
Data Parallel Computation on Graphics Hardware

Ian Buck Pat Hanrahan

Stanford University ∗

Abstract

As the programmability and performance of modern GPUs
continues to increase, many researchers are looking to graph-
ics hardware to solve problems previously performed on gen-
eral purpose CPUs. In many cases, performing general pur-
pose computation on graphics hardware can provide a signif-
icant advantage over implementations on traditional CPUs.
However, if GPUs are to become a powerful processing re-
source, it is important to establish the correct abstraction of
the hardware; this will encourage efficient application design
as well as an optimizable interface for hardware designers.

In this paper, we present a stream processor abstrac-
tion for performing data parallel computation using graph-
ics hardware. In this model, computation is expressed as
kernels executing over streams of data. We have imple-
mented this abstraction with current programmable hard-
ware in a system called Brook and present a variety of appli-
cations demonstrating its functionality. Stream computing
not only represents an accurate computational model for to-
day’s hardware but it also captures the underlying advantage
of computing on graphics hardware.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors

Keywords: Programmable Graphics Hardware, Data Par-
allel Computing, Stream Computing, Brook

1 Introduction

Data parallel computing is making a comeback on the desk-
top PC, courtesy of modern programmable graphics hard-
ware. Over the last few years, commodity graphics hardware
has been rapidly evolving from a fixed function pipeline into
a programmable vertex and fragment processor. While this
new programmability was primarily designed for real-time
shading, many researchers have observed that its capabilities
extend beyond rendering. Applications such as matrix mul-
tiply [Larsen and McAllister 2001], cellular automata [Harris
et al. 2002], and a complete ray tracer [Purcell et al. 2002]
have been ported to GPUs. This research exposes the poten-
tial of graphics hardware for more general computing tasks.
In fact, future GPU architectures may be used for physics-
based models, natural phenomena simulation, and AI.

As GPUs evolve to incorporate additional programmabil-
ity, the challenge becomes to provide new functionality with-
out sacrificing the performance advantage over conventional
CPUs. GPUs require a different computational model than
the traditional von Neuman architecture [von Neuman 1945]
used by conventional processors. Otherwise, GPUs will suf-
fer from the same problems faced by modern CPUs: limited
instruction level parallelism (ILP), excessive use of caching
to capture locality, and diminishing cost-performance re-
turns. A different model must be explored.

∗{ianbuck, hanrahan}@graphics.stanford.edu

Along with the architectural model comes a program-
ming model. Originally, programmable GPUs could only
be programmed using assembly language. Recently, both
Microsoft and NVIDIA have introduced C-like program-
ming languages, HLSL and Cg respectively, that compile to
GPU assembly language [Microsoft 2003b; NVIDIA 2003b].
McCool [2000] has also described several clever ways to
metaprogram the graphics pipeline using his SMASH API. A
different approach is taken by domain-specific shading lan-
guages such as RenderMan [Upstill 1990] and RTSL [Proud-
foot et al. 2001]. These languages are specialized for shading
(e.g. by providing light and surface shaders), and hide de-
tails of the graphics pipeline such as the number of stages or
the number of passes. A significant advantage of the HLSL
and Cg approach over the RenderMan and RTSL approach is
that they provide a general mechanism for programming the
GPU that is not domain-specific; thus potentially enabling a
wider range of applications. However, these languages have
only taken a half-step towards generality. They still rely on
the graphics library and its abstractions to tie different Cg
programs together.

The purpose of this paper is to propose a stream program-
ming model for general purpose computation on graphics
hardware. The main contributions of this paper include:

• We describe the two key reasons that graphics hardware
is faster than CPUs: data parallelism and arithmetic
intensity (the ratio of computation to bandwidth). The
streaming model is built upon these ideas.

• Using these observations as a guide, we present a pro-
gramming environment called Brook. We describe our
prototype implementation on todays GPUs.

• We demonstrate how a wide variety of data parallel
algorithms can be implemented in Brook and hence run
on graphics hardware.

• Finally, we analyze our implementation on current pro-
grammable graphics hardware and provide direction for
future hardware designs.

2 Background

2.1 Programmable Graphics Hardware

Figure 1 shows a diagram of a modern programmable graph-
ics accelerator such as the ATI Radeon 9700 or the NVidia
GeForce FX [ATI 2003; NVIDIA 2003a]. The programmable
vertex and fragment processors execute a user specified
assembly-level program consisting of 4-way SIMD instruc-
tions[Lindholm et al. 2001]. These instructions include stan-
dard math operations, such as 3- or 4-component dot prod-
ucts, texture fetch instructions (fragment programs only),
and a few special purpose instructions. The Radeon 9700
supports 24-bit arithmetic and the GeForce FX permits fixed
point, half-float, and single-precision IEEE floating point
arithmetic.

Application

Vertex Program

Rasterization

Fragment Program

Display

Figure 1: The programmable graphics pipeline.

Input Registers

Output Registers

Constants

Temp Registers

Textures*

Shader
Program

* fragment only

Figure 2: Programming model for current programmable
graphics hardware. A shader program operates on a sin-
gle input element, vertex or fragment, located in the input
registers and writes the result into the output registers.

The basic execution model is shown in figure 2. For every
vertex or fragment to be processed, the graphics hardware
places the element’s data fields in the read-only input reg-
isters and executes the program. The program then writes
the results to the output registers. During execution the
program has access to a number of registers as well as con-
stants set by the host application. Although there are sev-
eral differences in the instruction sets between vertex and
fragment programs, the key distinction is that vertex pro-
grams may branch, but not fetch from texture (memory),
whereas fragment programs may fetch from texture, but not
branch. Another difference between fragment programs and
vertex processors is their execution speed: since fill rates are
faster than triangle submission rates, fragment programs are
currently faster.

While this programming model permits general data types
and arbitrary user code to be executed on on graphics hard-
ware, it remains very graphics centric and does not provide a
clean abstraction for general purpose computing on graphics
hardware. Programs operate on vertices and fragments sep-
arated by a rasterization stage; memory is divided up into
textures and framebuffers; the interface between the hard-
ware and host is through a complex graphics API. This often
stands in the way of using the hardware for new applications.

2.2 Programming Abstractions

There were many early programmable graphics systems, but
one of the most influential was the UNC PixelPlanes se-

ries [Fuchs et al. 1989] culminating in the PixelFlow ma-
chine [Molnar et al. 1992]. These systems were based on
smart memory, where pixel processors were on the same chip
as the embedded framebuffer memory. The pixel processors
ran as a SIMD processor. Providing this flexibility has al-
lowed the UNC group to experiment with new graphics algo-
rithms, culminating in Olano and Lastra’s implementation
of a version of RenderMan on PixelFlow [Olano and Lastra
1998].

Peercy et al. [2000] demonstrated how the OpenGL archi-
tecture [Woo et al. 1999] can be abstracted as a SIMD pro-
cessor. Each rendering pass is considered a SIMD instruction
that performs a basic arithmetic operation and updates the
framebuffer atomically. Using this abstraction, they were
able to compile RenderMan to OpenGL 1.2 with imaging
extensions. They also clearly argued the case for extended
precision fragment processing and framebuffers.

The work by Thompson et al. [2002] explores the use of
GPUs as a general-purpose vector processor. They imple-
ment a software layer on top of the graphics library that
provides arithmetic computation on arrays of floating point
numbers.

The basic problem with the SIMD or vector approach is
that each pass involves a single instruction, a read, and a
write to off-chip framebuffer memory. The results in signif-
icant memory bandwidth use. Today’s graphics hardware
executes small programs where instructions load and store
to temporary internal registers rather than to memory. This
is the key difference between the stream processor abstrac-
tion and the vector processor abstraction [Khailany et al.
2001].

Purcell et al. [2002] implemented a ray tracing engine on
graphics hardware abstracting the hardware as a streaming
graphics processor. Their paper divided up the raytracer
into streams and kernels in order to map onto a theoreti-
cal architecture. They were also able to implement a pro-
totype on the Radeon 9700, although several workarounds
were needed. This paper extends the streaming model pre-
sented in that paper by considering more general parallel
applications and more general programming constructs.

Stream architectures are a topic of great interest in com-
puter architecture. For example, the Imagine stream pro-
cessor by Kapasi et al. [2002] uses streams to expose local-
ity and parallelism. They were able to show that streaming
worked well for a wide range of media applications, including
graphics and imaging [Owens et al. 2000]. Related current
work includes VLIW media processors and DSPs [Halfhill
2000; Rathnam and Slavenburg 1996], hardwired stream pro-
cessors and programmable gate arrays [Bove and Watling-
ton 1995; Gokhale and Gomersall 1997], and vector proces-
sors [Russell 1978; Kozyrakis 1999].

Over the years, a large number of parallel programming
environments have been created, most based on communi-
cating sequential processes, or multithreading. There are
also several stream programming models, the most similar
to ours being the Imagine StreamC/KernelC programming
environment [Kapasi et al. 2002]. StreamC/KernelC, how-
ever, exposes the sequential nature of stream computations.
In this paper we stress the data parallel nature of streams.
A good example of a data parallel language is C* [Hillis and
Guy L. Steele 1986; Thinking Machines Corporation 1993],
and we base our constructs on those in that language. In
short, our programming environment combines ideas from
StreamC/KernelC with ideas from C*; for kernel program-
ming we primarily use Cg in a wrapper to integrate it with
the rest of our system.

3 Advantages of Stream Architectures

Before defining a programming model for general comput-
ing on graphics hardware, it is important to understand why
graphics hardware outperforms conventional CPUs. While
modern VLSI technology permits hardware to contain hun-
dreds of floating point ALUs, there are several challenges
to utilizing the hardware efficiently. First, the program-
mer needs to express enough operations to utilize all of the
ALUs every cycle. Second, given the discrepancy in modern
hardware between internal clock speeds and off-chip mem-
ory speed, memory access rates dictate performance. GPUs
are better able to overcome these challenges through the use
of data parallelism and arithmetic intensity. In this section
we define these terms and explain how GPUs exploit these
features to maintain peak performance.

3.1 Data Parallelism

Programmable graphics hardware is an example of a data
parallel architecture[Hillis 1985]. In this paper, we define
a data parallel architecture as any architecture where the
parallelism is based on applying operators to a collection of
data records. Note that this definition encompasses both
MIMD and SIMD architectures. Fortunately, in graphics,
millions of vertices and billions of fragments are processed
per second, so there is abundant data parallelism.

The current GPU programming model for vertex and frag-
ment programs ensures that each program executes indepen-
dently. The result of a computation on one vertex or frag-
ment cannot effect the computation on another vertex or
fragment. This independence has two benefits. First, the
system can occupy all of the ALUs by executing multiple
parallel copies of the program. Second, and more subtly,
the latency of any memory read operations can be hidden.
In the classic vector processor, loads and stores are pipelined
and overlapped with computation. In a multithreaded im-
plementation, when a memory access occurs, one thread is
suspended and another is scheduled. This technique of hid-
ing memory latency was first applied in graphics architec-
tures to hide texture fetch latency [Torborg and Kajiya 1996;
Anderson et al. 1997; Igehy et al. 1998]. In summary, the
advantage of data parallelism is that it allows the system to
use a large number of ALUs and to hide memory latency.

3.2 Arithmetic Intensity

Data parallelism alone does not ensure that all of the hun-
dreds of ALU units are occupied. If a program contains
mostly memory operations, regardless of the amount of data
parallelism, the performance of the program will be limited
by the performance of the memory system. However, a pro-
gram with a significant amount of computation using values
in local registers will run efficiently.

In order to quantify this property, we introduce the con-
cept of arithmetic intensity. Arithmetic intensity is the ratio
of arithmetic operations performed per memory operation,
or in other words, flops per word transferred. As an example,
in today’s programmable fragment processors, the memory
system permits one billion 128 bit words per second to be
read while the computational rate is four times faster, per-
mitting up to 4 billion 128-bit ops per second. In order for
a program to maintain a high computation rate, the arith-
metic intensity must be greater than four since in the time
one word is transfered, four operations can be performed. In
the future, based on hardware trends, the arithmetic inten-
sity required to obtain peak efficiency will increase.

It is important to distinguish the property of arithmetic
intensity from the mechanism of caching. Caches exploit
arithmetic intensity because they reuse values. However,
they are only one mechanism. A large enough register set
also provides a mechanism for exploiting locality. The prob-
lem with a cache in a streaming architecture is that there
is little temporal locality; in a pure stream, every value is
used only once. A major difference between a modern CPU
and GPU is the ratio of VLSI area devoted to caching vs.
ALU’s: in a GPU, ALU’s dominate, in a CPU, caches dom-
inate. In our programming environment, we want the pro-
grammer to expose arithmetic intensity in a way that allows
efficient implementation without relying on a cache, except
when absolutely necessary.

4 Brook Stream Programming Model

An ideal programming model for general purpose comput-
ing on graphics hardware should encourage programmers to
write data parallel code with high arithmetic intensity. We
present Brook, a programming environment for general pur-
pose stream computing. Brook abstracts the stream hard-
ware as a co-processor to the host system. In this section,
we describe the Brook interface to stream hardware.

4.1 Streams

Streams in Brook are created via the LoadStream API call:
stream s = LoadStream (float, n, data);

where float is the element type, n is the number of elements
of type float in the array data. Creating a stream copies data
to the stream hardware which can in turn be referenced via
the variable s. The StoreStream function fetches stream
values back from the stream hardware.

StoreStream (s, data);

Streams are collections of records which require similar
computation. A record can be of any type supported by the
hardware, ranging from a single float value to complex struc-
tures. Limits on the length of streams is set by the under-
lying stream hardware. Streams provide the basic data par-
allel primitive for a stream processor. In order for a stream
processor to operate on the element in parallel, the compu-
tation required for each stream record should be largely in-
dependent of the other records. Examples of streams include
particle positions in a particle simulation or flow vectors for
each cell in a fluids simulation. These examples require only
a local computation and can be updated independently.

4.2 Kernel Functions

The programmer executes functions, or kernels, over each
element of the stream. An example kernel declaration is
shown in figure 3. The arguments to a kernel include:

• Input streams specified by the stream keyword: These
variables contains an element from an input stream.

• Output streams (stream out): The result of the kernel
computation should be placed in these variables by the
kernel program.

• Gather streams (gather stream): These stream vari-
ables permit indexing into the stream data. Elements
are fetched from gather streams via C-like array index-
ing operation i.e. array[i].

kernel void updatepos (stream float3 pos,
stream float3 vel,
stream out float3 newpos,
float timestep) {

newpos = pos + vel*timestep;
}

#include <brook.h>
int main (void) {
float pos[N][3], vel[N][3], timestep;
... initialize pos, vel ...
kernel updatepos = LoadKernel(‘‘updatepos’’);
stream s_pos = LoadStream(float3, N, pos);
stream s_vel = LoadStream(float3, N, vel);
constant c_timestep =

LoadConstant(float, ×tep);
KernelMap (updatepos, s_pos, s_vel,

s_pos, c_timestep);
StoreStream(s_pos, pos);

}

Figure 3: A sample Brook kernel which updates a set of posi-
tions based on a set of velocities and a timestep. The kernel
function is stored in a separate file which is compiled by the
Brook kernel compiler. In the main program, the kernel is
loaded and the streams and constants created. KernelMap
executes the kernel over all the elements of s pos and s vel
and places the result into the s pos stream. The positions
are then copied from the stream to the array pos.

• Constants: All non-stream arguments are constants
that are set by the host program via the Brook API.

The kernel function is compiled separately from the appli-
cation using the Brook compiler. The LoadKernel function
loads a compiled kernel from a file and returns a kernel iden-
tifier. KernelMap takes as input the kernel, streams, and con-
stants identifiers and executes the kernel on every element
of the input streams. The results are placed in the out-
put stream which can be “read back” with the StoreStream
command or passed as an input to the next kernel.

Kernel functions are similar to Cg shaders. The body of
the kernel is composed of C code. Global memory access is
limited to reads inside gather streams, similar to texture ac-
cess. The kernel execution does not permit any side effects,
static variables, or global writes. These restrictions prevent
any dependencies between elements in the kernel computa-
tion. The streaming hardware can therefore execute multiple
copies of the kernel function on different input elements.

Despite these similarities, there are a few key differences
from Cg. Kernels operate directly on collections of data from
input streams rather than on fragments or vertices. Kernels
also make a distinction between data which is streamed as
inputs and data gathered with array accesses. This permits
the system to manage these streams differently according
to their usage patterns. Finally, where Cg only provides a
general mechanism for specifying shaders, Brook generalizes
the memory management of streams.

Kernel functions are what differentiate stream program-
ming from traditional vector programming. Kernel functions
permit arbitrary function evaluation whereas vector opera-
tors consist of simple math operations. Kernels capture ad-
ditional locality of a function by providing local temporary
storage and code blocks within the kernel function. A vec-
tor operation, in contrast, requires temporaries to always be
read and written to a vector register file.

reducekernel void matrixmult (
stream matrix4 left,
stream matrix4 right,
stream out matrix4 result) {

result = left * right;
}

kernel matmult = LoadKernel(‘‘matmult’’);
stream s = LoadStream(float[4][4], n, matrices);
float ret[4][4];
KernelReduce (matmult, s, ret);

Figure 4: A reduction kernel which performs matrix multi-
plication. The KernelReduce Brook function executes the
matmult reduction over the stream s and stores the result
in ret.

4.3 Reduction

While kernel functions provide a mechanism for applying a
function to a set of data, reduction kernels provide a data
parallel method to calculate a single value from a set of
records. Examples of reduction operations include a simple
arithmetic sum, computing the maximum, or more complex
operators like matrix multiplication. In order to perform the
reduction in parallel, we require the reduction function to be
associative: (a + b)+ c = a+(b + c). This allows the system
to evaluate the reduction in which ever way is best suited
for the architecture.

The KernelReduce operator takes a reduction kernel and
applies it to a single stream to produce a single output. A
reduction kernel takes as input two records, which may orig-
inate either from the input stream or from partially accu-
mulated results, and produces an updated result. KernelRe-
duce repeatedly applies the reduction until a single element
remains.

Figure 4 illustrates an example of a reduction multiplying
a stream of matrices together. A reduction kernel declara-
tion is similar to a kernel declaration. The first two stream
arguments are the left and right elements to be reduced. The
third stream argument is the output value of that reduction.
Any other arguments must be constants. To execute the
reduction kernel, the host application calls KernelReduce
function call with the first argument being the stream to
reduce.

4.4 Scatter and Gather

The scatter and gather operations provide levels of indirec-
tion in reading or writing data, similar to the scatter/gather
capability of the first vector machines. Brook purposefully
separates scatter operations from gathers in order to main-
tain data parallelism. If we permitted writes and reads to ar-
bitrary elements inside of kernels, we would introduce depen-
dencies between stream elements. Allowing multiple gathers
inside of kernel functions permits the programmer the flexi-
bility to walk complex data structures and traverse data ar-
bitrarily. Gather operations are supported within the kernel
via the gather stream keyword. Gather streams are read-
only data which can accessed anywhere within the kernel
with C-like array access (a=p[i]).

The opposite of a gather is a scatter operation. A scat-
ter performs a parallel write operation with reduction (e.g.
p[i]+=a). The ScatterOp function takes four arguments: an
index stream specifying where the data is to be scattered, a
data stream containing data to scatter, and the destination
stream in which the data is written. The final argument is

float4 gather4 (texobjRECT t, float i) {
float2 v;
v.y = i / WORKSPACE;
v.x = frac(v.y)*WORKSPACE;
v.y = floor (v.y);
return f4texRECT(t, v);

}

Figure 5: Cg code for 1D to 2D gather conversion. In order
to access 2D textures with a 1D address, the Brook compiler
converts a 1D address into a 2D address. The texture width
is specified by the constant WORKSPACE.

a user-specified reducekernel used for combining the data
to be written with the data present at destination. This
includes collisions within the index stream. For example, a
scatter to the same location is identical to a KernelReduce
operation. The streaming hardware may reorder the kernel
evaluation preserving associativity. If the reducekernel ar-
gument is NULL, a simple “replace” reduction is performed,
where only the last element to be scattered to a location is
written. We also provide predefined reducekernels, such as
SCATTER_ADD, which have been optimized for the underlying
streaming hardware.

In addition to gathers inside of kernels, the Brook API
also includes GatherOp API call which performs a parallel
indirect read with update (e.g. a=p[i]++). A user-specified
kernel passed to the GatherOp function performs an atomic
operation on every fetch from a stream. Unlike ScatterOp,
the gather kernel is not a reduction operator and cannot
reorder gathers from the same location.

Graphics hardware supports similar reductions and
atomic gather operations in the read-modify-write portion
of the fragment pipeline. The stencil buffer, z-buffer, and
blending units perform simplified versions of these operators.
Utilizing these graphics features for computation, however,
can be awkward and indirect and do not allow user-specified
code. ScatterOp and GatherOp offer a generalized version
of this functionality.

5 Implementing on Graphics Hardware

In order to demonstrate that graphics hardware supports the
streaming programming model, we have implemented Brook
on top of OpenGL and Cg. Our implementation completely
hides all references to the graphics API and only exposes the
interface outlined in the previous section. The system con-
sists of two components: a kernel compiler, which compiles
kernel functions into legal Cg code, and a runtime system
built on top of OpenGL which implements the Brook API.

5.1 Streams

Stream data resides in 2D floating point textures. When the
application program issues a LoadStream call, the runtime
system creates a 2D texture object and copies the data into
the texture. The output stream from a kernel is written to a
floating point pbuffer and copied back into a texture object.
When the host application issues a StoreStream call, the
runtime system fetches the texture data from the graphics
card into the host memory.

Using textures to store streams of data presents some lim-
itations. The length of a stream is limited by the maximum
resolution of 2D textures. Stream types are also restricted to
the texture formats supported by the hardware, which con-

fragout_float main (
uniform texobjRECT _tex_pos,
uniform texobjRECT _tex_vel,
uniform float timestep,
float4 _pos : WPOS) {

fragout_float OUT;
float3 pos, vel, newpos;

pos= f3texRECT (_tex_pos, _pos.xy);
vel= f3texRECT (_tex_vel, _pos.xy);
{
newpos = pos + vel*timestep;

}
OUT.col.xyz= newpos;
return OUT;

}

Figure 6: A compiled Brook kernel.

sist of floating point vectors of 1 to 4 components specified
by the types float, float2, float3, and float4.

Using 1D rather than 2D textures would simplify stream
access inside the kernel since accessing gather streams is a
1D address lookup. Graphics hardware, however, limits the
size of 1D textures to only a few thousand texels. The Brook
kernel compiler introduces code, as shown in figure 5, into
the kernel to perform a 1D fetch from within a 2D texture.

Since we are using textures to store streams, all stream ac-
cess goes through the texture cache. Although Brook distin-
guishes between input streams and gather streams, graphics
hardware makes no distinction between these two texture
types. Input streams have a regular access pattern but no
reuse since each kernel processes a different input record.
Gather streams access patterns are more random but may
contain reuse. As Purcell et al. [2002] observed, input
stream data can pollute a traditional texture cache which
can penalize locality in gather operations.

5.2 Kernel Programs

Kernels compiled using the Brook compiler produce legal Cg
code for the NVidia GeForce FX fragment processor. The
compiler is built using parser utility Bison and the lexical an-
alyzer Flex [Free Software Foundation, Inc 2003a][Free Soft-
ware Foundation, Inc 2003b]. These tools parse the Brook
kernel code and extract the arguments and code body. These
results are passed to a script which outputs a Cg function.

The example output of compiled kernel is shown in figure
6. The compiler wraps the kernel code with Cg code to
prepare the variables needed for the kernel body. Both input
streams and gather streams arguments are converted into
texture fetches. For each input stream, the compiler inserts
a texture fetch based on fragment position to get the stream
elements for the kernel. For the output stream, the compiler
places the output to the color buffer. Constants are declared
in the function as uniform variables to be set by the runtime
environment. The Cg compiler compiles the final assembly
output which is loaded by the runtime system.

Using Cg as a compilation target for kernels provides some
definite advantages. Kernel programs do not require much
modification since the syntax of Cg is based on C. The more
difficult compilation phases, like register allocation, are of-
floaded to the Cg compiler. In addition, the native Cg vector
types, like float2, are available to the kernel writer – thus
allowing the developer to optimize for graphics hardware’s
4-component ALU operations. There are some downsides to

using Cg. Cg does not support all the C native types such
as integers and chars, and they are therefore not available
within Brook kernels. Also, final performance of the kernel
is affected by the quality of the Cg compilation.

The fragment processor provides much of the functional-
ity needed for Brook kernels. Textures provide a fast mecha-
nism for accessing stream data and Cg provides a high level
interface for programming. Despite these advantages, there
are limitations to using the fragment processor. Branching
is not fully supported preventing kernels from performing
data dependent looping. Also, there are a limited number of
outputs and inputs. On the NVidia GeForce FX, the frag-
ment processor supports up to 16 input textures but only a
single output vector. As a result, kernels can only have a
single output stream. In addition, kernel size is limited by
the number of instructions supported by graphics hardware.

The vertex processor could also be used as a target for
kernel functions. Many of the same instructions are available
in the vertex processor as well as some additional features
such as branching. However, it would prohibit the use of
gather streams since texture fetching is not permitted inside
of vertex shaders. In addition, the input of a vertex shader
must come from the host application. This means that the
output of any kernel must be read back to host if it is to
be passed to another kernel. As Thompson et al. [2002]
observed, this can be a significant performance bottleneck.

In addition, current graphics hardware does not virtu-
alize the hardware resources to allow for larger programs,
more local variables, or additional inputs and outputs. On
the GeForce FX, fragment programs are limited to 1024 in-
structions and 32 registers for local storage. Likewise, the
number of render outputs and texture inputs to a fragment
shader are not extendable. This can severely limit the size
and capabilities of kernel functions.

5.3 Kernel Execution

When the application issues a KernelMap call, the runtime
system executes the loaded kernel using the fragment pro-
cessor. The runtime system binds the input textures, sets all
the constant variables, and binds the fragment shader cor-
responding to the kernel. To execute the kernel, the system
issues a large quad containing the same number of fragments
as elements in the input streams. (An error is raised if the
number of elements in the input streams do not match.) The
graphics hardware executes the compiled kernel on each frag-
ment using the fragment position to fetch the input element
from each input stream texture. The render target is set to
an off-screen pbuffer which stores the output result.

5.4 Reduce

Graphics hardware does not have a native method for reduc-
tions. The Brook runtime implements reduction via a multi-
pass method similar to reduction networks in data parallel
architectures [Reynolds et al. 1992]. The reduction is per-
formed in a tree requiring lg(n) parallel steps, where n is the
number of elements to reduce. In each pass, the reduce ker-
nel reads two adjacent stream elements, performs the reduc-
tion, and outputs a single reduced value. Each pass results
in half as many values to reduce. This is repeated until a
single element remains which is then read from the pbuffer
and returned to the user.

Using this algorithm, we benchmarked reduction perfor-
mance on the ATI Radeon 9700. To reduce 220 floating
point numbers (requiring 20 passes) with a simple sum

reducekernel took 12 milliseconds. The compiled reduce
kernel computes the position of the two stream elements to
reduce, performs the 1D to 2D conversion for 2D texture
lookup, sums the values and stores the output. One simple
extension to graphics hardware would be to provide an inter-
nal mechanism to perform reductions. Each parallel proces-
sor could maintain its own reduction value in a “reduction
register” and perform the final reduction on the host. This
would require a single pass over the stream data.

To evaluate potential speedup of this feature, we assume
the cost of accessing a reduction register is the same as ac-
cessing any other register in the fragment program. To sim-
ulate the performance of the reduction kernel used above, we
benchmark a simple shader which performs a texture fetch
(fetching the stream) and ADD instruction. Note that the
1D to 2D conversion is not required since no gather is per-
formed. For the same test case used above, the simulated
reduction performance is 1.7 milliseconds.

One could use existing blending hardware available in the
fragment pipeline to perform the reduction in a similar man-
ner. However, these units are not programmable nor do
they support high precision floating point in current graph-
ics hardware.

5.5 Scatter and Gather

Gather operations are supported natively by the pro-
grammable fragment unit. The Brook compiler converts
gather array accesses into calls to the Brook gather func-
tion. The gather function converts the 1D access into a 2D
texture lookup and returns the result as shown in figure 5.

ScatterOp and GatherOp operations are not natively sup-
ported by the fragment hardware. Brook implements scat-
ter by rendering points into the destination stream as fol-
lows. First the destination stream is rendered to an off-
screen pbuffer. Next, the system fetches the index stream
from the 2D texture. Using the index data, the system ren-
ders OpenGL points positioned corresponding to the index
value. With the user specified ScatterOp kernel bound, the
point fragment performs the reduction by fetching the two
values to reduce from texture and writes the result into the
pbuffer. Once all of the points have been rendered, the data
has been scattered into the destination stream present in the
pbuffer. A GatherOp works in a similar manner except it
requires additional passes: one to write the gathered value
and a further pass to execute the gather kernel. Graphics
hardware that supports multiple render outputs per pass can
avoid this extra cost.

This method does have some performance drawbacks.
First the index stream must be read back to host memory,
a costly operation. Also, the graphics system must issue a
point per index element and can be limited by the geome-
try issue rate of the card. Fetching the index stream from
the graphics card to host memory is a slow operation. The
readback rate for the NVidia GeForce4 Ti4200 on a PIII
800Mhz PC is only 151 MB/sec. This limits the scatter rate
to a theoretical peak of only 37.7 Mscatters/second.

Future graphics hardware may soon remove this readback
limitation. The recently released DirectX 9 API [Microsoft
2003a] includes functionality for displacement mapping, per-
mitting the texture data to directly control the point’s loca-
tion. Another option may be to allow the fragment proces-
sor to set the location of a fragment inside the shader. This
would remove the requirement to render OpenGL points and
the dependence on the point rendering rate.

The implementation of GatherOp and ScatterOp is fur-

ther complicated by index streams with multiple references
to the same stream element. Similar to KernelReduce, the
GatherOp and ScatterOp operators cannot perform a re-
duction in a single pass. To solve this, the index stream is
divided into portions which do not contain multiple refer-
ences. These separate streams are then executed in different
passes.

This inefficiency could be eliminated with the introduc-
tion to programmable blending. Current blending already
supports similar semantics for resolving writes to the same
location. Existing OpenGL ordering semantics requires that
blending operations are applied in the order in which the
primitives were issued by the application. By extending
blending operations to be programmable, the ScatterOp ker-
nel could perform the reduction in the blending hardware,
requiring only a single pass.

6 Streaming Applications

Using Brook, we have implemented a variety of applications
including an FFT, a singular value decomposition kernel,
a multi-grid fluid solver, and a finite element PDE solver.
In this section, we present a few sample applications which
bring out some issues related to graphics hardware.

6.1 Sparse Matrix Multiply

This application performs multiplication of a large sparse
matrix with a dense vector. The matrix representation and
the kernel are shown figure 7. Each call to the sparse matrix
kernel performs a multiplication of the next non-zero element
in a row with the corresponding element of the vector. We
call the kernel k times, where k is the maximum number of
non-zero elements in a row.

To test the effectiveness of sparse matrix multiply on
graphics hardware, we examined the instruction usage of the
compiled kernel. The compiled Brook kernel was compiled
with the NVidia CG compiler for the NV_FRAGMENT_PROGRAM
fragment program supported by GeForce FX. After hand op-
timizing the results from the compiler, the 16 total instruc-
tions broke down as follows: 6 texture fetch instructions, 4
math instructions corresponding to math expressed in the
kernel, 6 instructions for two 1D to 2D conversion for the
gathers.

This example demonstrates some of the inefficiencies for
storing streams in 2D textures. More instructions are used
in computing the 2D conversion than in performing the
math operations specified in the kernel. Removing this 3-
instruction penalty for gather operations would make this
kernel quite compact.

Sparse matrix multiply, while it does provide an interest-
ing application suffers from two main drawbacks. First, the
kernel function does not have high arithmetic intensity, only
performing 4 math operations but reading 6 words. Second,
the code is largely scalar and does not take advantage of the
4-way SIMD operators.

6.2 Sorting

The streaming sort application performs a Batcher bitonic
sort [Batcher 1968] to sort n numbers. This sort is effi-
cient for graphics hardware because it is both data parallel
and is performed in place, requiring only gather operations.
Bitonic sorting operates with a static comparison network
where two elements are compared and switched if out of or-
der as shown in figure 8.

3 0 0 2
0 0 0 1
0 4 0 0
6 0 0 8

8
3
6
2

elem: (3 2 1 4 6 8)
ipos: (0 3 3 1 0 4)
start: (0 2 3 4)
len: (2 1 1 2)
v: (8 3 6 2)

kernel void sparsematrix (stream float prev,
stream float start, stream float len,
gather stream float elem,
gather stream float ipos,
gather stream float v,
float pass,
stream out float result) {

float offset = start + pass;
if (pass < len)
result = prev + elem[offset]*v[ipos[offset]];

else
result = prev;

}

Figure 7: Streaming sparse matrix multiply requires four
streams to represent the matrix, one gather stream for the
dense vector, and an input stream of the partial result. elem
contains the ordered list of non-zero elements of the ma-
trix. ipos stores the column index for each element. start
indicates the position in the elem stream where each row
begins. len is the number of non-zero elements in that row.
The kernel computes which non-zero element to gather from
start index for the row plus the pass number. The element
is multiplied with the corresponding element from v, unless
the pass number is higher than the number elements in the
row.

Figure 8: Bitonic Sorting network for 8 elements. Each ver-
tical arrow represents a comparison and swap operation be-
tween two elements in the stream. If the values do not obey
the direction of the arrow, the two elements are swapped.
This example requires 6 kernel executions, specified by the
hash marks, which perform the comparison and swap in par-
allel. In general, bitonic sorting requires O(lg2n) kernel ex-
ecutions to sort n numbers.

Because current graphics hardware natively supports only
one stream output without an efficient scatter mechanism,
performing a swap operation is difficult. To emulate swap,
the comparison evaluation is performed twice, once for either
side of the arrow in figure 8. Based on the position in the
stream and the pass number, the kernel computes which ele-
ment to examine and the direction of the comparison before
writing the output.

This implementation was ported to the ATI Radeon 9700
using the ARB_FRAGMENT_PROGRAM extension [OpenGL ARB
2003]. Sorting a one million element stream consisting of
float4s with the x component used as a key took 2.5 sec-
onds. If graphics hardware natively supported multiple out-
puts and scatter, we could improve sorting performance sig-
nificantly. The kernel could output both elements of the

comparison and place the results in the correct position in
the output stream for the next pass. This could potentially
double the sorting performance as each pass would require
only n/2 kernel executions.

Bitonic sorting would also benefit from a more complete
instruction set. Computing which element to compare with
requires a modulus 2 operation which is not available on
current graphics hardware. This is emulated by a three in-
struction macro.

6.3 Scan

Traditional data-parallel computing operators can be imple-
mented with the streaming model. For example, the scan op-
erator, also known as the parallel-prefix, is widely discussed
in data parallel computing literature [Ladner and Fischer
1980][Belloch 1986] and used extensively in the Connection
Machine architecture [Hillis 1985]. A scan operation com-
putes n partial reductions where each element is the reduc-
tion result up to that element in the stream. For example
a +-scan computes the running sum of a list of numbers.
Since the reduction is associative, computing a scan opera-
tion requires lg(n) passes over the list of elements.

Scan can be implemented via gather streams and mul-
tiple kernel passes using the same algorithm described by
Hillis and Steele [1986]. To demonstrate streaming scan, we
compute a summed-area table used for image filtering [Crow
1984]. To compute a 1024x1024 area table, we initialize the
grid to contain the area of a single cell. We then perform
10 kernel executions (lg(1024)) for the horizontal sum scan
which computes the partial sums in the horizontal direction.
We complete the table by performing and 10 additional ker-
nel executions to scan in the vertical scan.

6.4 Gromacs

Gromacs [Lindahl et al. 2001] is an open source molecular
dynamics simulator package widely used in protein folding
research. As a test of the generality of streaming comput-
ing, we have ported to streaming the more compute intensive
Gromacs operations, namely the non-bonded molecular in-
teractions. These forces are computed from the electrostat-
ics and Lennard-Jones components between two molecules
given by the equation below [van der Spoel et al. 2002].

Fi (rij) =

(
1

4πε0

qiqj

εrr2
ij

+ 12
C12

r12
ij

− 6
C6

r6
ij

)
rij

rij
(1)

To compute forces, Gromacs generates an interaction list
indicating for each molecule which other molecules are close
enough to impose a significant force. The molecular inter-
action kernel takes as input the stream of molecules and the
interaction list; other gather streams contain molecule prop-
erties such as type, charge, and position. The kernel eval-
uates the force function for the input molecule with each
molecule in the interaction list. The output of the kernel is
the net force vector on the molecule and the force potential
imparted on the molecule.

In order to optimize the computation for the 4-way SIMD
architecture of GPUs, we compute the force contributions of
four molecules simultaneously. We repeat this computation
for the next four molecules. Because of the instruction limit
for GPUs, we only compute the force interaction for up to
eight molecular pairs per molecule. If the interaction list
includes more than eight, we repeat the kernel execution,
adding the remaining forces. Gromacs also computes the to-
tal force potential in the system. We use the KernelReduce

operator with a simple summation kernel to stream the po-
tential values returned from the force calculation to a single
value.

The Gromacs acceleration structure is divided into a reg-
ular 3D grid. The dimensions of each cell is chosen such that
molecules only impart a force on other molecules in that cell
and neighboring cells. To build the acceleration structure
in Brook, we first compute which cell a molecule resides in
based on its position. Next, we sort the molecules by grid
cell using the bitonic sorting method shown in figure 8. This
places the molecules in same grid cell next to each other in
the stream. Next, we compute the starting position of each
grid cell with a binary search kernel. This kernel takes as
input the grid number and performs multiple gathers within
the sorted molecule stream searching for the first molecule
contained in that grid cell. The output of the search kernel
contains the start offset for each grid cell.

Gromacs demonstrates how a large application with lots of
potential data parallelism benefit from streaming hardware.
The molecular force kernel in particular is ideally for stream-
ing hardware. Data parallelism exists the different force cal-
culations allowing the different computations to happen in
parallel. Also, the force kernel has high arithmetic inten-
sity. The compiled Cg force kernel contains a total of 426
fragment instructions with only 49 texture fetch instructions
to compute eight molecular interactions. This computation,
which typically comprises of over 90% of work performed in
Gromacs, can make effective usage of streaming hardware.

7 Discussion

In this paper we have described a programming environment
for writing applications for next-generation programmable
GPUs. This environment was designed by surveying a large
number of data parallel applications and articulating future
hardware constraints. Many programs can be run on cur-
rent hardware, although still not efficiently. However, as the
floating point instruction issue rates rapidly increase, there
will be strong motivation to port programs to this platform.

Our study began as an attempt to characterize the types
of applications that would not map well to graphics hard-
ware. Those without data parallelism, or with low arith-
metic intensity will not run well. There is also a set of appli-
cations where the parallel algorithms are less efficient than
the sequential algorithms. For example, parallel sort and
scan requires an extra log n operations than their sequential
versions. This factor means that the GPU is at a disadvan-
tage over the CPU.

One of the biggest issues in GPU programs is that certain
kernels cannot be run on the hardware because of resource
constraints. These include the number of instructions, the
number of registers, the number of vertex interpolants, and
the number of outputs. In Chan et al. [2002], an algorithm
was developed to subdivide large kernels automatically into
smaller kernels. That algorithm handled many resource con-
straints, but does not work for multiple outputs. Solving this
problem is a high priority for future work.

The programming environment we proposed is very clean
and general. The major changes in current hardware that are
needed to support this model are: (1) The notion of stream-
ing inputs and output of stream records of larger size. Us-
ing textures for stream inputs is inefficient, and not enough
outputs are available in current hardware. (2) Reduction
is poorly supported. (3) Gather is efficiently solved using
existing texturing methods (except that the texture caches

are optimized for traditional texture mapping applications).
Scatter is currently not implemented efficiently.

Looking further towards the future, many questions re-
main. There are interesting micro-architectural questions
that deserve further research. For example, in the Imagine
processor, the stream register file is exposed just as a vec-
tor register file is exposed in a vector processor. This has
advantages, but makes it much more difficult to write an op-
timizing compiler. Another interesting issue is how to com-
bine multiple streaming processors, or multiple GPUs, into
a larger machine. Such a machine might have a huge cost-
performance advantage over existing supercomputers. Pro-
viding such computational power within consumer graphics
hardware has the potential redefine the GPU as not just
rendering engine, but the principal compute engine for the
PC.

References
Anderson, B., Stewart, A., MacAulay, R., and Whitted, T. 1997.

Accommodating memory latency in a low-cost rasterizer. In
Proceedings of the 1997 SIGGRAPH/Eurographics workshop on
Graphics hardware, ACM Press, 97–101.

ATI, 2003. RADEON 9700 product web site.
http://mirror.ati.com/products/pc/radeon9700pro/index.html.

Batcher, K. E. 1968. Sorting networks and their applications.
Proceedings of AFIPS Spring Joint Computing Conference 32 ,
307–314.

Belloch, G., 1986. Parallel prefix versus concurrent memory access.

Bove, V., and Watlington, J. 1995. Cheops: A reconfigurable
data-flow system for video processing. In IEEE Trans. Circuts
and Systems for Video Technology, 140–149.

Chan, E., Ng, R., Sen, P., Proudfoot, K., and Hanrahan, P. 2002.
Efficient partitioning of fragment shaders for multipass rendering
on programmable graphics hardware. In Proceedings of the
conference on Graphics hardware 2002, Eurographics
Association, 69–78.

Crow, F. C. 1984. Summed-area tables for texture mapping. In
Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, 207–212.

Free Software Foundation, Inc, 2003. Gnu bison web page.
http://www.gnu.org/software/bison.

Free Software Foundation, Inc, 2003. Gnu flex web page.
http://www.gnu.org/software/flex.

Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J.,

Ellsworth, D., Molnar, S., Turk, G., Tebbs, B., and Israel, L.

1989. Pixel-planes 5: a heterogeneous multiprocessor graphics
system using processor-enhanced memories. In Proceedings of the
16th annual conference on Computer graphics and interactive
techniques, ACM Press, 79–88.

Gokhale, M., and Gomersall, E. 1997. High level compilation for
fine grained fpgas. In Proceedings of IEEE Workshop on FPGAs
for Custom Computing Machines, 165–173.

Halfhill, T. 2000. TI cores accelerate DSP arms race. In
Microprocessor Report. March, 22–28.

Harris, M., Coombe, G., Scheuermann, T., and Lastra, A. 2002.
Physically-Based visual simulation on graphics hardware. In
Grahpics Hardware, 1–10.

Hillis, W. D., and Guy L. Steele, J. 1986. Data parallel algorithms.
Communications of the ACM 29, 12, 1170–1183.

Hillis, D., 1985. The connection machine. MIT Press.

Igehy, H., Eldridge, M., and Proudfoot, K. 1998. Prefetching in a
texture cache architecture. In Proceedings of the 1998
EUROGRAPHICS/SIGGRAPH workshop on Graphics
hardware, ACM Press, 133–ff.

Kapasi, U., Dally, W. J., Rixner, S., Owens, J. D., and Khailany, B.

2002. The imagine stream processor. Proceedings of
International Conference on Computer Design (September).

Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J., Mattson, P.,

Namkoong, J., Owens, J. D., Towles, B., and Chan, A. 2001.
IMAGINE: Media processing with streams. In IEEE Micro.
IEEE Computer Society Press.

Kozyrakis, C. 1999. A media-enhance vector architecture for
embedded memory systems. Tech. Rep. UCB/CSD-99-1059, Univ.
of California at Berkeley.

Ladner, R. E., and Fischer, M. J. 1980. Parallel prefix computation.
Journal of the ACM (JACM) 27, 4, 831–838.

Larsen, E. S., and McAllister, D. 2001. Fast matrix multiplies
using graphics hardware. In Supercomputering 2001.

Lindahl, E., Hess, B., and van der Spoel, D. 2001. GROMACS 3.0:
a pacakge for molecular simulation and trajectory analysis.
Journal of Molecular Modeling.

Lindholm, E., Kligard, M. J., and Moreton, H. 2001. A
user-programmable vertex engine. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, ACM Press, 149–158.

McCool, M. 2000. Smash: A next-generation api for programmable
graphics accelerators. Tech. Rep. CS-2000-14, University of
Waterloo, August.

Microsoft, 2003. Directx home page.
http://www.microsoft.com/windows/directx/default.asp.

Microsoft, 2003. High-level shader language.
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/directx9 c/directx/graphics/
reference/Shaders/HighLevelShaderLanguage.asp.

Molnar, S., Eyles, J., and Poulton, J. 1992. PixelFlow: High-speed
rendering using image composition. In Computer Graphics
(Proceedings of ACM SIGGRAPH 92), 231–240.

NVIDIA, 2003. GeForce FX: Product overview.
http://www.nvidia.com/docs/lo/2416/SUPP/
TB-00653-001 v01 Overview 110402.pdf.

NVIDIA, 2003. NVIDIA Cg language specification.
http://developer.nvidia.com/view.asp?IO=cg specification.

Olano, M., and Lastra, A. 1998. A shading language on graphics
hardware: the pixelflow shading system. In Proceedings of the
25th annual conference on Computer graphics and interactive
techniques, ACM Press, 159–168.

OpenGL ARB, 2003. Arb fragment program extension specification.
http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment program.txt.

Owens, J. D., Dally, W. J., Kapasi, U. J., Rixner, S., Mattson, P.,

and Mowery, B. 2000. Polygon rendering on a stream
architecture. In Proceedings 2000
SIGGRAPH/EUROGRAPHICS workshop on on Graphics
hardware, ACM Press, 23–32.

Peercy, M. S., Olano, M., Airey, J., and Ungar, P. J. 2000.
Interactive multi-pass programmable shading. In Proceedings of
the 27th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing
Co., 425–432.

Proudfoot, K., Mark, W. R., Tzvetkov, S., and Hanrahan, P.

2001. A real-time procedural shading system for programmable
graphics hardware. ACM Transactions on Graphics (August).

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. 2002. Ray
tracing on programmable graphics hardware. ACM Transactions
on Graphics 21, 3 (July), 703–712. ISSN 0730-0301 (Proceedings
of ACM SIGGRAPH 2002).

Rathnam, S., and Slavenburg, G. 1996. An architectural overview of
the programmable multimedia processor, TM-1. In Proceedings
of Compcon, 319–326.

Reynolds, P., Pancerella, C. M., and Srinivasan, S. 1992. Making
parallel simulations go fast. In Proceedings of the 24th
conference on Winter simulation, ACM Press, 646–656.

Russell, R. 1978. The Cray-1 computer system. In Comm. ACM,
63–72.

Thinking Machines Corporation, 1993. C* reference manual, May.

Thompson, C. J., Hahn, S., and Oskin, M. 2002. Using modern
graphics architectures for general-purpose computing: A
framework and analysis. International Symposium on
Microarchitecture.

Torborg, J., and Kajiya, J. T. 1996. Talisman: commodity realtime
3d graphics for the pc. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques,
ACM Press, 353–363.

Upstill, S., 1990. The renderman companion. Addison-Wesley.

van der Spoel, D., van Buuren, A. R., Apol, E., Meulenhoff, P. J.,

Tieleman, D. P., alfons L.T.M. Sijbers, Hess, B., Feenstra,

K. A., Lindahl, E., van Drunen, R., and Berendsen, H. J. 2002.
GROMACS user manual. Department of Biophysical Chemistry,
University of Groningen..

von Neuman, J. 1945. First draft of a report on the EDVAC. Tech.
Rep. W-670-ORD-492, Moore School of Electrical Engineering,
Univ. of Penn., Philadelphia., June.

Woo, M., Neider, J., Davis, T., Shreiner, D., and OpenGL

Architecture Review Board, 1999. OpenGL programming guide.

