figure 6 illustrates this
concept. The standard area flooder, after flooding scanline 1
in Figure 6a, begins to scan its upper and lower neighbors.
The standard SCANHI procedure recognizes that scanline 2 is the
parent of scanline 1 and stops immediately. The standard
SCANLO procedure will find and stack two pixels, one for each
of the arms of scanline 3, as shown in Figures 6a and 6b. 1In
order to find the second pixel, however, the procedure was
forced to search the entire shadow of scanline 1. Over the
course of flooding an entire region, this implies a pixel
processing cost proportional to double the number of pixels to
be flooded. The reason that SCANLO must scan the entire shadow
is that the FILL procedure, when it begins to process scanline
3, is forced to stop as soon as it encounters a boundary pixel

~-144-

and is not allowed to probe any further. If SCANLO did not
stack both pixels, the second arm would never be discovered and
flooded. If, however, FILL knew its parent scanline, scanline
1 in Figure 6¢c, and could verify that its parent extended much
further rightward than the encountered boundary, it could stack
the seed pixel in scanline 4 of Figure 6¢ and then begin to
probe beyond the blocking pixels. It would then discover the
second arm, flood it, and re-invoke the scanning procedures to
find stack-worthy pixels in scanline 4 of this second arm, as
shown in Figure 6d. All of this could be done without the
benefit of the second pixel stacked by the SCANLO procedure in
Figure 6b. ;

A cursory analysis of this modification suggests that it
has merely shifted the smarts of the SCANHI/SCANLO procedures
into the FILL procedure. The great savings in time comes in
the fact that the scanning procedures were allowed to stop
searching after stacking a single point, which is usually found
after a search of only one or two pixels. If more scanning
will be needed later, after encountering and penetrating a
boundary, the FILL procedure will recognize this during
processing which it must do anyway and can re-invoke the
scanning procedures at that time. In the greatest majority of
scanlines, no second arm will be discovered by the f£filling
procedure, and the scanners will have processed only a few
pixels. Therefore, the overall pixel processing cost becomes
proportional only to the number of pixels in the region (plus a
small constant), rather than to double that cost. The
implementation of this technique is given by the algorithm
below.

3.2 Improvements To Soft-edge Flooders

The retension of parental information becomes particularly
important in the efficient implementation of a soft flooder
(tint filler). 1In this case, the inability of the £filling
procedure in the standard algorithm to probe beyond where it
would otherwise stop (upon encountering an uphill gradient)
places the onus of insuring that all arms of a region are
flooded entirely on the scanning procedures. These routines
are then forced not only to process the entire shadow under the
parent scanline, stacking multiple points as they proceed, but
to unstack any point which is not optimal according to the
gradient rule, replacing it with a better point if one if found
during later scanning. If, alternatively, parental information
is available, the filling routine assume the burden of finding
additional arms during its normal progression across the
current scanline. The scanning routines can then stop after
finding and stacking the first valid point they encounter and
the overall performance of the flooder is greatly improved.

As an illustration of the improvements which can be made

to a soft-edge area flooder, the following algorithm is
offered.

- I i -

*
procedure SOFTFLOOD (seedx,seedy,newcolor); begin
position seedx,seedy; color newcolor;
position x,y,firstx,lx,rx;
position parentlx,parentrx,parenty; :
color oldcolor; shade cents; oldcolor:=GETC(seedx,seedy);
parentlx:=$left; parentrx:=seedx; parenty:=seedy;
PUSH (seedx,seedy,parentlx,parentrx,parenty) ;

while STACKNOTEMPTY do begin
POP(parenty,parentrx,parentlx,y,x) ;

a: firstx:=x; FLOODLEFT; lx:=x; x:=firstx;
b: SETC(x,y,newcolor); FLOODRIGHT;

if PROBERIGHT(x+1l) then go to b;

rx:=X; SCANHI; SCANLO;

if PROBERIGHT(Sright) then go to a;
_ end;
end; , ;
’{-Fol’ OT}}S’I 1’60/‘d/h<‘/ ru/FS,.

o

procedure FLOOD{LEFT,RIGHT}; begin
shade nexts; cents:=GETS(x,y):; } e
while x{>$left,<$right} do begin hewls ><Cch's

:=x{-,+}1; nexts:=GETS(x,y); rens »= Soans
e N el patents > nexts

e ace s

if nexts>cents then begin :
x:=x{+,-}1; break; gnﬂ)aﬁgvgiﬂﬂiigﬁx
d.gggés:=nexts; SETC (x,y,newcolor) ; -2%%i§§;=ceﬂg
el'ld;en ' anex\}s = bouno’arcj S}molé
procedure SCAN{HI,LO}; begin EJE-

position scanlx,scanrx,scanx; shade scans,parents;
if y{<$top,>$bottom} then begin

scanlx:=1x; scanrx:=rx; F
if y=parenty then begiﬁ\\{ih“il
if parentlx<lx then scanlx:=
if parentrx>rx then scanrx:=
end; ib
if scanrx¥scanlx then return;
else for scanx:=scanlx to scanrx do begin
scans:=GETS (scanx,y{+,~}1; parents:=GETS(scanx,y):;
if parents>scans and GETC(x,y)=oldcolor then begin
PUSH(x,y{+,-}1,1x,rx,y):; return;

QcahJ

arentrx+l;
arentlx-1l;

end;
end;
end;
end;

procedure PROBERIGHT(limitx); begin
position limitx; shade nexts,parents;
while x<parentrx do begin
Xx:=x+1; nexts:=GETS(x,y); parents:=GETS(x,parenty) ;
if parents>nexts then return true;
if x=limitx then brealky begin
end; ’ s=x-13; l»raa[vi]
xw=w#Y4 return false; end}
end;

-146-

The reader will notice that procedure and variable names
have been selected so as to be fairly similar to those in the
Smith algorithm, facilitating comparison between the two
approaches. In this algorithm, GETS and GETC (GETV and GETT in
the Smith algorithm) require two input parameters and return
either the shade bits (value) or the color bits (tint) of the
pixel at the specified X and Y position. The SETC procedure
(SETT in Smith) requires three input parameters and replaces
the color bits (tint) of the pixel at the specified X and Y
position with the specified color. The PUSH routine pushes the
specified values on the stack in the order shown. The POP
routine pops the stack into the specifed variables, also in the
order shown. The curly bracket notation (e.g.
FLOOD{LEFT,RIGHT}) indicates that two procedures are required,
one containing the first token enclosed within the brackets and
one containing the second token. This notation is used
whenever two near-mirror-image procedures are required.

4,0 OPTIMIZING THE IMPLEMENTATION OF AN AREA FLOODER

The optimization of an area flooder is highly dependent on
the hardware configuration for which it is implemented. This
makes generalized suggestions for optimization difficult to
propose. In light of this, it seems most instructive to assume
a particular hardware configuration that seems in some sense
typical and to demonstrate how the area flooding algorithm can
be tailored for maximum efficiency within the opportunities and
constraints posed by that particular configuration.

The configuration that will be used consists of the
following components:

1. A virtual-memory host processor containing sufficient real
memory to maintain a complete copy of the image being
flooded without paging.

2. A generalized set of micro-coded hardware instructions
available to the machine language programmer, such as
instructions that will £find the next instance of a
particular bit pattern, £ill a block of storage with a
particular pattern, move a block of storage from one
location in memory to another, pass a block of storage
through a translation table, find the first set or cleared
bit in a block of storage, and so on.

3., A colormapped 8-bit frame buffer interfaced to the host
processor by a scanline-oriented channelled I/O data path.

4, A generalized set of hardware coloring instructions in the

frame buffer, such as the drawing of rectangular boxes,
vectors, text, and so on.

=147=

Some readers may smile and recognize the equipment being
described, particularly if they own a similar configuration
themselves. 1In any case, the configuration is not grossly
atypical, and represents capabilities available in many
state-of-the-art mini-computers and color display systems.

4,1 Optimizing Hard-edge Flooders

The key to designing an optimized area flooder is to
reflect back on the algorithmic improvements suggested in the
previous section. The ability of the scanning procedures to
stop after finding the first stackable point implies that they
will process only a few pixels at the left edge of the shadow

‘of the current scanline rather than sailing clear across it.

This reduces the per-pixel cost of processing each scanline,
which in turn decreases the correlation between the size of a
region and the time required to flood it. If some means could
be found to reduce or eliminate the per-pixel costs associated
with the flooding procedure itself, the cost of flooding would
depend solely on the number of scanlines processed, not on the
number of pixels.

The flooding procedure is really responsible for two
separate tasks. The first is to find the limits of the current
scanline according to the current rule of proliferation. The
second task is to replace the color of each pixel within the
found limits according to the current coloring scheme (filling,
tint filling, texture f£filling, etc.) These two steps are
logically independent, although the second must follow the
first. They do not, however, have to be performed
simultaneously. = e

Without belaboring this discussion, it becomes evident
that the micro-coded machine instructions of the sample host
processor, coupled with the hardware coloring instructions of
the frame buffer, can serve to accomplish these two tasks very
efficiently. Specifically, the boundary color can be found (in
the example of boundary £illing) by executing the single
machine instruction that searches rightwards through storage
for the particular bit pattern representing the boundary color.
The scanline thus delimited can be flooded in the host
processor image array by executing the single machine
instruction that fills a block of storage with a given bit
pattern, the seed color. The frame buffer can be made to
reflect the flooded scanline by executing the single display
instruction that draws a single-pixel high horizontal box
extended the full length of the current scanline and composed
of the seed color. The result of these optimizations is that
the cost of flooding a region is dependent solely on the number
of scanlines involved rather than on the number of pixels.
This makes for a very fast flooder.

~1A8~

4.2 Optimizing Soft-edge Flooders

The problem of optimizing a soft flooder is somewhat more
difficult. In this case, the proliferation rule (never go
uphill) requires a comparison between each pixel and its
neighbor, with different actions to be taken depending on the
sign of the result. 1In lieu of a single micro-code instruction
capable of performing this complex operation, an alternative
procedure can be utilized. By subtracting each pixel in the
image array from its neighbor (to the right, for example), and
storing the sign of the result as a single bit in a separate
array, a mask is generated that indicates the location of all
uphill gradients in the selected direction. By computing this
mask prior to the commencement of flooding, it is available for
use by the flooding algorithm during the processing of each
scanline. The flooding procedure may now locate the limits of
the current scanline simply by executing the single machine
instruction that searches the mask for the first set bit, which
indicates an uphill climb. In combination with the fact that
the seeds left by the improved scanning procedure are generally
at the left edge of the floodable portion of a scanline, this
means that a single machine instruction can again find the
limits of the current scanline. ~

The coloring task in soft £looders is also more
complicated that its counterpart in hard flooders. Rather than
simply replacing the found color by the seed color, it is
necessary to replace only the color bits, leaving the shade
bits intact. In the host processor, this can be accomplished
by the single machine instruction that passes a block of
storage through a translation table that modifies only the
color bits of each pixel value while leaving the shade bits
unaltered. Reflecting this re-coloring in the frame buffer can
be handled in a similar fashion. Many frame buffers offering
hardware rectangular boxes also provide the capability to
affect only selected bits of each pixel value rather than all
bits. These bitplane selection options can be utilized to
suppress modification of the shade bits during the writing of
the single-pixel high horizontal box described previously.

The computation of the mask required to find the limits of
the current scanline is not as simple a Jjob as might be
imagined. It would be highly inefficient to pre-process the
entire drawing in this manner prior to flooding, since only a
small proportion of the pixels are likely to be flooded. This
is particularly true in cel animation, where the cartoon
character occupies only a small fraction of the total area of
the frame buffer. Fortunately, there are ways to lessen the
cost of this pre-processing step. Most frame buffers that
include the capability of optical scanning include some type of
hardware image processor. It is a simple matter to produce a
copy of each drawing during scanning offset by one pixel in the
desired direction. This copy can then be subtracted from the
original using the hardware image processor and the sign of the
result stored in a separate bitplane. This becomes the
gradient mask required by the optimized flooder. This
operation is extremely fast, falls naturally into the drawing

-149=

scanning sequence, and incurs no cost to the host processor.
If such a hardware image processor were not available, it
becomes somewhat questionable whether or not this particular
optimization is still of value.

In all of the implementations discussed here, sequences of
machine instructions have been replaced by single micro-coded
instructions. It is important to realize that this
optimization does not necessarily offer as great a speed
improvement as might be imagined. The single machine
instruction that moves a block of storage from one location in
memory to another in this example must still establish a do
loop, compute each source address, fetch each value, and so on.
The fact that these operations are occurring in micro-code
makes them faster, but not infinitely fast. 1In fact, some
sequences of micro-coded instructions are better executed by a
greater number of simpler instructions in sequence surrounded
by a single do loop because the total 1looping overhead is
reduced. This consideration is important to the user of any
micro-coded instruction set, and should be given particularly
careful attention by the implementer of an area flooder.

ACKNOWLEDGEMENT
I wish to acknowledge Theodore Crane of the Cornell
Program of Computer Graphics, who first suggested to me the
idea of retaining parental information on the stack.
REFERENCES

Levoy, Marc, "A color animation system based on the multiplane
technique", Siggraph 1977 conference proceedings, July, 1977

2. Levoy, Marc, "Frame buffer configurations for paint programs”,
Siggraph 1980 Animation Graphics tutorial notes, July, 1980

Smith, Alvy Ray, "Tint £fill",
Siggraph 1979 conference proceedings, August, 1979

Stern, Garland, "SoftCel - An application of

raster scan graphics to conventional cel animation”,
Siggraph 1980 conference proceedings, July, 1979

=150~

seed

Figure 1l: Scanline-oriented stack algorithm

Figure 2: Scanline-oriented queue algorithm

=181

e e 4 22 ctamses el b -

seed

Figure 4: Pixel-oriented queue algorithm ("diamond")

=152

seeds

/{// R
S A
I
(a) (b)

line 1 -*’// A 0

wN =

) =
‘7/4/0ﬁ44/7’

w NS
RN 8 \
SN
\
\
\\
wN = &

Figure 5: The need for retaining parental informationj

//// //// //, "Z/ -,
s B 2 /,4//, .
(! éza /*4&?5 1 o 7“%’
o

3 3 |*

(a) (b)

L ; aL. o B)]
qja?c,f?z,,z;;é;gﬁ G v
AT T

. P
o e
» ./,‘ /;,. <

o> w N
\
> w =N
NN L\
_\\‘\.\
:..-‘k\{\.a
NN
N
\
N
N
)
\.

(c) (d)

Figure 6: The advantage of parental information

-153-

