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Figure 1: Two implementations of the Frankencamera architecture: (a) The custom-built F2 – portable and self-powered, best for projects
requiring flexible hardware. (b) A Nokia N900 with a modified software stack – a compact commodity platform best for rapid development
and deployment of applications to a large audience.

Abstract

Although there has been much interest in computational photog-
raphy within the research and photography communities, progress
has been hampered by the lack of a portable, programmable cam-
era with sufficient image quality and computing power. To address
this problem, we have designed and implemented an open architec-
ture and API for such cameras: the Frankencamera. It consists of a
base hardware specification, a software stack based on Linux, and
an API for C++. Our architecture permits control and synchroniza-
tion of the sensor and image processing pipeline at the microsecond
time scale, as well as the ability to incorporate and synchronize ex-
ternal hardware like lenses and flashes. This paper specifies our
architecture and API, and it describes two reference implementa-
tions we have built. Using these implementations we demonstrate
six computational photography applications: HDR viewfinding and
capture, low-light viewfinding and capture, automated acquisition
of extended dynamic range panoramas, foveal imaging, IMU-based
hand shake detection, and rephotography. Our goal is to standardize
the architecture and distribute Frankencameras to researchers and
students, as a step towards creating a community of photographer-
programmers who develop algorithms, applications, and hardware
for computational cameras.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Digital Cameras

Keywords: computational photography, programmable cameras

1 Introduction

Computational photography refers broadly to sensing strategies and
algorithmic techniques that enhance or extend the capabilities of
digital photography. Representative techniques include high dy-
namic range (HDR) imaging, flash-noflash imaging, coded aper-
ture and coded exposure imaging, panoramic stitching, digital pho-
tomontage, and light field imaging [Raskar and Tumblin 2010].

Although interest in computational photography has steadily in-
creased among graphics and vision researchers, few of these tech-
niques have found their way into commercial cameras. One rea-
son is that cameras are closed platforms. This makes it hard to
incrementally deploy these techniques, or for researchers to test
them in the field. Ensuring that these algorithms work robustly is
therefore difficult, and so camera manufacturers are reluctant to add
them to their products. For example, although high dynamic range
(HDR) imaging has a long history [Mann and Picard 1995; De-
bevec and Malik 1997], the literature has not addressed the question
of automatically deciding which exposures to capture, i.e., meter-
ing for HDR. As another example, while many of the drawbacks
of flash photography can be ameliorated using flash-noflash imag-
ing [Petschnigg et al. 2004; Eisemann and Durand 2004], these
techniques produce visible artifacts in many photographic situa-
tions [Durand 2009]. Since these features do not exist in actual
cameras, there is no strong incentive to address their artifacts.

Particularly frustrating is that even in platforms like smartphones,
which encourage applet creation and have increasingly capable
imaging hardware, the programming interface to the imaging sys-
tem is highly simplified, mimicking the physical interface of a
point-and-shoot camera. This is a logical interface for the manu-
facturer to include, since it is complete for the purposes of basic
camera operations and stable over many device generations. Unfor-
tunately, it means that in these systems it is not possible to create
imaging applications that experiment with most areas of computa-
tional photography.

To address this problem, we describe a camera architecture and API
flexible enough to implement most of the techniques proposed in
the computational photography literature. We believe the architec-



ture is precise enough that implementations can be built and verified
for it, yet high-level enough to allow for evolution of the underly-
ing hardware and portability across camera platforms. Most impor-
tantly, we have found it easy to program for.

In the following section, we review previous work in this area,
which motivates an enumeration of our design goals at the begin-
ning of Section 3. We then describe our camera architecture in
more detail, and our two reference implementations. The first plat-
form, the F2 (Figure 1a), is composed of off-the-shelf components
mounted in a laser-cut acrylic case. It is designed for extensibility.
Our second platform (Figure 1b) is a Nokia N900 with a custom
software stack. While less customizable than the F2, it is smaller,
lighter, and readily available in large quantities. It demonstrates that
current smartphones often have hardware components with more
capabilities than their APIs expose. With these implementations
in mind, we describe how to program for our architecture in Sec-
tion 4. To demonstrate the capabilities of the architecture and API,
we show six computational photography applications that cannot
easily be implemented on current cameras (Section 5).

2 Prior Work

A digital camera is a complex embedded system, spanning many
fields of research. We limit our review of prior work to camera
platforms rather than their constituent algorithms, to highlight why
we believe a new architecture is needed to advance the field of com-
putational photography.

Consumer cameras. Although improvements in the features of
digital SLRs have been largely incremental, point-and-shoot cam-
era manufacturers are steadily expanding the range of features
available on their cameras. Among these, the Casio EX-F1 stands
out in terms of its computational features. This camera can capture
bursts of images at 60 fps at a 6-megapixel resolution. These bursts
can be computationally combined into a new image directly on the
camera in a variety of ways. Unfortunately, the camera software
cannot be modified, and thus no additional features can be explored
by the research community.

In general, DSLR and point-and-shoot cameras use vendor-
supplied firmware to control their operation. Some manufacturers
such as Canon and Nikon have released software development kits
(SDKs) that allow one to control their cameras using an external
PC. While these SDKs can be useful for some computational pho-
tography applications, they provide a programming interface equiv-
alent to the physical interface on the camera, with no access to
lower layers such as metering or auto-focus algorithms. Further-
more, using these SDKs requires tethering the camera to a PC, and
they add significant latency to the capture process.

Though the firmware in these cameras is always proprietary, sev-
eral groups have successfully reverse-engineered the firmware for
some Canon cameras. In particular, the Canon Hack Development
Kit [CHD 2010] non-destructively replaces the original firmware
on a wide range of Canon point-and-shoot cameras. Photographers
can then script the camera, adding features such as custom burst
modes, motion-triggered photography, and time-lapse photography.
Similarly, the Magic Lantern project [mag 2010] provides enhanced
firmware for Canon 5D Mark II DSLRs. While these projects re-
move both the need to attach a PC to the camera and the problem of
latency, they yield roughly the same level of control as the official
SDK: the lower levels of the camera are still a black box.

Smartphones are programmable cell phones that allow and even
encourage third-party applications. The newest smartphones are ca-
pable of capturing still photographs and videos with quality compa-

rable to point-and-shoot cameras. These models contain numerous
input and output devices (e.g., touch screen, audio, buttons, GPS,
compass, accelerometers), and are compact and portable. While
these systems seem like an ideal platform for a computational cam-
era, they provide limited interfaces to their camera subsystems. For
example, the Apple iPhone 3GS, the Google Nexus One, and the
Nokia N95 all have variable-focus lenses and high-megapixel im-
age sensors, but none allow application control over absolute ex-
posure time, or retrieval of raw sensor data – much less the ability
to stream full-resolution images at the maximum rate permitted by
the sensor. In fact, they typically provide less control of the camera
than the DSLR camera SDKs discussed earlier. This lack of con-
trol, combined with the fixed sensor and optics, make these devices
useful for only a narrow range of computational photography appli-
cations. Despite these limitations, the iPhone app store has several
hundred third-party applications that use the camera. This confirms
our belief that there is great interest in extending the capabilities of
traditional cameras; an interest we hope to support and encourage
with our architecture.

Smart cameras are image sensors combined with local process-
ing, storage, or networking, and are generally used as embedded
computer vision systems [Wolf et al. 2002; Bramberger et al. 2006].
These cameras provide fairly complete control over the imaging
system, with the software stack, often built atop Linux, implement-
ing frame capture, low-level image processing, and vision algo-
rithms such as background subtraction, object detection, or object
recognition. Example research systems are Cyclops [Rahimi et al.
2005], MeshEye [Hengstler et al. 2007], and the Philips wireless
smart camera motes [Kleihorst et al. 2006]. Commercial systems
include the National Instruments 17XX, Sony XCI-100, and the
Basler eXcite series.

The smart cameras closest in spirit to our project are the CMU-
cam [Rowe et al. 2007] open-source embedded vision platform and
the network cameras built by Elphel, Inc. [Filippov 2003]. The lat-
ter run Linux, have several sensor options (Aptina and Kodak), and
are fully open-source. In fact, our earliest Frankencamera prototype
was built around an Elphel 353 network camera. The main limita-
tion of these systems is that they are not complete cameras. Most
are tethered; few support synchronization with other I/O devices;
and none contain a viewfinder or shutter button. Our first prototype
streamed image data from the Elphel 353 over Ethernet to a Nokia
N800 Internet tablet, which served as the viewfinder and user in-
terface. We found the network latency between these two devices
problematic, prompting us to seek a more integrated solution.

Our Frankencamera platforms attempt to provide everything needed
for a practical computational camera: full access to the imaging
system like a smart camera, a full user interface with viewfinder
and I/O interfaces like a smartphone, and the ability to be taken
outdoors, untethered, like a consumer camera.

3 The Frankencamera Architecture

Informed by our experiences programming for (and teaching with)
smartphones, point-and-shoots, and DSLRs, we propose the follow-
ing set of requirements for a Frankencamera:

1. Is handheld, self-powered, and untethered. This lets re-
searchers take the camera outdoors and face real-world pho-
tographic problems.

2. Has a large viewfinder with a high-quality touchscreen to en-
able experimentation with camera user interfaces.

3. Is easy to program. To that end, it should run a standard oper-
ating system, and be programmable using standard languages,
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Figure 2: The Frankencamera Abstract Architecture. The archi-
tecture consists of an application processor, a set of photographic
devices such as flashes or lenses, and one or more image sensors,
each with a specialized image processor. A key aspect of this sys-
tem is that image sensors are pipelined. While the architecture can
handle different levels of pipelining, most imaging systems have at
least 4 pipeline stages, allowing for 4 frames in flight at a time:
When the application is preparing to request frame n, the sensor is
simultaneously configuring itself to capture frame n − 1, exposing
frame n − 2, and reading out frame n − 3. At the same time the
fixed-function processing units are processing frame n−4. Devices
such as the lens and flash perform actions scheduled for the frame
currently exposing, and tag the frame leaving the pipeline with the
appropriate metadata.

libraries, compilers, and debugging tools.

4. Has the ability to manipulate sensor, lens, and camera settings
on a per-frame basis at video rate, so we can request bursts of
images with unique capture parameters for each image.

5. Labels each returned frame with the camera settings used for
that frame, to allow for proper handling of the data produced
by requirement 4.

6. Allows access to raw pixel values at the maximum speed per-
mitted by the sensor interface. This means uncompressed, un-
demosaicked pixels.

7. Provides enough processing power in excess of what is re-
quired for basic camera operation to allow for the implemen-
tation of nearly any computational photography algorithm
from the recent literature, and enough memory to store the
inputs and outputs (often a burst of full-resolution images).

8. Allows standard camera accessories to be used, such as ex-
ternal flash or remote triggers, or more novel devices, such
as GPS, inertial measurement units (IMUs), or experimental
hardware. It should make synchronizing these devices to im-
age capture straightforward.

Figure 2 illustrates our model of the imaging hardware in the
Frankencamera architecture. It is general enough to cover most
platforms, so that it provides a stable interface to the application de-
signer, yet precise enough to allow for the low-level control needed
to achieve our requirements. It encompasses the image sensor, the
fixed-function imaging pipeline that deals with the resulting image
data, and other photographic devices such as the lens and flash.

The Image Sensor. One important characteristic of our architec-
ture is that the image sensor is treated as stateless. Instead, it is a
pipeline that transforms requests into frames. The requests specify
the configuration of the hardware necessary to produce the desired
frame. This includes sensor configuration like exposure and gain,
imaging processor configuration like output resolution and format,
and a list of device actions that should be synchronized to exposure,
such as if and when the flash should fire.

The frames produced by the sensor are queued and retrieved asyn-
chronously by the application. Each one includes both the actual
configuration used in its capture, and also the request used to gen-
erate it. The two may differ when a request could not be achieved
by the underlying hardware. Accurate labeling of returned frames
(requirement 5) is essential for algorithms that use feedback loops
like autofocus and metering.

As the manager of the imaging pipeline, a sensor has a somewhat
privileged role in our architecture compared to other devices. Nev-
ertheless, it is straightforward to express multiple-sensor systems.
Each sensor has its own internal pipeline and abstract imaging pro-
cessor (which may be implemented as separate hardware units, or
a single time-shared unit). The pipelines can be synchronized or
allowed to run independently. Simpler secondary sensors can al-
ternatively be encapsulated as devices (described later), with their
triggering encoded as an action slaved to the exposure of the main
sensor.

The Imaging Processor. The imaging processor sits between the
raw output of the sensor and the application processor, and has
two roles. First, it generates useful statistics from the raw image
data, including a small number of histograms over programmable
regions of the image, and a low-resolution sharpness map to assist
with autofocus. These statistics are attached to the corresponding
returned frame.

Second, the imaging processor transforms image data into the
format requested by the application, by demosaicking, white-
balancing, resizing, and gamma correcting as needed. As a min-
imum we only require two formats; the raw sensor data (require-
ment 6), and a demosaicked format of the implementation’s choos-
ing. The demosaicked format must be suitable for streaming di-
rectly to the platform’s display for use as a viewfinder.

The imaging processor performs both these roles in order to re-
lieve the application processor of essential image processing tasks,
allowing application processor time to be spent in the service of
more interesting applications (requirement 7). Dedicated imaging
processors are able to perform these roles at a fraction of the com-
pute and energy cost of a more general application processor.

Indeed, imaging processors tend to be fixed-functionality for rea-
sons of power efficiency, and so these two statistics and two output
formats are the only ones we require in our current architecture.
We anticipate that in the longer term image processors will become
more programmable, and we look forward to being able to replace
these requirements with a programmable set of transformation and
reduction stages. On such a platform, for example, one could write
a “camera shader” to automatically extract and return feature points
and descriptors with each frame to use for alignment or structure
from motion applications.

Devices. Cameras are much more than an image sensor. They
also include a lens, a flash, and other assorted devices. In order to
facilitate use of novel or experimental hardware, the requirements
the architecture places on devices are minimal.

Devices are controllable independently of a sensor pipeline by



whatever means are appropriate to the device. However, in many
applications the timing of device actions must be precisely coor-
dinated with the image sensor to create a successful photograph.
The timing of a flash firing in second-curtain sync mode must
be accurate to within a millisecond. More demanding computa-
tional photography applications, such as coded exposure photogra-
phy [Raskar et al. 2006], require even tighter timing precision.

To this end, devices may also declare one or more actions they can
take synchronized to exposure. Programmers can then schedule
these actions to occur at a given time within an exposure by at-
taching the action to a frame request. Devices declare the latency
of each of their actions, and receive a callback at the scheduled time
minus the latency. In this way, any event with a known latency can
be accurately scheduled.

Devices may also tag returned frames with metadata describing
their state during that frame’s exposure (requirement 5). Tagging
is done after frames leave the imaging processor, so this requires
devices to keep a log of their recent state.

Some devices generate asynchronous events, such as when a pho-
tographer manually zooms a lens, or presses a shutter button. These
are time-stamped and placed in an event queue, to be retrieved by
the application at its convenience.

Discussion. While this pipelined architecture is simple, it ex-
presses the key constraints of real camera systems, and it provides
fairly complete access to the underlying hardware. Current camera
APIs model the hardware in a way that mimics the physical cam-
era interface: the camera is a stateful object, which makes blocking
capture requests. This view only allows one active request at a time
and reduces the throughput of a camera system to the reciprocal of
its latency – a fraction of its peak throughput. Streaming modes,
such as those used for electronic viewfinders, typically use a sepa-
rate interface, and are mutually exclusive with precise frame level
control of sensor settings, as camera state becomes ill-defined in a
pipelined system. Using our pipelined model of a camera, we can
implement our key architecture goals with a straightforward API.
Before we discuss the API, however, we will describe our two im-
plementations of the Frankencamera architecture.

3.1 The F2

Our first Frankencamera implementation is constructed from an ag-
glomeration of off-the-shelf components (thus ‘Frankencamera’).
This makes duplicating the design easy, reduces the time to con-
struct prototypes, and simplifies repair and maintenance. It is the
second such major prototype (thus ‘F2’). The F2 is designed to
closely match existing consumer hardware, making it easy to move
our applications to mass-market platforms whenever possible. To
this end, it is built around the Texas Instruments OMAP3430
System-on-a-Chip (SoC), which is a widely used processor for
smartphones. See Figure 3 for an illustration of the parts that make
up the F2.

The F2 is designed for extensibility along three major axes. First,
the body is made of laser-cut acrylic and is easy to manufacture
and modify for particular applications. Second, the optics use a
standard Canon EOS lens mount, making it possible to insert fil-
ters, masks, or microlens arrays in the optical path of the camera.
Third, the F2 incorporates a Phidgets [Greenberg and Fitchett 2001]
controller, making it extendable with buttons, switches, sliders, joy-
sticks, camera flashes, and other electronics.

The F2 uses Canon lenses attached to a programmable lens con-
troller. The lenses have manual zoom only, but have programmable
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Figure 3: The F2. The F2 implementation of the Frankencamera
architecture is built around an OMAP3 EVM board, which includes
the Texas Instruments OMAP3430 SoC, a 640 × 480 touchscreen
LCD, and numerous I/O connections. The OMAP3430 includes a
fixed-function imaging processor, an ARM Cortex-A8 CPU, a DSP,
a PowerVR GPU supporting OpenGL ES 2.0, and 128MB of RAM.
To the EVM we attach: a lithium polymer battery pack and power
circuitry; a Phidgets board for controlling external devices; a five-
megapixel CMOS sensor; and a Birger EF-232 lens controller that
accepts Canon EOS lenses. The key strengths of the F2 are the
extensibility of its optics, electronics, and physical form factor.
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Figure 4: The Nokia N900. The Nokia N900 incorporates similar
electronics to the F2, in a much smaller form factor. It uses the same
OMAP3430 SoC, an 800 × 480 touchscreen LCD, and numerous
wireless connectivity options. The key strengths of the N900 are its
small size and wide availability.



aperture and focus. It uses a five-megapixel Aptina MT9P031 im-
age sensor, which, in addition to the standard settings offers pro-
grammable region-of-interest, subsampling, and binning modes. It
can capture full-resolution image data at 11 frames per second, or
VGA resolution at up to 90 frames per second. The F2 can mount
one or more Canon or Nikon flash units, which are plugged in over
the Phidgets controller. As we have not reverse-engineered any
flash communication protocols, these flashes can merely be trig-
gered at the present time.

In the F2, the role of abstract imaging processor is fulfilled by the
ISP within the OMAP3430. It is capable of producing raw or YUV
4:2:2 output. For each frame, it also generates up to four image
histograms over programmable regions, and produces a 16 × 12
sharpness map using the absolute responses of a high-pass IIR filter
summed over each image region. The application processor in the
F2 runs the Ångström Linux distribution [Ang 2010]. It uses high-
priority real-time threads to schedule device actions with a typical
accuracy of ±20 microseconds.

The major current limitation of the F2 is the sensor size. The Aptina
sensor is 5.6mm wide, which is a poor match for Canon lenses in-
tended for sensors 23-36mm wide. This restricts us to the widest-
angle lenses available. Fortunately, the F2 is designed to be easy
to modify and upgrade, and we are currently engineering a DSLR-
quality full-frame sensor board for the F2 using the Cypress Semi-
conductor LUPA 4000 image sensor, which has non-destructive
readout of arbitrary regions of interest and extended dynamic range.

Another limitation of the F2 is that while the architecture permits
a rapidly alternating output resolution, on the OMAP3430 this vi-
olates assumptions deeply encoded in the Linux kernel’s memory
management for video devices. This forces us to do a full pipeline
flush and reset on a change of output resolution, incurring a delay
of roughly 700ms. This part of the Linux kernel is under heavy
development by the OMAP community, and we are optimistic that
this delay can be substantially reduced in the future.

3.2 The Nokia N900

Our second hardware realization of the Frankencamera architecture
is a Nokia N900 with a custom software stack. It is built around the
same OMAP3430 as the F2, and it runs the Maemo Linux distri-
bution [Mae 2010]. In order to meet the architecture requirements,
we have replaced key camera drivers and user-space daemons. See
Figure 4 for a description of the camera-related components of the
Nokia N900.

While the N900 is less flexible and extensible than the F2, it has
several advantages that make it the more attractive option for many
applications. It is smaller, lighter, and readily available in large
quantities. The N900 uses the Toshiba ET8EK8 image sensor,
which is a five-megapixel image sensor similar to the Aptina sensor
used in the F2. It can capture full-resolution images at 12 frames
per second, and VGA resolution at 30 frames per second. While the
lens quality is lower than the Canon lenses we use on the F2, and the
aperture size is fixed at f/2.8, the low mass of the lens components
means they can be moved very quickly with a programmable speed.
This is not possible with Canon lenses. The flash is an ultra-bright
LED, which, while considerably weaker than a xenon flash, can be
fired for a programmable duration with programmable power.

The N900 uses the same processor as the F2, and a substantially
similar Linux kernel. Its imaging processor therefore has the same
capabilities, and actions can be scheduled with equivalent accuracy.
Unfortunately, this also means the N900 has the same resolution
switching cost as the F2. Nonetheless, this cost is significantly
less than the resolution switching cost for the built-in imaging API

(GStreamer), and this fact is exploited by several of our applica-
tions.

On both platforms, roughly 80MB of free memory is available to
the application programmer. Used purely as image buffer, this rep-
resents eight 5-MP images, or 130 VGA frames. Data can be writ-
ten to permanent storage at roughly 20 MB/sec.

4 Programming the Frankencamera

Developing for either Frankencamera is similar to developing for
any Linux device. One writes standard C++ code, compiles it with
a cross-compiler, then copies the resulting binary to the device. Pro-
grams can then be run over ssh, or launched directly on the device’s
screen. Standard debugging tools such as gdb and strace are avail-
able. To create a user interface, one can use any Linux UI toolkit.
We typically use Qt, and provide code examples written for Qt.
OpenGL ES 2.0 is available for hardware-accelerated graphics, and
regular POSIX calls can be used for networking, file I/O, synchro-
nization primitives, and so on. If all this seems unsurprising, then
that is precisely our aim.

Programmers and photographers interact with our architecture us-
ing the “FCam” API. We now describe the API’s basic concepts
illustrated by example code. For more details, please see the API
documentation and example programs included as supplemental
material.

4.1 Shots

The four basic concepts of the FCam API are shots, sensors, frames,
and devices. We begin with the shot. A shot is a bundle of param-
eters that completely describes the capture and post-processing of
a single output image. A shot specifies sensor parameters such as
gain and exposure time (in microseconds). It specifies the desired
output resolution, format (raw or demosaicked), and memory loca-
tion into which to place the image data. It also specifies the config-
uration of the fixed-function statistics generators by specifying over
which regions histograms should be computed, and at what resolu-
tion a sharpness map should be generated. A shot also specifies the
total time between this frame and the next. This must be at least as
long as the exposure time, and is used to specify frame rate inde-
pendently of exposure time. Shots specify the set of actions to be
taken by devices during their exposure (as a standard STL set). Fi-
nally, shots have unique ids auto-generated on construction, which
assist in identifying returned frames.

The example code below configures a shot representing a VGA res-
olution frame, with a 10ms exposure time, a frame time suitable for
running at 30 frames per second, and a single histogram computed
over the entire frame:

Shot shot;
shot.gain = 1.0;
shot.exposure = 10000;
shot.frameTime = 33333;
shot.image = Image(640, 480, UYVY);
shot.histogram.regions = 1;
shot.histogram.region[0] = Rect(0, 0, 640, 480);

4.2 Sensors

After creation, a shot can be passed to a sensor in one of two ways
– by capturing it or by streaming it. If a sensor is told to capture a
configured shot, it pushes that shot into a request queue at the top
of the imaging pipeline (Figure 2) and returns immediately:



Sensor sensor;
sensor.capture(shot);

The sensor manages the entire pipeline in the background. The shot
is issued into the pipeline when it reaches the head of the request
queue, and the sensor is ready to begin configuring itself for the
next frame. If the sensor is ready, but the request queue is empty,
then a bubble necessarily enters the pipeline. The sensor cannot
simply pause until a shot is available, because it has several other
pipeline stages; there may be a frame currently exposing, and an-
other currently being read out. Bubbles configure the sensor to use
the minimum frame time and exposure time, and the unwanted im-
age data produced by bubbles is silently discarded.

Bubbles in the imaging pipeline represent wasted time, and make
it difficult to guarantee a constant frame rate for video applica-
tions. In these applications, the imaging pipeline must be kept
full. To prevent this responsibility from falling on the API user,
the sensor can also be told to stream a shot. A shot to be streamed
is copied into a holding slot alongside the request queue. Then
whenever the request queue is empty, and the sensor is ready for
configuration, a copy of the contents of the holding slot enters
the pipeline instead of a bubble. Streaming a shot is done using:
sensor.stream(shot).

Sensors may also capture or stream vectors of shots, or bursts, in
the same way that they capture or stream shots. Capturing a burst
enqueues those shots at the top of the pipeline in the order given,
and is useful, for example, to capture a full high-dynamic-range
stack in the minimum amount of time. As with a shot, streaming
a burst causes the sensor to make an internal copy of that burst,
and atomically enqueue all of its constituent shots at the top of
the pipeline whenever the sensor is about to become idle. Thus,
bursts are atomic – the API will never produce a partial or inter-
rupted burst. The following code makes a burst from two copies of
our shot, doubles the exposure of one of them, and then uses the
sensor’s stream method to create frames that alternate exposure on
a per-frame basis at 30 frames per second. The ability to stream
shots with varying parameters at video rate is vital for many com-
putational photography applications, and hence was one of the key
requirements of our architecture. It will be heavily exploited by our
applications in Section 5.

std::vector<Shot> burst(2);
burst[0] = shot;
burst[1] = shot;
burst[1].exposure = burst[0].exposure*2;
sensor.stream(burst);

To update the parameters of a shot or burst that is currently stream-
ing (for example, to modify the exposure as the result of a metering
algorithm), one merely modifies the shot or burst and calls stream
again. Since the shot or burst in the internal holding slot is atomi-
cally replaced by the new call to stream, no partially updated burst
or shot is ever issued into the imaging pipeline.

4.3 Frames

On the output side, the sensor produces frames, retrieved from a
queue of pending frames via the getFrame method. This method
is the only blocking call in the core API. A frame contains image
data, the output of the statistics generators, the precise time the ex-
posure began and ended, the actual parameters used in its capture,
and the requested parameters in the form of a copy of the shot used
to generate it. If the sensor was unable to achieve the requested pa-
rameters (for example, if the requested frame time was shorter than
the requested exposure time), then the actual parameters will reflect
the modification made by the system.

Frames can be identified by the id field of their shot. Being able to
reliably identify frames is another of the key requirements for our
architecture. The following code displays the longer exposure of
the two frames specified in the burst above, but uses the shorter of
the two to perform metering. The functions displayImage and
metering are hypothetical functions that are not part of the API.

while (1) {
Frame::Ptr frame = sensor.getFrame();
if (frame.shot().id == burst[1].id) {

displayImage(frame.image);
} else if (frame.shot().id == burst[0].id) {

unsigned newExposure = metering(frame);
burst[0].exposure = newExposure;
burst[1].exposure = newExposure*2;
sensor.stream(burst);

}
}

In simple programs it is typically not necessary to check the ids of
returned frames, because our API guarantees that exactly one frame
comes out per shot requested, in the same order. Frames are never
duplicated or dropped entirely. If image data is lost or corrupted due
to hardware error, a frame is still returned (possibly with statistics
intact), with its image data marked as invalid.

4.4 Devices

In our API, each device is represented by an object with methods
for performing its various functions. Each device may additionally
define a set of actions which are used to synchronize these functions
to exposure, and a set of tags representing the metadata attached to
returned frames. While the exact list of devices is platform-specific,
the API includes abstract base classes that specify the interfaces to
the lens and the flash.

The lens. The lens can be directly asked to initiate a change
to any of its three parameters: focus (measured in diopters), fo-
cal length, and aperture, with the methods setFocus, setZoom,
and setAperture. These calls return immediately, and the lens
starts moving in the background. For cases in which lens move-
ment should be synchronized to exposure, the lens defines three
actions to do the same. Each call has an optional second argument
that specifies the speed with which the change should occur. Ad-
ditionally, each parameter can be queried to see if it is currently
changing, what its bounds are, and its current value. The following
code moves the lens from its current position to infinity focus over
the course of two seconds.

Lens lens;
float speed = (lens.getFocus()-lens.farFocus())/2;
lens.setFocus(lens.farFocus(), speed);

A lens tags each returned frame with the state of each of its three
parameters during that frame. Tags can be retrieved from a frame
like so:

Frame::Ptr frame = sensor.getFrame();
Lens::Tags *tags = frame->tags(&lens);
cout << "The lens was at: " << tags->focus;

The flash. The flash has a single method that tells it to fire with
a specified brightness and duration, and a single action that does
the same. It also has methods to query bounds on brightness and
duration. Flashes with more capabilities (such as the strobing flash
in Figure 5) can be implemented as subclasses of the base flash
class. The flash tags each returned frame with its state, indicating
whether it fired during that frame, and if so with what parameters.



Figure 5: The Frankencamera API provides precise timing control
of secondary devices like the flash. To produce the image above,
two Canon flash units were mounted on an F2. The weaker of the
two was strobed for the entire one-second exposure, producing the
card trails. The brighter of the two was fired once at the end of the
exposure, producing the crisp images of the three cards.

The following code example adds an action to our shot to fire the
flash briefly at the end of the exposure (second-curtain sync). The
results of a similar code snippet run on the F2 can be seen in Fig-
ure 5.

Flash flash;
Flash::FireAction fire(&flash);
fire.brightness = flash.maxBrightness();
fire.duration = 5000;
fire.time = shot.exposure - fire.duration;
shot.actions.insert(&fire);

Other devices. Incorporating external devices and having our
API manage the timing of their actions is straightforward. One need
merely inherit from the Device base class, add methods to control
the device in question, and then define any appropriate actions, tags,
and events. This flexibility is critical for computational photogra-
phy, in which it is common to experiment with novel hardware that
affects image capture.

4.5 Included Algorithms

There are occasions when a programmer will want to implement
custom metering and autofocus algorithms, and the API supports
this. For example, when taking a panorama, it is wise to not vary ex-
posure by too much between adjacent frames, and the focus should
usually be locked at infinity. In the common case, however, generic
metering and autofocus algorithms are helpful, and so we include
them as convenience functions in our API.

Metering. Our metering algorithm operates on the image his-
togram, and attempts to maximize overall brightness while mini-
mizing the number of oversaturated pixels. It takes a pointer to a
shot and a frame, and modifies the shot with suggested new param-
eters.

Autofocus. Our autofocus algorithm consists of an autofocus
helper object, which is passed a reference to the lens and told to
initiate autofocus. It then begins sweeping the lens from far focus
to near focus. Subsequent frames should be fed to it, and it inspects

their sharpness map and the focus position tag the lens has placed
on them. Once the sweep is complete, or if sharpness degrades for
several frames in a row, the lens is moved to the sharpest position
found. While this algorithm is more straightforward than an itera-
tive algorithm, it terminates in at most half a second, and is quite
robust.

Image Processing. Once the images are returned, programmers
are free to use any image processing library they like for analysis
and transformation beyond that done by the image processor. Be-
ing able to leverage existing libraries is a major advantage of writ-
ing a camera architecture under Linux. For convenience, we pro-
vide methods to synchronously or asynchronously save raw files to
storage (in the DNG format [Adobe, Inc. 2010]), and methods to
demosaic, gamma correct, and similarly store JPEG images.

4.6 Implementation

In our current API implementations, apart from fixed-function im-
age processing, FCam runs entirely on the ARM CPU in the
OMAP3430, using a small collection of user-space threads and
modified Linux kernel modules (See Figure 6 for the overall soft-
ware stack). Our system is built on top of Video for Linux 2 (V4L2)
– the standard Linux kernel video API. V4L2 treats the sensor as
stateful with no guarantees about timing of parameter changes. To
provide the illusion of a stateless sensor processing stateful shots,
we use three real-time-priority threads to manage updates to im-
age sensor parameters, readback of image data and metadata, and
device actions synchronized to exposure.

Setting Sensor Parameters. The “Setter” thread is responsible
for sensor parameter updates. The timing of parameter changes is
specific to the image sensor in question: On the F2, this thread sets
all the parameters for frame n+ 2 just after the readout of frame n
begins. On the N900, parameters must be set in two stages. When
readout of frame n begins, exposure and frame time are set for
frame n+ 2, and parameters affecting readout and post-processing
are set for frame n + 1. Once all of a shot’s parameters are set,
the Setter predicts when the resulting V4L2 buffer will return from
the imaging pipeline, and pushes the annotated shot onto an inter-
nal “in-flight” queue. To synchronize the Setter thread with frame
readout, we add a call to the imaging pipeline driver which sleeps
the calling thread until a hardware interrupt for the start of the next
frame readout arrives.

Our image sensor drivers are standard V4L2 sensor drivers with
one important addition. We add controls to specify the time taken
by each individual frame, which are implemented by adjusting the
amount of extra vertical blanking in sensor readout.

Handling Image Data. The “Handler” thread runs at a slightly
lower priority. It receives the V4L2 image buffers produced by the
imaging pipeline, which consist of timestamped image data. This
timestamp is correlated with the predicted return times for the shots
in flight, in order to match each image with the shot that produced
it. The Handler then queries the imaging processor driver for any
requested statistics. These are also timestamped, and so can simi-
larly be matched to the appropriate shot. The image data from the
buffer is then copied into the frame’s desired memory target (or
discarded), and the completed FCam frame is placed in the frame
queue, ready to be retrieved by the application.

Scheduling Device Actions. The “Action” thread runs at the
highest priority level and manages the timing of scheduled actions.
Actions are scheduled by the Setter when it sets a frame’s exposure
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Figure 6: The Frankencamera Software Stack. The core of the Frankencamera API (FCam) consists of the sensor object, and various device
objects for lenses, flashes, buttons, etc. The sensor object has three tasks: controlling a custom video for Linux (V4L2) sensor driver, which
manages and synchronizes sensor state updates and frame timing; managing the imaging processor (ISP), configuring fixed-function image
processing units and gathering the resulting statistics and image data; and precise timing of device actions slaved to exposures (e.g., firing
the flash). Each task is performed in its own real-time priority thread. The API also includes utility functions to save images in processed or
raw formats, and helper functions for autofocus and metering. For other functionality, such as file I/O, user interfaces, and rendering, the
programmer may use any library available for Linux.

Figure 7: Rephotography. A Frankencamera platform lets us ex-
periment with novel capture interfaces directly on the camera. Left:
The rephotography application directs the user towards the loca-
tion from which a reference photograph was taken (by displaying
a red arrow on the viewfinder). Right: The reference photograph
(above and left), which was taken during the morning, overlaid on
the image captured by the rephotography application several days
later at dusk.

time, as this is the earliest time at which the actions’ absolute trig-
ger time is known. The Action thread sleeps until several hundred
microseconds before the trigger time of the next scheduled action,
busy waits until the trigger time, then fires the action. We find that
simply sleeping until the trigger time is not sufficiently accurate. By
briefly busy-waiting we sacrifice a small amount of CPU time, but
are able to schedule actions with an accuracy of ±20 microseconds.

Performance. The FCam runtime, with its assortment of threads,
uses 11% of the CPU time on the OMAP3430’s ARM core when
streaming 640× 480 frames at 30 frames per second. If image data
is discarded rather than copied, usage drops to 5%. Basic camera
operations like displaying the viewfinder on screen, metering, and
focusing do not measurably increase CPU usage.

Installation. Setting up a store-bought N900 for use with the
FCam API involves installing a package of FCam kernel modules,
and rebooting. It does not interfere with regular use of the device
or its built-in camera application.

4.7 Discussion

Our goals for the API were to provide intuitive mechanisms to pre-
cisely manipulate camera hardware state over time, including con-
trol of the sensor, fixed-function processing, lens, flash, and any
associated devices. We have accomplished this in a minimally sur-
prising manner, which should be a key design goal of any API.
The API is limited in scope to what it does well, so that program-
mers can continue to use their favorite image processing library, UI
toolkit, file I/O, and so on. Nonetheless, we have taken a “batter-
ies included” approach, and made available control algorithms for
metering and focus, image processing functions to create raw and
JPEG files, and example applications that demonstrate using our
API with the Qt UI toolkit and OpenGL ES.

Implementing the API on our two platforms required a shadow
pipeline of in-flight shots, managed by a collection of threads, to
fulfill our architecture specification. This makes our implementa-
tion brittle in two respects. First, an accurate timing model of image
sensor and imaging processor operation is required to correctly as-
sociate output frames with the shot that generated them. Second,
deterministic guarantees from the image sensor about the latency
of parameter changes are required, so we can configure the sensor
correctly. In practice, there is a narrow time window in each frame
during which sensor settings may be adjusted safely. To allow us to
implement our API more robustly, future image sensors should pro-
vide a means to identify every frame they produce on both the input
and output sides. Setting changes could then be requested to take
effect for a named future frame. This would substantially reduce the
timing requirements on sensor configuration. Image sensors could
then return images tagged with their frame id (or even the entire
sensor state), to make association of image data with sensor state
trivial.

It would also be possible to make the API implementation more
robust by using a real-time operating system such as RTLinux [Yo-
daiken 1999], which would allow us to specify hard deadlines for
parameter changes and actions. However, this limits the range of
devices on which the API can be deployed, and our applications to
date have not required this level of control. In cases with a larger
number of device actions that must be strictly synchronized, an im-
plementation of the API on a real-time operating system might be
preferable.



Figure 8: Lucky Imaging. An image stream
and 3-axis gyroscope data for a burst of three
images with 0.5 second exposure times. The
Frankencamera API makes it easy to tag im-
age frames with the corresponding gyroscope
data. For each returned frame, we analyze the
gyroscope data to determine if the camera was
moving during the exposure. In the presence
of motion, the gyroscope values become non-
linear. Only the frames determined to have low
motion are saved to storage.
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Figure 9: Foveal Imaging records a video
stream that alternates between a downsampled
view of the whole scene and full-detail insets
of a small region of interest. The inset can be
used to record areas of high detail, track mo-
tion, or gather texture samples for synthesizing
a high-resolution video. In this example, the
inset is set to scan over the scene, the region of
interest moving slightly between each pair of
inset frames.
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5 Applications

We now describe a number of applications of the Frankencamera
architecture and API to concrete problems in photography. Most
run on either the N900 or the F2, though some require hardware
specific to one platform or the other. These applications are repre-
sentative of the types of in-camera computational photography our
architecture enables, and several are also novel applications in their
own right. They are all either difficult or impossible to implement
on existing platforms, yet simple to implement under the Franken-
camera architecture.

5.1 Rephotography

We reimplement the system of Bae et al. [2010], which guides a
user to the viewpoint of a historic photograph for the purpose of re-
capturing the same shot. The user begins by taking two shots of the
modern scene from different viewpoints, which creates a baseline
for stereo reconstruction. SIFT keypoints are then extracted from
each image. Once correspondences are found, the relative camera
pose can be found by the 5-point algorithm, together with a con-
sensus algorithm such as RANSAC, for rejecting outliers. Once
the SIFT keypoints have been triangulated, the inliers are tracked
through the streaming viewfinder frames using a KLT tracker, and
the pose of the camera is estimated in real time from the updated
positions of the keypoints. The pose of the historic photograph is
pre-computed likewise, and the user is directed to move the cam-
era towards it via a visual interface, seen in Figure 7 on the left. A
sample result can be seen on the right.

In the original system by Bae et al., computations and user inter-
actions take place on a laptop, with images provided by a tethered
Canon DSLR, achieving an interactive rate of 10+ fps. In our imple-
mentation on the N900, we achieve a frame rate of 1.5 fps, handling

user interaction more naturally through the touchscreen LCD of the
N900. Most of the CPU time is spent detecting and tracking key-
points (whether KLT or SIFT). This application and applications
like it would benefit immensely from the inclusion of a hardware-
accelerated feature detector in the imaging pipe.

5.2 IMU-based Lucky Imaging

Long-exposure photos taken without use of a tripod are usually
blurry, due to natural hand shake. However, hand shake varies over
time, and a photographer can get “lucky” and record a sharp photo
if the exposure occurs during a period of stillness (Figure 8). Our
“Lucky Imaging” application uses an experimental Nokia 3-axis
gyroscope affixed to the front of the N900 to detect hand shake.
Utilizing a gyroscope to determine hand shake is computationally
cheaper than analyzing full resolution image data, and will not con-
fuse blur caused by object motion in the scene with blur caused
by hand shake. We use an external gyroscope because the internal
accelerometer in the N900 is not sufficiently accurate for this task.

To use the gyroscope with the FCam API, we created a device sub-
class representing a 3-axis gyroscope. The gyroscope object then
tags frames with the IMU measurements recorded during the im-
age exposure. The application streams full-resolution raw frames,
saving them to storage only when their gyroscope tags indicate low
motion during the frame in question. The ease with which this ex-
ternal device could be incorporated is one of the key strengths of
our architecture.

This technique can be extended to longer exposure times where cap-
turing a “lucky image” on its own becomes very unlikely. Indeed,
Joshi et al. [2010] show how to deblur the captured images using
the motion path recorded by the IMU as a prior.



Figure 10: HDR Imaging. A programmable
camera running the FCam API improves HDR
acquisition in three ways. First, it lets us cy-
cle the image sensor through three exposure
times at video rate to meter for HDR and dis-
play an HDR viewfinder. Second, it lets us cap-
ture the burst of full-resolution images at max-
imum sensor rate to minimize motion artifacts
(the three images on the left). Finally, the pro-
grammability of the platform lets us composite
and produce the result on the camera for im-
mediate review (on the far right).

Figure 11: Low-Light Imaging. We use the
FCam API to create a low-light camera mode.
For viewfinding, we implement the method of
[Adams et al. 2008] which aligns and aver-
ages viewfinder frames. For capture, we im-
plement the method of Tico and Pulli [2009],
which fuses the crisp edges of a short-exposure
high-gain frame (left), with the superior col-
ors and low noise of a long-exposure low-gain
frame (middle). The result is fused directly on
the camera for immediate review.

5.3 Foveal Imaging

CMOS image sensors are typically bandwidth-limited devices that
can expose pixels faster than they can be read out into memory.
Full-sensor-resolution images can only be read out at a limited
frame rate: roughly 12 fps on our platforms. Low-resolution im-
ages, produced by downsampling or cropping on the sensor, can be
read at a higher-rate: up to 90 fps on the F2. Given that we have
a limited pixel budget, it makes sense to only capture those pixels
that are useful measurements of the scene. In particular, image re-
gions that are out-of-focus or oversaturated can safely be recorded
at low spatial resolution, and image regions that do not change over
time can safely be recorded at low temporal resolution.

Foveal imaging uses a streaming burst, containing shots that alter-
nate between downsampling and cropping on the sensor. The down-
sampled view provides a 640 × 480 view of the entire scene, and
the cropped view provides a 640 × 480 inset of one portion of the
scene, analogously to the human fovea (Figure 9). The fovea can be
placed on the center of the scene, moved around at random in order
to capture texture samples, or programmed to preferentially sample
sharp, moving, or well-exposed regions. For now, we have focused
on acquiring the data, and present results produced by moving the
fovea along a prescribed path. In the future, we intend to use this
data to synthesize full-resolution high-framerate video, similar to
the work of Bhat et al. [2007].

Downsampling and cropping on the sensor is a capability of the
Aptina sensor in the F2 not exposed by the base API. To access
this, we use derived versions of the Sensor, Shot, and Frame
classes specific to the F2 API implementation. These extensions
live in a sub-namespace of the FCam API. In general, this is how
FCam handles platform-specific extensions.

5.4 HDR Viewfinding and Capture

HDR photography operates by taking several photographs and
merging them into a single image that better captures the range
of intensities of the scene [Reinhard et al. 2006]. While modern
cameras include a “bracket mode” for taking a set of photos sepa-
rated by a pre-set number of stops, they do not include a complete
“HDR mode” that provides automatic metering, viewfinding, and

compositing of HDR shots. We use the FCam API to implement
such an application on the F2 and N900 platforms.

HDR metering and viewfinding is done by streaming a burst of
three 640 × 480 shots, whose exposure times are adjusted based
on the scene content, in a manner similar to Kang et al. [2003].
The HDR metering algorithm sets the long-exposure frame to cap-
ture the shadows, the short exposure to capture the highlights, and
the middle exposure as the midpoint of the two. As the burst is
streamed by the sensor, the three most recently captured images are
merged into an HDR image, globally tone-mapped with a gamma
curve, and displayed in the viewfinder in real time. This allows the
photographer to view the full dynamic range that will be recorded
in the final capture, assisting in composing the photograph.

Once it is composed, a high-quality HDR image is captured by
creating a burst of three full-resolution shots, with exposure and
gain parameters copied from the viewfinder burst. The shots are
captured by the sensor, and the resulting frames are aligned and
then merged into a final image using the Exposure Fusion algo-
rithm [Mertens et al. 2007]. Figure 10 shows the captured images
and results produced by our N900 implementation.

5.5 Low-Light Viewfinding and Capture

Taking high-quality photographs in low light is a challenging task.
To achieve the desired image brightness, one must either increase
gain, which increases noise, or increase exposure time, which intro-
duces motion blur and lowers the frame rate of the viewfinder. In
this application, we use the capabilities of the FCam API to imple-
ment a low-light camera mode, which augments viewfinding and
image capture using the algorithms of Adams et al. [2008] and Tico
and Pulli [2009], respectively.

The viewfinder of our low-light camera application streams short
exposure shots at high gain. It aligns and averages a moving win-
dow of the resulting frames to reduce the resulting noise without
sacrificing frame rate or introducing blur due to camera motion.

To acquire a full-resolution image, we capture a pair of shots: one
using a high gain and short exposure, and one using a low gain
and long exposure. The former has low motion blur, and the latter
has low noise. We fuse the resulting frames using the algorithm of
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Figure 12: Extended Dynamic Range Panorama Capture. A Frankencamera platform allows for experimentation with novel capture
interfaces and camera modes. Here we show a semi-automated panorama capture program. The image on the upper left shows the capture
interface, with a map of the captured images and the relative location of the camera’s current field of view. Images are taken by alternating
between two different exposures, which are then combined in-camera to create an extended dynamic range panorama.

Tico and Pulli, which combines the best features of each image to
produce a crisp, low-noise photograph (Figure 11).

5.6 Panorama Capture

The field of view of a regular camera can be extended by capturing
several overlapping images of a scene and stitching them into a sin-
gle panoramic image. However, the process of capturing individual
images is time-consuming and prone to errors, as the photographer
needs to ensure that all areas of the scene are covered. This is dif-
ficult since panoramas are traditionally stitched off-camera, so no
on-line preview of this capture process is available.

In order to address these issues, we implemented an application
for capturing and generating panoramas using the FCam API on
the N900. In the capture interface, the viewfinder alignment al-
gorithm [Adams et al. 2008] tracks the position of the current
viewfinder frame with respect to the previously captured images,
and a new high-resolution image is automatically captured when
the camera points to an area that contains enough new scene con-
tent. A map showing the relative positions of the previously cap-
tured images and the current camera pose guides the user in moving
the camera (top left of Figure 12). Once the user has covered the
desired field of view, the images are stitched into a panorama in-
camera, and the result can be viewed for immediate assessment.

In addition to in-camera stitching, we can use the FCam API’s
ability to individually set the exposure time for each shot to cre-
ate a panorama with extended dynamic range, in the manner of
Wilburn et al. [2005]. In this mode, the exposure time of the cap-
tured frames alternates between short and long, and the amount of
overlap between successive frames is increased so that each region
of the scene is imaged by at least one short-exposure frame, and
at least one long-exposure frame. In the stitching phase, the long
and short exposure panoramas are generated separately, then com-
bined [Mertens et al. 2007] to create an extended dynamic range
result.

6 Conclusion

We have described the Frankencamera – a camera architecture suit-
able for experimentation in computational photography, and two
implementations: our custom-built F2, and a Nokia N900 running
the Frankencamera software stack. Our architecture includes an
API that encapsulates camera state in the shots and frames that flow
through the imaging pipeline, rather than in the photographic de-
vices that make up the camera. By doing so, we unlock the under-
exploited potential of commonly available imaging hardware. The
applications we have explored thus far are low-level photographic
ones. With this platform, we now plan to explore applications in
augmented reality, camera user interfaces, and augmenting photog-
raphy using online services and photo galleries.

While implementing our architecture and API, we ran up against
several limitations of the underlying hardware. We summarize them
here both to express the corresponding limitations of our imple-
mentations, and also to provide imaging hardware designers with a
wish-list of features for new platforms. Future imaging platforms
should support the following:

1. Per-frame resolution switching at video-rate (without pipeline
flush). This must be supported by the imaging hardware and
the lowest levels of the software stack. In our implementa-
tions, resolution switches incur a ∼700ms delay.

2. Imaging processors that support streaming data from multiple
image sensors at once. While our architecture supports multi-
ple image sensors, neither of our implementations is capable
of this.

3. A fast path from the imaging pipeline into the GPU. Ideally,
the imaging pipeline must be able to output image data di-
rectly into an OpenGL ES texture target, without extra mem-
ory copies or data reshuffling. While image data can be routed
to the GPU on our implementations, this introduces a latency
of roughly a third of a second, which is enough to prevent us
from using the GPU to transform viewfinder data.

4. A feature detector and descriptor generator among the statis-
tics collection modules in the imaging processor. Many in-
teresting imaging tasks require real-time image alignment, or
more general feature tracking, which is computationally ex-
pensive on a CPU, and causes several of our applications to
run more slowly than we would like.

5. More generally, we would like to see programmable execution
stages replace the fixed-function transformation and statistics
generation modules in the imaging path. Stages should be
able to perform global maps (like gamma correction), global
reductions (like histogram generation), and also reductions
on local image patches (like demosaicking). We believe that
many interesting image processing algorithms that are cur-
rently too computationally expensive for embedded devices
(such as accelerated bilateral filters [Chen et al. 2007]) could
be elegantly expressed in such a framework.

The central goal of this project is to enable research in computa-
tional photography. We are therefore distributing our platforms to
students in computational photography courses, and are eager to
see what will emerge. In the longer term, our hope is that consumer
cameras and devices will become programmable along the lines of
what we have described, enabling exciting new research and creat-
ing a vibrant community of programmer-photographers.
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